Skip to main content
Erschienen in:

06.02.2023 | Original Article

Progression of prediabetes to diabetes and its associated factors: The Fasa Adult Cohort Study(FACS)

verfasst von: Mehdi Sharafi, Mohammad Hassan Eftekhari, Mohammad Ali Mohsenpour, Sima Afrashteh, Najibullah Baeradeh, Mohammad Fararouei, Babak Pezeshki

Erschienen in: International Journal of Diabetes in Developing Countries | Ausgabe 6/2023

Einloggen, um Zugang zu erhalten

Abstract

Aim

Prediabetes is a strong predictor for type 2 diabetes mellitus (T2DM). However, the possible effects of other factors on the above association are unknown. This study aimed to determine factors associated with the progression of prediabetes to T2DM.

Materials and methods

In the present prospective cohort study, 757 individuals with prediabetes included in the Fasa cohort study were identified and followed for 5 years in order to diagnose T2DM. The baseline demographic, medical, and clinical records of participants were surveyed. Latent class analysis (LCA) and Cox regression model were applied to evaluate potential factors affecting the rate of progression of prediabetes to T2DM. \(p\) values less than 0.05 were considered significant.

Results

The annual cumulative incidence rate of diabetes was 124.1 per 1000 population. A total of 3 different latent classes were among participants including fatty liver & DII class (FLDc), with 18.58%, metabolic syndrome class (MSc), with 31.44%, and high-risk class (HRc), with 49.98% of the participants. Based on the results of Cox multivariate regression analysis, the risk of progression to T2DM was significantly raised with the presence of FLDc (HR = 2.37, 95% CI: 1.19, 4.74).

