Skip to main content
Erschienen in: Clinical Research in Cardiology 12/2021

Open Access 12.07.2021 | Original Paper

Prognostic value of hepatorenal function following transcatheter edge-to-edge mitral valve repair

verfasst von: Tetsu Tanaka, Refik Kavsur, Maximilian Spieker, Christos Iliadis, Clemens Metze, Patrick Horn, Atsushi Sugiura, Stephan Baldus, Malte Kelm, Georg Nickenig, Roman Pfister, Ralf Westenfeld, Marc Ulrich Becher

Erschienen in: Clinical Research in Cardiology | Ausgabe 12/2021

Abstract

Background

Hepatorenal dysfunction is a strong prognostic predictor in patients with heart failure. However, the prognostic impact of the hepatorenal dysfunction in patients undergoing transcatheter mitral valve repair (TMVR) has not been well studied.

Methods

In consecutive patients who underwent edge-to-edge TMVR at three German centers, the model for end-stage liver disease excluding international normalized ratio (MELD-XI) score was calculated as 5.11 × ln [serum total bilirubin (mg/dl)] + 11.76 × ln [serum creatinine (mg/dl)] + 9.44. Patients were stratified into high (> 11) or low (≤ 11) MELD-XI score of which an incidence of the composite outcome, consisting of all-cause mortality and heart failure hospitalization, within 2 years after TMVR was assessed.

Results

Of the 881 patients, the mean MELD-XI score was 11.0 ± 5.9, and 415 patients (47.1%) had high MELD-XI score. The MELD-XI score was correlated with male, effective regurgitant orifice area, and tricuspid regurgitation severity and inversely related to left ventricular ejection fraction. Patients with high MELD-XI score had a higher incidence of the composite outcome than those with low MELD-XI score (47.7% vs. 29.8%; p < 0.0001), and in multivariable analysis, the high MELD-XI score was an independent predictor of the composite outcome [adjusted hazard ratio (HR) 1.34; 95% confidence interval (CI) 1.02–1.77; p = 0.04). Additionally, the MELD-XI score as a continuous variable was also an independent predictor (adjusted HR 1.02; 95% CI 1.00–1.05; p = 0.048).

Conclusions

The MELD-XI score was associated with clinical outcomes within 2 years after TMVR and can be a useful risk-stratification tool in patients undergoing TMVR.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1007/​s00392-021-01908-w.
Tetsu Tanaka, Refik Kavsur, Maximilian Spieker, Ralf Westenfeld, and Marc Ulrich Becher are contributed equally.
Abkürzungen
CI
Confidence interval
HF
Heart failure
HR
Hazard ratio
LVEF
Left ventricular ejection fraction
TMVR
Transcatheter mitral valve repair
MELD-XI score
Model for end-stage liver disease excluding international normalized ratio score
MR
Mitral regurgitation
MV
Mitral valve
NYHA
New York heart association classification

Background

The cardiovascular system is in close relation to other organ systems, including the kidney and the liver, and impairment of cardiac function can lead to hepatic or renal dysfunction and vice versa [13]. The interactions of the heart with the liver and kidney are named cardiorenal and cardiohepatic syndromes. It has been reported that the presence of hepatic or renal dysfunction is a strong predictor of adverse clinical events in patients with heart failure (HF). Therefore, scoring models of renal and liver dysfunction have been required for assessing risk in patients with HF. The Model for End-stage Liver Disease excluding international normalized ratio score (MELD-XI) is one of the scoring models that have been widely used for assessment of renal and hepatic function [4]. The MELD-XI score reflects liver and renal function and is calculated based on serum total bilirubin and creatinine. In addition, previous reports showed the prognostically predictive value of the MELD-XI score in patients with HF [58].
Transcatheter edge-to-edge mitral valve repair (TMVR) is an emerging treatment option for symptomatic severe mitral regurgitation (MR) [9, 10]; however, according to the latest dataset from the Transcatheter Valve Therapy Registry [11], an incidence of adverse clinical events is still high even after TMVR. Moreover, patients with MR usually have multiple risk factors and comorbidities that can affect their clinical outcomes. Therefore, a simple and useful tool for risk stratification is required for patient selection in TMVR. Previous studies showed that hepatic or renal dysfunction was associated with worse clinical outcomes in patients with TMVR [12, 13]; however, the prognostic value of the combined marker of hepatorenal dysfunction has not been fully evaluated. In the present study, we investigated the association between MELD-XI score and clinical outcomes after TMVR.

Methods

Study population

This study was designated as a retrospective analysis from the Heart Failure Network Rhineland registry, which is a multicenter, prospective, observational registry of symptomatic patients with MR who undergo TMVR at three high-volume centers in Germany (University Hospitals of Bonn, Cologne, Duesseldorf) [14, 15]. From this registry, we identified consecutive patients who underwent their first edge-to-edge TMVR with the MitraClip system (Abbott Vascular, Santa Clara, California) between October 2011 and October 2018. Patients with available pre-procedural serum creatinine and total bilirubin results were included in the analysis. We excluded patients who were lost to follow-up within one month after TMVR. Patients agreed to participate in our registry which was approved by the Ethical Committee of the individual center in accordance with the Declaration of Helsinki.

Procedure

The indication for TMVR was moderate-to-severe or severe MR accompanied by symptomatic HF according to the New York Heart Association (NYHA) functional classification in patients considered as inoperable or at high surgical risk. After a standardized diagnostic workup including transesophageal echocardiography (TEE), the decision to perform the intervention was taken by the interdisciplinary heart team of each center. Procedures were performed under general anesthesia or sedation with three-dimensional TEE and fluoroscopic guidance. Details of the device system and procedure have previously been well described [16]. The discretion of whether a second or third device needed to be used was left up to the treating physicians. Device success was defined as post-procedural MR ≤ 2 and post-procedural mean transmitral valve pressure gradient < 5 mmHg after deployment of one or more clips to achieve leaflet approximation and retrieval of the delivery system.