Conclusion

Our findings show that the cumulative diabetes incidence was alarmingly high in Iran. Also, the cooccurrence of factors such as high fatty liver index, high DII score, metabolic syndrome, and waist-to-hip ratio increased the risk of diabetes in prediabetic individuals. These results point out the importance of applying effective preventive interventional programs for prediabetic individuals.
Literatur
1.
Zurück zum Zitat Raghupathi W, Raghupathi V. An empirical study of chronic diseases in the United States: a visual analytics approach to public health. Int J Environ Res Public Health. 2018;15(3):431.CrossRefPubMedPubMedCentral Raghupathi W, Raghupathi V. An empirical study of chronic diseases in the United States: a visual analytics approach to public health. Int J Environ Res Public Health. 2018;15(3):431.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Stanaway JD, Afshin A, Gakidou E, Lim SS, Abate D, Abate KH, et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet. 2018;392(10159):1923–94.CrossRef Stanaway JD, Afshin A, Gakidou E, Lim SS, Abate D, Abate KH, et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet. 2018;392(10159):1923–94.CrossRef
3.
Zurück zum Zitat Lovic D, Piperidou A, Zografou I, Grassos H, Pittaras A, Manolis A. The growing epidemic of diabetes mellitus. Curr Vasc Pharmacol. 2020;18(2):104–9.CrossRefPubMed Lovic D, Piperidou A, Zografou I, Grassos H, Pittaras A, Manolis A. The growing epidemic of diabetes mellitus. Curr Vasc Pharmacol. 2020;18(2):104–9.CrossRefPubMed
4.
Zurück zum Zitat Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047–53.CrossRefPubMed Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047–53.CrossRefPubMed
5.
Zurück zum Zitat Khamseh ME, Sepanlou SG, Hashemi-Madani N, Joukar F, Mehrparvar AH, Faramarzi E, et al. Nationwide prevalence of diabetes and prediabetes and associated risk factors among Iranian adults: analysis of data from PERSIAN cohort study. Diabetes Therapy. 2021;12(11):2921–38.CrossRefPubMedPubMedCentral Khamseh ME, Sepanlou SG, Hashemi-Madani N, Joukar F, Mehrparvar AH, Faramarzi E, et al. Nationwide prevalence of diabetes and prediabetes and associated risk factors among Iranian adults: analysis of data from PERSIAN cohort study. Diabetes Therapy. 2021;12(11):2921–38.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Hostalek U. Global epidemiology of prediabetes-present and future perspectives. Clinical diabetes and endocrinology. 2019;5(1):1–5.CrossRef Hostalek U. Global epidemiology of prediabetes-present and future perspectives. Clinical diabetes and endocrinology. 2019;5(1):1–5.CrossRef
7.
Zurück zum Zitat Hadaegh F, Derakhshan A, Zafari N, Khalili D, Mirbolouk M, Saadat N, et al. Pre-diabetes tsunami: incidence rates and risk factors of pre-diabetes and its different phenotypes over 9 years of follow-up. Diabet Med. 2017;34(1):69–78.CrossRefPubMed Hadaegh F, Derakhshan A, Zafari N, Khalili D, Mirbolouk M, Saadat N, et al. Pre-diabetes tsunami: incidence rates and risk factors of pre-diabetes and its different phenotypes over 9 years of follow-up. Diabet Med. 2017;34(1):69–78.CrossRefPubMed
8.
Zurück zum Zitat Khan RMM, Chua ZJY, Tan JC, Yang Y, Liao Z, Zhao Y. From pre-diabetes to diabetes: diagnosis, treatments and translational research. Medicina. 2019;55(9):546.CrossRefPubMedPubMedCentral Khan RMM, Chua ZJY, Tan JC, Yang Y, Liao Z, Zhao Y. From pre-diabetes to diabetes: diagnosis, treatments and translational research. Medicina. 2019;55(9):546.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Aktas G, Kocak MZ, Bilgin S, Atak BM, Duman TT, Kurtkulagi O. Uric acid to HDL cholesterol ratio is a strong predictor of diabetic control in men with type 2 diabetes mellitus. Aging Male. 2020;23(5):1098–102.CrossRefPubMed Aktas G, Kocak MZ, Bilgin S, Atak BM, Duman TT, Kurtkulagi O. Uric acid to HDL cholesterol ratio is a strong predictor of diabetic control in men with type 2 diabetes mellitus. Aging Male. 2020;23(5):1098–102.CrossRefPubMed
10.
Zurück zum Zitat Kosekli MA, Kurtkulagii O, Kahveci G, Duman TT, Tel BMA, Bilgin S, et al. The association between serum uric acid to high density lipoprotein-cholesterol ratio and non-alcoholic fatty liver disease: the abund study. Rev Assoc Med Bras. 2021;67:549–54.CrossRefPubMed Kosekli MA, Kurtkulagii O, Kahveci G, Duman TT, Tel BMA, Bilgin S, et al. The association between serum uric acid to high density lipoprotein-cholesterol ratio and non-alcoholic fatty liver disease: the abund study. Rev Assoc Med Bras. 2021;67:549–54.CrossRefPubMed
11.