Assessment of hepatorenal function

Hepatorenal function was assessed using the MELD-XI score which was calculated as 5.11 × ln (serum total bilirubin in mg/dl) + 11.76 × ln (serum creatinine mg/dl) + 9.44 [4]. The creatinine and total bilirubin measurements were performed at each institutional laboratory with other parameters, including N-terminal pro-B-type natriuretic peptide (NT-proBNP) and hemoglobin. A high MELD-XI score was defined as > 11, according to a previous report [5, 7]. Post-procedural blood data, including creatinine and total bilirubin, were collected at 1- and 12-month follow-up after TMVR. In addition, anemia was defined according to the World Health Organization criteria (hemoglobin < 13 g/dl for male patients; hemoglobin < 12 g/dl for female patients).

Echocardiographic parameters

We assessed echocardiographic parameters performed at baseline and discharge according to the current guidelines [17]. The severity of MR was graded as follows: grade 0, none; 1 + , mild; 2 + , moderate; 3 + , severe. All measurements were reviewed by an independent cardiologist dedicated to echocardiographic evaluation at each center.

Clinical follow-up

The primary endpoint was a composite outcome, consisting of all-cause mortality and hospitalization due to worsening HF within 2 years after TMVR. As secondary endpoints, all-cause mortality and hospitalization due to worsening HF within 2 years after TMVR were examined separately. All suspected adverse events were independently adjudicated by the local heart team according to the criteria of the Mitral Valve Academic Research Consortium 2 [18]. The need for hospitalization due to worsening HF was determined based on the attending physicians’ discretion without any prespecified criteria. The occurrence of clinical events was recorded from admission and outpatient medical records. Telephone interviews were also performed with the patients’ general practitioners or family. In addition, HF medication, including beta blockers, renin–angiotensin system (RAS) inhibitors, and aldosterone antagonists, and dosage with a standardized furosemide equivalent were recorded at baseline [19].

Statistical analysis

Continuous variables were tested for normal distribution using the Kolmogorov–Smirnov test. Normally distributed variables are presented as the mean ± standard deviation and compared using t tests. In contrast, non-normally distributed variables were expressed as medians with an interquartile range (IQR) and compared between groups using the Mann–Whitney U test. Categorical data were presented as numbers and percentages, and the differences between groups were evaluated using the chi-square test. Paired t test or Wilcoxon signed rank test compared change in hepatorenal function after TMVR within the same patient. Logistic regression analysis was performed to detect parameters that were related to the MELD-XI score. The variables with p < 0.05 on univariate analysis were incorporated into a multivariable regression model. The receiver-operating characteristic (ROC) curve was used to assess the validity of the cut-off value of the MELD-XI score for the 2-year composite outcome in the present study. In addition, Harrell’s C-statistic was used to compare the predictive ability of hepatorenal functional markers for the composite outcome by area under the curve analysis, accounting for censoring. Kaplan–Meier cumulative event curves for the composite outcome, HF hospitalization, and all-cause mortality were generated using two groups according to the high or low MELD-XI score. Differences between the groups were compared using the log-rank test. Univariate and multivariable Cox-proportional hazard models were used to calculate the hazard ratios (HRs) with 95% confidence intervals (CIs) for MELD-XI score for the composite outcome within 2 years after TMVR. In univariate analysis, we analyzed the HRs of conventional covariables that were determined according to previous reports. In multivariable analyses, covariates were included that showed significance (p < 0.05) in the univariate analyses, considering multicollinearity. A stratified analysis was performed to assess effects of interactions between high MELD-XI score (> 11) and clinical parameters on the composite outcome. The stratified analysis consisted of the following parameters: sex (male vs female), age (≥ 75 years vs < 75 years), etiology of MR (functional MR vs degenerative MR), MR severity at baseline (moderate-to-severe vs. severe), left ventricular ejection fraction (LVEF) (> 30% vs ≤ 30%), tricuspid annular plane systolic excursion (TAPSE) (≥ 15 mm vs < 15 mm), tricuspid regurgitation (TR) severity at baseline (≥ severe vs < severe), device success (yes vs no), and residual MR (≥ Grade II vs < Grade II), and additionally the p value for interaction between subgroups and high MELD-XI score (> 11) was examined. In addition, we performed a restricted cubic spline with 4 knots at the MELD-XI score to model a relationship between the MELD-XI score and the composite outcome. Statistical significance was set at p < 0.05. All analyses were conducted using Stata 15.1 (StataCorp, College Station, TX, USA) or JMP version 14.0 for Mac (SAS Institute Inc., Cary, NC, USA).

Results

Clinical characteristics of the study population

Of 881 patients, the mean age was 77.0 ± 9.0 years and 58.0% were of male sex (Table 1). Eighty-three percent of the patients were classified in NYHA functional class III or IV. The expected surgical mortality rate was elevated, as evidenced by the median logistic EuroSCORE of 16.4% (IQR 9.2–28.9%). Pre-procedural MR severity was moderate-to-severe or severe in 13% and 87% of the patients, respectively. The mean left ventricular ejection fraction (LVEF) was 44.6 ± 15.1%, and functional MR was the etiology of MR in 61% of the patients.
Table 1
Baseline characteristics
 
All
MELD-XI > 11
MELD-XI ≤ 11
p value
n = 881
n = 415
n = 466
Age (years)
77.0 ± 9.0
76.8 ± 8.8
77.1 ± 9.1
0.66
Male, n (%)
511 (58.0)
304 (72.2)
207 (44.4)
 < 0.0001
BMI (kg/m2)
26.0 ± 4.7
26.1 ± 4.3
25.9 ± 5.0
0.56
Diabetes, n (%)
250 (28.4)
128 (30.8)
122 (26.2)
0.13
Hypertension, n (%)
719 (81.6)
336 (81.0)
383 (82.2)
0.66
CAD, n (%)
547 (62.2)
288 (69.4)
259 (55.7)
 < 0.0001
Prior CABG, n (%)
239 (27.1)
129 (31.1)
110 (23.6)
0.02
Prior valve intervention, n (%)
110 (12.5)
49 (11.8)
61 (13.1)
0.61
Previous MI, n (%)
279 (31.7)
154 (37.1)
125 (26.9)
0.001
Previous stroke, n (%)
115 (13.1)
61 (14.7)
54 (11.6)
0.19
Atrial fibrillation, n (%)
566 (64.4)
281 (67.9)
285 (61.3)
0.048
NYHA class III/IV, n (%)
728 (83.0)
357 (86.4)
371 (80.0)
0.01
Pacemaker, n (%)
92 (10.4)
52 (12.5)
40 (8.6)
0.06
ICD, n (%)
135 (15.3)
84 (20.2)
51 (10.9)
0.0002
CRT, n (%)
85 (9.6)
57 (13.7)
28 (6.0)
0.0001
COPD, n (%)
170 (19.3)
84 (20.3)
86 (18.5)
0.50
Logistic EuroSCORE (%)
16.4 (9.2, 28.9)
17.8 (9.5, 31.6)
15.0 (8.9, 27.6)
0.04
Anemia, n (%)
488 (55.4)
231 (55.7)
257 (55.2)
0.89
Hemodialysis, n (%)
15 (2.7)
15 (5.6)
0 (0.0)
 < 0.0001
Laboratory data
    
 MELD-XI score
11.0 ± 5.9
15.9 ± 4.1
6.6 ± 3.1
 < 0.0001
  Creatinine (mg/dl)
1.52 ± 0.93
2.03 ± 1.13
1.08 ± 0.28
 < 0.0001
  Total Bilirubin (mg/dl)
0.63 (0.44, 0.97)
0.87 (0.60, 1.29)
0.52 (0.40, 0.70)
 < 0.0001
 eGFR (ml/min/1.73m2)
48.0 (34.4, 63.1)
36.0 (25.0, 46.9)
60.0 (47.1, 70.0)
 < 0.0001
 NT-proBNP (pg/ml)
2727 (1371, 5691)
4345 (2217, 8541)
1906 (977, 3428)
 < 0.0001
Echocardiographic findings
    
 LVEF (%)
44.6 ± 15.1
41.4 ± 15.0
47.3 ± 14.7
 < 0.0001
  LVEF ≤ 30%, n (%)
183 (20.8)
115 (27.9)
68 (14.6)
 < 0.0001
 LVEDV (ml)
131 (98, 180)
149 (109, 192)
118 (91, 160)
 < 0.0001
 LVESV (ml)
69 (40, 116)
89 (48, 129)
56 (37, 98)
 < 0.0001
 LA volume (ml)
97 (75, 124)
105 (84, 138)
90 (70, 120)
 < 0.0001
 Functional MR, n (%)
537 (61.0)
262 (63.1)
275 (59.0)
0.21
 MR severity
   
0.48
  3 + , n (%)
110 (12.5)
55 (11.8)
68 (13.5)
 
  4 + , n (%)
771 (87.5)
360 (88.2)
398 (86.5)
 
  EROA (mm2)
0.28 (0.20, 0.36)
0.30 (0.20, 0.38)
0.25 (0.20, 0.33)
0.02
 TR severity
   
 < 0.0001
  None/ Mild
397 (45.1)
161 (38.8)
236 (50.6)
 
  Moderate
279 (31.7)
128 (30.8)
151 (32.4)
 
  Severe or more
205 (23.2)
126 (30.4)
79 (17.0)
 
 TAPSE (mm)
18.3 ± 5.1
17.3 ± 4.8
19.3 ± 5.1
 < 0.0001
 SPAP (mmHg)
50.0 ± 16.9
50.1 ± 17.5
50.0 ± 16.4
0.93
Medication
    
 Beta blocker, n (%)
690 (78.3)
325 (78.3)
365 (78.3)
1.00
 RAS inhibitor, n (%)
679 (77.1)
303 (73.0)
375 (80.7)
0.008
 Aldosterone antagonist, n (%)
340 (38.6)
169 (40.7)
171 (36.7)
0.24
 Loop diuretic, n (%)
654 (74.2)
316 (76.1)
338 (72.5)
0.25
 Standardized furosemide equivalent (mg/day)
20 (0, 40)
30 (5, 60)
20 (0, 40)
0.0003
Values shown are either n (%), mean ± SD, or median (interquartile range)
MELD-XI score model for end-stage liver disease excluding international normalized score, BMI body mass index, CAD coronary artery disease, CABG coronary artery bypass grafting, MI myocardial infarction, NYHA New York heart association, ICD implantable cardioverter defibrillator, CRT cardiac resynchronization therapy, COPD chronic obstructive pulmonary disease, eGFR estimated glomerular filtration rate, NT-proBNP N-terminal pro-B-type natriuretic peptide, EuroSCORE European system for cardiac operative risk evaluation, MR mitral regurgitation, EROA effective regurgitant orifice area, LVEF left ventricular ejection fraction, LVEDV left ventricular end-diastolic volume, LVESV left ventricular end-systolic volume, LA left atrium, TR tricuspid regurgitation, TAPSE tricuspid annular plane systolic excursion, SPAP systolic pulmonary artery pressure, RAS renin–angiotensin system
Clip implantation failed in 12 patients (1.4%), and device success was achieved in 93.0% of the patients. The mean number of implanted clips was 1.5 ± 0.6 (Supplementary Table 1). Echocardiography at discharge showed that residual MR of less than 2 + was prevalent in 56.0% of the patients.

Analysis of MELD-XI score

The mean MELD-XI score was 11.0 ± 5.9 (Table 1), and the distribution of the MELD-XI score is presented in Fig. 1. In addition, the median estimated glomerular filtration rate (eGFR) was 48.0 ml/min/1.73m2 (IQR 34.4–63.1 ml/min/1.73m2), and the median total bilirubin was 0.63 mg/dl (IQR 0.44–0.97 mg/dl). Fifteen patients received hemodialysis therapies. MELD-XI score was correlated to sex, MR effective regurgitation orifice area (EROA), left ventricular ejection fraction (LVEF), LV end-diastolic volume, TAPSE, right atrial area, left atrial volume, severe or more TR (Table 2). However, on multivariable analysis, male sex had the strongest correlation (standardized β: 0.27; 95% CI 0.16–0.37; p = 0.003), followed by LVEF (standardized β: − 0.19; 95% CI − 0.32 to − 0.26; p = 0.004), MR EROA (standardized β: 0.15; 95% CI 0.05–0.24; p = 0.003), and severe or more TR (standardized β: 0.13; 95% CI 0.02–0.22; p = 0.02).
Table 2
Risk factors for hepatorenal dysfunction (MELD-XI score)
 
Univariate analysis
Multivariable analysis
β coefficient
95% CI
p value
β coefficient
95% CI
p value
Age (years)
− 0.04
− 0.11 to 0.02
0.21
   
Male
0.35
0.29–0.41
 < 0.0001
0.27
0.16–0.37
0.003
Diabetes mellitus
− 0.05
− 0.12 to 0.02
0.14
   
Hypertension
− 0.004
− 0.07 to 0.06
0.91
   
EROA (mm2)
0.16
0.07–0.25
0.001
0.15
0.05–0.24
0.003
LVEF (%)
− 0.20
− 0.27 to − 0.12
 < 0.0001
− 0.19
− 0.32 to − 0.06
0.004
LVEDV (ml)
0.16
0.08–0.24
 < 0.0001
− 0.03
− 0.18 to 0.11
0.56
SPAP (mmHg)
0.03
− 0.04 to 0.11
0.36
   
TAPSE (mm)
− 0.22
− 0.29 to − 0.15
 < 0.0001
0.01
− 0.09 to 0.11
0.91
RA area (mm2)
0.17
0.09–0.26
 < 0.0001
0.08
− 0.01 to 0.17
0.08
LA volume (ml)
0.16
0.07–0.24
0.0002
0.09
− 0.03 to 0.20
0.15
TR severity: severe or more
0.18
0.11–0.25
 < 0.0001
0.13
0.02–0.22
0.02
MELD-XI score model for end-stage liver disease excluding international normalized score, EROA effective regurgitant orifice area, LVEF left ventricular ejection fraction, LVEDV left ventricular end-diastolic volume, SPAP systolic pulmonary artery pressure, TAPSE tricuspid annular plane systolic excursion, RA right atrium, LA left atrium, TR tricuspid regurgitation
Of the 881 patients, 415 patients (47.1%) had high MELD-XI score (> 11), and patients characteristics and echocardiographic findings of each group are shown in Table 1. Patients with the high MELD-XI score (> 11) had a lower LVEF and larger LV end-diastolic volume compared to those with low MELD-XI score (≤ 11) (41.4 ± 15.0% vs. 47.3 ± 14.7%; p < 0.0001, and 149 ml (IQR 109–192 ml) vs. 118 ml (IQR 91–160 ml); p < 0.0001, respectively). In contrast, there were no significant differences in the rate of device success and length of hospitalization.
Post-procedural changes in the MELD-XI score and other parameters of hepatorenal function were evaluated after TMVR (Supplementary Table 2). Compared to the value at baseline, the median MELD-XI score did not change significantly at 1- and 12-month follow-up after TMVR (11.8 ± 6.3; p = 0.86 and 11.2 ± 5.8; p = 0.79, respectively).

Association between MELD-XI score and clinical outcome after TMVR

Within 2 years after TMVR, 184 patients (20.9%) died, 203 patients (23.0%) were rehospitalized due to worsening HF, and 337 patients (38.2%) experienced the composite outcome (Supplementary Table 1). Patients with the high MELD-XI score (> 11) had a higher incidence of the 2-year composite outcome compared to those with the low MELD-XI score (≤ 11) (54.7% vs. 36.9%; log-rank p < 0.0001). The Kaplan–Meier curves for each outcome are shown in Fig. 2. In addition, the high MELD-XI score (> 11) was associated with a higher incidence of the 2-year composite outcome in spite of MR etiology, such as functional MR and degenerative MR (Supplementary Fig. 1).
From the ROC curve for the 2-year composite outcome, the optimal cut-off value of the MELD-XI score was also 11 [area under the curve (AUC): 0.62; p < 0.0001] (Supplementary Fig. 2). The Harrel’s C-statistic of MELD-XI score for the 2-year composite outcome was 0.60 (95% CI 0.57–0.63), which was higher than those of eGFR or total bilirubin (C-statistic: 0.57, 95% CI 0.54–0.61; p = 0.049, and C-statistic: 0.55; 95% CI 0.52–0.59; p = 0.004, respectively) (Supplementary Table 3).
In the multivariable Cox-proportional hazard analysis, covariates were included which showed significance (p < 0.05) in univariate analysis (Supplementary Table 4). Patients with high MELD-XI score (> 11) had a higher incidence of the composite outcome within 2 years after TMVR compared to those with low MELD-XI score (≤ 11) (adjusted HR 1.34; 95% CI 1.02–1.77; p = 0.04) (Table 3). Moreover, MELD-XI was an independent predictor of the incidence of 2-year composite outcome (adjusted HR 1.02; 95% CI 1.00–1.05; p = 0.048).
Table 3
Multivariable analysis for association of the MELD-XI score with an incidence of the composite outcome within 2 years after TMVR
 
Adjusted HR
95% CI
p value
MELD-XI score > 11*
1.34
1.02–1.77
0.04
MELD-XI score per 1 increase*
1.02
1.00–1.05
0.048
Age (years)
1.00
0.98–1.01
0.72
Male
1.20
0.88–1.67
0.24
Diabetes mellitus
1.09
0.83–1.43
0.52
COPD
1.45
1.07–1.95
0.01
CAD
1.04
0.78–1.39
0.81
NYHA class III/IV
1.85
1.25–2.86
0.003
Anemia
1.44
1.08–1.93
0.01
Logistic EuroSCORE (%)
1.01
1.00–1.02
0.048
LVEF ≤ 30%
1.46
1.06–2.00
0.02
LVEDV per 10 ml increase
1.00
0.98–1.03
0.77
TR severity: severe or more
1.37
1.01–1.84
0.04
Standardized furosemide equivalent per 10 mg/day increase
1.02
1.01–1.04
0.02
*Included separately in the multivariable analysis
MELD-XI score model for end-stage liver disease excluding international normalized score, COPD chronic obstructive pulmonary disease, CAD coronary artery disease, NYHA New York Heart Association, EuroSCORE European System for Cardiac Operative Risk Evaluation, LVEF left ventricular ejection fraction, LVEDV left ventricular end-diastolic volume, TR tricuspid regurgitation
The association between high MELD-XI score (> 11) and the composite outcome in subgroups is shown in Fig. 3. In the stratified analysis for the composite outcome, there were no significant interactions across the subgroups except for LVEF ≤ 30% (p for interaction = 0.02).
Our restricted cubic spline demonstrated a consistent increasing hazard of the composite outcome in the MELD-XI score of greater than 11. However, in the MELD-XI score of less than 11, a significant interaction between the MELD-XI score and the incidence of composite outcome was not observed (Fig. 4).

Discussion

In the current multicenter study of patients undergoing TMVR, the main findings can be summarized as follows: (1) the MELD-XI score, as both continuous and dichotomous variable, was associated with a higher incidence of the composite outcome, consisting of all-cause mortality and HF hospitalization, within 2 years after TMVR, independent of MR etiology; (2) the MELD-XI score had a higher predictive value of the composite outcome compared to total bilirubin and eGFR; (3) the MELD-XI score was correlated to male sex, MR EROA, and TR severity, and inversely to LVEF; and (4) the risk of the composite outcome increased in the MELD-XI score of greater than 11, whereas the association of the MELD-XI score with clinical outcome was not observed in the MELD-XI score of less than 11.
While both renal and hepatic dysfunction are strong predictors of adverse clinical outcomes in patients with HF [1, 3], the combination of both could increase their ability of risk stratification. The MELD-XI score is one of the most established scoring systems for hepatorenal dysfunction and is an alternative MELD scoring system that excludes international normalized ratio from the calculation. Initially, the MELD scores were developed for patients with hepatic cirrhosis awaiting liver transplantation [4]; however, the predictive value has recently been proven in patients with HF [5, 7, 8]. Furthermore, the MELD-XI score is reported as a risk-stratification tool in patients with valvular interventions [20, 21]. In patients undergoing TMVR, Spieker et al. previously reported the association between the MELD-XI score and all-cause mortality during one-year follow-up in a single-center population [22]. In the present study, we validated the use of this score on a multicenter large-scale cohort of TMVR patients, and additionally assessed the impact of MELD-XI score on the incidence of HF hospitalization. The findings could underline the prognostic impact of hepatorenal function and the utility of the MELD-XI score as a simple tool of risk stratification in patients undergoing TMVR.
The hepatorenal dysfunction related to HF is attributable to elevated cardiac filling pressures or reduced cardiac output, which are named “forward failure” and “backward failure” [23]. In the kidney, the low renal perfusion accompanied by low cardiac output and the renal vein hypertension induced by elevated right-sided cardiac filling pressure lead to neurohormonal activation and increased sodium and water retention, which can be contributable to chronic renal dysfunction. Similarly, in the liver, the decreased hepatic blood flow and the increased hepatic vein pressure can lead to chronic hepatic dysfunction [2, 3]. Accordingly, the association of the MELD scores with cardiac parameters, including the left ventricular systolic function or right atrial pressure, and tricuspid regurgitation has been previously reported [7, 8]. The present study showed that the MELD-XI score in TMVR patients was correlated with male sex, EROA, and TR severity, and inversely with LVEF, which was in line with the previous reports. MR severity is associated with hepatorenal dysfunction, whereas it remains unclear whether the hepatorenal dysfunction can improve after MR correction. Considering that EROA was correlated to the MELD-XI score, the reduction in MR by TMVR might link to an improved hepatorenal function. However, the MELD-XI score did not change significantly after TMVR in the present study, which might be due to the limited number of patients with available follow-up score variables. Further investigation to assess the post-procedural changes in MELD scores are needed in patients undergoing TMVR.
We evaluated the prognostic impact of the MELD-XI score as both dichotomous and continuous variable in TMVR patients. In addition, the predictive value of the MELD-XI score for the composite outcome within 2 years after TMVR was greater than those of eGFR and total bilirubin, separately. The optimal cut-off value of the MELD-XI score is different in various populations of HF [5, 7, 8, 21, 22]. We used one of the cut-off values previously reported and found a similar validity of the cut-off value in the present study. The validity of the cut-off value of MELD-XI score remained consistent among most of subgroups, including those defined according to etiology of MR, MR or TR severity, right ventricular function, device success, and residual MR. In contrast, high MELD-XI score (> 11) was not associated with the composite outcome in patients with LVEF ≤ 30%. Patients with LVEF ≤ 30% had higher MELD-XI score compared to those with LVEF > 30% (12.7 ± 6.0 vs 10.5 ± 5.8; p < 0.0001), and, according to ROC analysis, higher cut-off value was optimal for patients with LVEF ≤ 30% (cut-off: 17; AUC: 0.57; p = 0.02). Notably, our restricted cubic spline uncovered a continuously increasing hazard ratio of the composite outcome in the MELD-XI of greater than 11, while there was not a significant interaction between the MELD-XI score and the incidence of the composite outcome in the MELD-XI score of less than 11. The results suggest the importance of assessing the MELD-XI score as both dichotomous and continuous variable in clinical settings.
Predictors of long-term clinical outcomes after TMVR has been shown in previous reports from different multicenter registries [24, 25]. In the present studies, LVEF ≤ 30%, chronic pulmonary obstructive disease (COPD), anemia, NYHA class, logistic EuroSCORE, TR severity, and dosage of loop diuretics were associated with the composite outcome within 2 years after TMVR, which was in line with previous reports. COPD is one of the major comorbidities in patients with HF and is associated with increased long-term morbidity and mortality after TMVR [24, 25]. COPD can be a potential trigger for cardiovascular events, including worsening HF, when its reactivation occurs. Moreover, the overlapping symptom of dyspnea with both COPD and HF may lead to misapplication of therapy.
Appropriate patient selection is essential to ensure beneficial effects of TMVR. Controversial results of two randomized control trials, which are COAPT and MITRA-FR trials, highlight the importance of patient selection for TMVR [26]. However, because of the heterogeneity of patients with MR, the patient selection needs demanding assessments of clinical factors, including MR etiology, cardiac function and geometry, and non-cardiac comorbidities. In the present study, we focused on the hepatorenal function and revealed the association between the MELD-XI score and clinical outcomes after TMVR, independently of MR etiology. Furthermore, the MELD-XI score had a higher predictive value for the composite outcome compared to separate evaluations of renal and liver function. Our findings highlight the importance of hepatorenal function in patient selection and risk stratification for TMVR. The MELD-XI score may represent a simple tool for optimization of patient selection for TMVR. However, this study was an observational study without a control group consisting of patients who did not undergo TMVR, and it remains unclear whether TMVR can improve prognosis even in patients with high MELD-XI score. Nevertheless, the MELD-XI score is a scoring system that is calculable from conventional laboratory data and has been widely used in patients with HF [5, 7, 8], which can indicate the adaptability of the MELD-XI score to clinical practice in the field of TMVR.

Limitations

To the best of our knowledge, this is the first multicentric study assessing the prognostic impact of the MELD-XI score in patients undergoing TMVR; however, several limitations must be acknowledged. First, this was a retrospective study. Therefore, a certain patient selection bias might have impacted our results. Second, we could not distinguish acute hepatorenal injury from chronic dysfunction because we evaluated the MELD-XI score from only the latest laboratory data before TMVR. Finally, we could not assess post-procedural changes in the MELD-XI score after TMVR and could not investigate the prognostic impact of post-procedural changes in the MELD-XI score.

Conclusion

The MELD-XI score was associated with clinical outcome after edge-to-edge TMVR. Patients with a high MELD-XI score (> 11) had a higher incidence of the composite outcome, consisting of all-cause mortality and HF hospitalization, within 2 years after TMVR compared to those with a low MELD-XI score. The MELD-XI score can be a reliable tool for patient selection and risk stratification in patients undergoing TMVR.

Declarations

Conflict of interest

Georg Nickenig has received speaker honoraria and research grants from Abbott, Abiomed, Medtronic, Boston Scientific, and Edwards Lifesciences, outside the submitted work. Stephan Baldus has received lecture honoraria from Edwards Lifesciences, Bayer Vital, CVRx, MSD Sharp&Dome GmbH, JenaValve Technology, Abbott and research grant from IcoVifor, Symetis SA, Pfizer, JenaValve Technology, Valtech, OptumInsight, Biotronik and Abbott, outside the submitted work. Roman Pfister has received speaker and consultant honoraria by Abbott and Edwards Lifesciences, outside the submitted work. Christos Iliadis has received travel support by Abbott and speaker and consultant honoraria by Abbott and Edwards Lifesciences, outside the submitted work. Tetsu Tanaka is financially supported in part by a Fellowship from the Japanese College of Cardiology. The other authors report no conflicts of interest.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Unsere Produktempfehlungen

Neuer Inhalt

Print-Titel

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Anhänge

Supplementary Information

Below is the link to the electronic supplementary material.
Literatur
1.
Zurück zum Zitat Rangaswami J, Bhalla V, Blair JEA, Chang TI, Costa S, Lentine KL et al (2019) Cardiorenal syndrome: classification, pathophysiology, diagnosis, and treatment strategies: a scientific statement from the American heart association. Circulation 139:e840–e878CrossRef Rangaswami J, Bhalla V, Blair JEA, Chang TI, Costa S, Lentine KL et al (2019) Cardiorenal syndrome: classification, pathophysiology, diagnosis, and treatment strategies: a scientific statement from the American heart association. Circulation 139:e840–e878CrossRef
2.
Zurück zum Zitat Samsky MD, Patel CB, DeWald TA, Smith AD, Felker GM, Rogers JG et al (2013) Cardiohepatic interactions in heart failure: an overview and clinical implications. J Am Coll Cardiol 61:2397–2405CrossRef Samsky MD, Patel CB, DeWald TA, Smith AD, Felker GM, Rogers JG et al (2013) Cardiohepatic interactions in heart failure: an overview and clinical implications. J Am Coll Cardiol 61:2397–2405CrossRef
3.
Zurück zum Zitat Xanthopoulos A, Starling RC, Kitai T, Triposkiadis F (2019) Heart failure and liver disease: cardiohepatic interactions. JACC Heart Fail 7:87–97CrossRef Xanthopoulos A, Starling RC, Kitai T, Triposkiadis F (2019) Heart failure and liver disease: cardiohepatic interactions. JACC Heart Fail 7:87–97CrossRef
4.
Zurück zum Zitat Malinchoc M, Kamath PS, Gordon FD, Peine CJ, Rank J, ter Borg PC (2000) A model to predict poor survival in patients undergoing transjugular intrahepatic portosystemic shunts. Hepatology 31:864–871CrossRef Malinchoc M, Kamath PS, Gordon FD, Peine CJ, Rank J, ter Borg PC (2000) A model to predict poor survival in patients undergoing transjugular intrahepatic portosystemic shunts. Hepatology 31:864–871CrossRef
5.
Zurück zum Zitat Kawahira M, Tamaki S, Yamada T, Watanabe T, Morita T, Furukawa Y et al (2021) Prognostic value of impaired hepato-renal function and liver fibrosis in patients admitted for acute heart failure. ESC Heart Fail 8:1274CrossRef Kawahira M, Tamaki S, Yamada T, Watanabe T, Morita T, Furukawa Y et al (2021) Prognostic value of impaired hepato-renal function and liver fibrosis in patients admitted for acute heart failure. ESC Heart Fail 8:1274CrossRef
6.
Zurück zum Zitat Suzuki K, Claggett B, Minamisawa M, Packer M, Zile MR, Rouleau J et al (2020) Liver function and prognosis, and influence of sacubitril/valsartan in patients with heart failure with reduced ejection fraction. Eur J Heart Fail 22:1662–1671CrossRef Suzuki K, Claggett B, Minamisawa M, Packer M, Zile MR, Rouleau J et al (2020) Liver function and prognosis, and influence of sacubitril/valsartan in patients with heart failure with reduced ejection fraction. Eur J Heart Fail 22:1662–1671CrossRef
7.
Zurück zum Zitat Egbe AC, Miranda WR, Dearani J, Kamath PS, Connolly HM (2020) Prognostic role of hepatorenal function indexes in patients with Ebstein anomaly. J Am Coll Cardiol 76:2968–2976CrossRef Egbe AC, Miranda WR, Dearani J, Kamath PS, Connolly HM (2020) Prognostic role of hepatorenal function indexes in patients with Ebstein anomaly. J Am Coll Cardiol 76:2968–2976CrossRef
8.
Zurück zum Zitat Kim MS, Kato TS, Farr M, Wu C, Givens RC, Collado E et al (2013) Hepatic dysfunction in ambulatory patients with heart failure: application of the MELD scoring system for outcome prediction. J Am Coll Cardiol 61:2253–2261CrossRef Kim MS, Kato TS, Farr M, Wu C, Givens RC, Collado E et al (2013) Hepatic dysfunction in ambulatory patients with heart failure: application of the MELD scoring system for outcome prediction. J Am Coll Cardiol 61:2253–2261CrossRef
9.
Zurück zum Zitat Feldman T, Foster E, Glower DD, Kar S, Rinaldi MJ, Fail PS et al (2011) Percutaneous repair or surgery for mitral regurgitation. N Engl J Med 364:1395–1406CrossRef Feldman T, Foster E, Glower DD, Kar S, Rinaldi MJ, Fail PS et al (2011) Percutaneous repair or surgery for mitral regurgitation. N Engl J Med 364:1395–1406CrossRef
10.
Zurück zum Zitat Stone GW, Lindenfeld J, Abraham WT, Kar S, Lim DS, Mishell JM et al (2018) Transcatheter mitral-valve repair in patients with heart failure. N Engl J Med 379:2307–2318CrossRef Stone GW, Lindenfeld J, Abraham WT, Kar S, Lim DS, Mishell JM et al (2018) Transcatheter mitral-valve repair in patients with heart failure. N Engl J Med 379:2307–2318CrossRef
11.
Zurück zum Zitat Arora S, Vemulapalli S, Stebbins A, Ramm CJ, Kosinski AS, Sorajja P et al (2019) The prevalence and impact of atrial fibrillation on 1-year outcomes in patients undergoing transcatheter mitral valve repair: results from the society of thoracic surgeons/American college of cardiology transcatheter valve therapy registry. JACC Cardiovasc Interv 12:569–578CrossRef Arora S, Vemulapalli S, Stebbins A, Ramm CJ, Kosinski AS, Sorajja P et al (2019) The prevalence and impact of atrial fibrillation on 1-year outcomes in patients undergoing transcatheter mitral valve repair: results from the society of thoracic surgeons/American college of cardiology transcatheter valve therapy registry. JACC Cardiovasc Interv 12:569–578CrossRef
15.
Zurück zum Zitat Spieker M, Metze C, Kavsur R, Horn P, Iliadis C, Tiyerili V et al (2019) Prognostic value of the CHA2DS2-VASC score in patients undergoing the mitraclip procedure. JACC Cardiovasc Interv 12:2562–2564CrossRef Spieker M, Metze C, Kavsur R, Horn P, Iliadis C, Tiyerili V et al (2019) Prognostic value of the CHA2DS2-VASC score in patients undergoing the mitraclip procedure. JACC Cardiovasc Interv 12:2562–2564CrossRef
16.
Zurück zum Zitat Nickenig G, Estevez-Loureiro R, Franzen O, Tamburino C, Vanderheyden M, Luscher TF et al (2014) Percutaneous mitral valve edge-to-edge repair: in-hospital results and 1-year follow-up of 628 patients of the 2011–2012 pilot European sentinel registry. J Am Coll Cardiol 64:875–884CrossRef Nickenig G, Estevez-Loureiro R, Franzen O, Tamburino C, Vanderheyden M, Luscher TF et al (2014) Percutaneous mitral valve edge-to-edge repair: in-hospital results and 1-year follow-up of 628 patients of the 2011–2012 pilot European sentinel registry. J Am Coll Cardiol 64:875–884CrossRef
17.
Zurück zum Zitat Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American society of echocardiography and the European Association of cardiovascular imaging. J Am Soc Echocardiogr 28:1–39CrossRef Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American society of echocardiography and the European Association of cardiovascular imaging. J Am Soc Echocardiogr 28:1–39CrossRef
18.
Zurück zum Zitat Stone GW, Adams DH, Abraham WT, Kappetein AP, Généreux P, Vranckx P et al (2015) Clinical trial design principles and endpoint definitions for transcatheter mitral valve repair and replacement: part 2: endpoint definitions. J Am Coll Cardiol 66:308–321CrossRef Stone GW, Adams DH, Abraham WT, Kappetein AP, Généreux P, Vranckx P et al (2015) Clinical trial design principles and endpoint definitions for transcatheter mitral valve repair and replacement: part 2: endpoint definitions. J Am Coll Cardiol 66:308–321CrossRef
19.
Zurück zum Zitat Felker GM, Lee KL, Bull DA, Redfield MM, Stevenson LW, Goldsmith SR et al (2011) Diuretic strategies in patients with acute decompensated heart failure. N Engl J Med 364:797–805CrossRef Felker GM, Lee KL, Bull DA, Redfield MM, Stevenson LW, Goldsmith SR et al (2011) Diuretic strategies in patients with acute decompensated heart failure. N Engl J Med 364:797–805CrossRef
20.
Zurück zum Zitat Arai T, Yashima F, Yanagisawa R, Tanaka M, Shimizu H, Fukuda K et al (2017) Prognostic value of liver dysfunction assessed by MELD-XI scoring system in patients undergoing transcatheter aortic valve implantation. Int J Cardiol 228:648–653CrossRef Arai T, Yashima F, Yanagisawa R, Tanaka M, Shimizu H, Fukuda K et al (2017) Prognostic value of liver dysfunction assessed by MELD-XI scoring system in patients undergoing transcatheter aortic valve implantation. Int J Cardiol 228:648–653CrossRef
22.
Zurück zum Zitat Spieker M, Hellhammer K, Wiora J, Klose S, Zeus T, Jung C et al (2019) Prognostic value of impaired hepato-renal function assessed by the MELD-XI score in patients undergoing percutaneous mitral valve repair. Catheter Cardiovasc Interv 93:699–706CrossRef Spieker M, Hellhammer K, Wiora J, Klose S, Zeus T, Jung C et al (2019) Prognostic value of impaired hepato-renal function assessed by the MELD-XI score in patients undergoing percutaneous mitral valve repair. Catheter Cardiovasc Interv 93:699–706CrossRef
23.
Zurück zum Zitat Verbrugge FH, Guazzi M, Testani JM, Borlaug BA (2020) Altered hemodynamics and end-organ damage in heart failure: impact on the lung and kidney. Circulation 142:998–1012CrossRef Verbrugge FH, Guazzi M, Testani JM, Borlaug BA (2020) Altered hemodynamics and end-organ damage in heart failure: impact on the lung and kidney. Circulation 142:998–1012CrossRef
24.
Zurück zum Zitat Adamo M, Grasso C, Capodanno D, Rubbio AP, Scandura S, Giannini C et al (2019) Five-year clinical outcomes after percutaneous edge-to-edge mitral valve repair: insights from the multicenter GRASP-IT registry. Am Heart J 217:32–41CrossRef Adamo M, Grasso C, Capodanno D, Rubbio AP, Scandura S, Giannini C et al (2019) Five-year clinical outcomes after percutaneous edge-to-edge mitral valve repair: insights from the multicenter GRASP-IT registry. Am Heart J 217:32–41CrossRef
25.
Zurück zum Zitat Kalbacher D, Schafer U, Bardeleben RSV, Eggebrecht H, Sievert H, Nickenig G et al (2019) Long-term outcome, survival and predictors of mortality after mitraclip therapy: results from the german transcatheter mitral valve interventions (TRAMI) registry. Int J Cardiol 277:35–41CrossRef Kalbacher D, Schafer U, Bardeleben RSV, Eggebrecht H, Sievert H, Nickenig G et al (2019) Long-term outcome, survival and predictors of mortality after mitraclip therapy: results from the german transcatheter mitral valve interventions (TRAMI) registry. Int J Cardiol 277:35–41CrossRef
26.
Zurück zum Zitat Pfister R, Hausleiter J, Boekstegers P, Mollmann H, Nef H, Rudolph V et al (2019) Role of percutaneous edge-to-edge repair in secondary mitral regurgitation after MITRA-FR and COAPT : a comment by the section of AV-valve treatment of the Working Group of Interventional Cardiology (AGIK) of the German Society of Cardiology (DGK). Clin Res Cardiol 108:969–973CrossRef Pfister R, Hausleiter J, Boekstegers P, Mollmann H, Nef H, Rudolph V et al (2019) Role of percutaneous edge-to-edge repair in secondary mitral regurgitation after MITRA-FR and COAPT : a comment by the section of AV-valve treatment of the Working Group of Interventional Cardiology (AGIK) of the German Society of Cardiology (DGK). Clin Res Cardiol 108:969–973CrossRef
Metadaten
Titel
Prognostic value of hepatorenal function following transcatheter edge-to-edge mitral valve repair
verfasst von
Tetsu Tanaka
Refik Kavsur
Maximilian Spieker
Christos Iliadis
Clemens Metze
Patrick Horn
Atsushi Sugiura
Stephan Baldus
Malte Kelm
Georg Nickenig
Roman Pfister
Ralf Westenfeld
Marc Ulrich Becher
Publikationsdatum
12.07.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Clinical Research in Cardiology / Ausgabe 12/2021
Print ISSN: 1861-0684
Elektronische ISSN: 1861-0692
DOI
https://doi.org/10.1007/s00392-021-01908-w

Weitere Artikel der Ausgabe 12/2021

Clinical Research in Cardiology 12/2021 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.