Zurück zum Zitat Aktas G, Khalid A, Kurtkulagi O, Duman TT, Bilgin S, Kahveci G, et al. Poorly controlled hypertension is associated with elevated serum uric acid to HDL-cholesterol ratio: a cross-sectional cohort study. Postgrad Med. 2022;134(3):297–302.CrossRefPubMed Aktas G, Khalid A, Kurtkulagi O, Duman TT, Bilgin S, Kahveci G, et al. Poorly controlled hypertension is associated with elevated serum uric acid to HDL-cholesterol ratio: a cross-sectional cohort study. Postgrad Med. 2022;134(3):297–302.CrossRefPubMed
12.
Zurück zum Zitat Kocak MZ, Aktas G, Erkus E, Sincer I, Atak B, Duman T. Serum uric acid to HDL-cholesterol ratio is a strong predictor of metabolic syndrome in type 2 diabetes mellitus. Rev Assoc Med Bras. 2019;65:9–15.CrossRefPubMed Kocak MZ, Aktas G, Erkus E, Sincer I, Atak B, Duman T. Serum uric acid to HDL-cholesterol ratio is a strong predictor of metabolic syndrome in type 2 diabetes mellitus. Rev Assoc Med Bras. 2019;65:9–15.CrossRefPubMed
13.
Zurück zum Zitat Kocak MZ, Aktas G, Atak BM, Duman TT, Yis OM, Erkus E, et al. Is Neuregulin-4 a predictive marker of microvascular complications in type 2 diabetes mellitus? Eur J Clin Invest. 2020;50(3): e13206.CrossRefPubMed Kocak MZ, Aktas G, Atak BM, Duman TT, Yis OM, Erkus E, et al. Is Neuregulin-4 a predictive marker of microvascular complications in type 2 diabetes mellitus? Eur J Clin Invest. 2020;50(3): e13206.CrossRefPubMed
14.
Zurück zum Zitat Yu Q, Johnson MC, Fishbein HA, Birch RJ, Zhu X, Mardon R, et al. Latent class trajectory analysis of risk factors uncovers progression to type 2 Diabetes. J Endocrinol Science. 2021 16;3(1). Yu Q, Johnson MC, Fishbein HA, Birch RJ, Zhu X, Mardon R, et al. Latent class trajectory analysis of risk factors uncovers progression to type 2 Diabetes. J Endocrinol Science. 2021 16;3(1).
15.
Zurück zum Zitat Chan PA, Rose J, Maher J, Benben S, Pfeiffer K, Almonte A, et al. A latent class analysis of risk factors for acquiring HIV among men who have sex with men: implications for implementing pre-exposure prophylaxis programs. AIDS Patient Care STDS. 2015;29(11):597–605.CrossRefPubMedPubMedCentral Chan PA, Rose J, Maher J, Benben S, Pfeiffer K, Almonte A, et al. A latent class analysis of risk factors for acquiring HIV among men who have sex with men: implications for implementing pre-exposure prophylaxis programs. AIDS Patient Care STDS. 2015;29(11):597–605.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Logan J, Hall J, Karch D. Suicide categories by patterns of known risk factors: a latent class analysis. Arch Gen Psychiatry. 2011;68(9):935–41.CrossRefPubMed Logan J, Hall J, Karch D. Suicide categories by patterns of known risk factors: a latent class analysis. Arch Gen Psychiatry. 2011;68(9):935–41.CrossRefPubMed
17.
Zurück zum Zitat Virtanen M, Vahtera J, Head J, Dray-Spira R, Okuloff A, Tabak AG, et al. Work disability among employees with diabetes: latent class analysis of risk factors in three prospective cohort studies. PLoS ONE. 2015;10(11): e0143184.CrossRefPubMedPubMedCentral Virtanen M, Vahtera J, Head J, Dray-Spira R, Okuloff A, Tabak AG, et al. Work disability among employees with diabetes: latent class analysis of risk factors in three prospective cohort studies. PLoS ONE. 2015;10(11): e0143184.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Weller BE, Bowen NK, Faubert SJ. Latent class analysis: a guide to best practice. J Black Psychol. 2020;46(4):287–311.CrossRef Weller BE, Bowen NK, Faubert SJ. Latent class analysis: a guide to best practice. J Black Psychol. 2020;46(4):287–311.CrossRef
19.
Zurück zum Zitat Little TD, editor. The Oxford handbook of quantitative methods in psychology: Vol. 2: statistical analysis. Oxford University Press; 2013 Mar 21. Little TD, editor. The Oxford handbook of quantitative methods in psychology: Vol. 2: statistical analysis. Oxford University Press; 2013 Mar 21.
20.
Zurück zum Zitat Farjam M, Bahrami H, Bahramali E, Jamshidi J, Askari A, Zakeri H, et al. A cohort study protocol to analyze the predisposing factors to common chronic non-communicable diseases in rural areas: Fasa Cohort Study. BMC Public Health. 2016;16(1):1–8.CrossRef Farjam M, Bahrami H, Bahramali E, Jamshidi J, Askari A, Zakeri H, et al. A cohort study protocol to analyze the predisposing factors to common chronic non-communicable diseases in rural areas: Fasa Cohort Study. BMC Public Health. 2016;16(1):1–8.CrossRef
21.
Zurück zum Zitat Eghtesad S, Mohammadi Z, Shayanrad A, Faramarzi E, Joukar F, Hamzeh B, et al. The PERSIAN cohort: providing the evidence needed for healthcare reform. Arch Iran Med. 2017;20(11):691–5.PubMed Eghtesad S, Mohammadi Z, Shayanrad A, Faramarzi E, Joukar F, Hamzeh B, et al. The PERSIAN cohort: providing the evidence needed for healthcare reform. Arch Iran Med. 2017;20(11):691–5.PubMed
22.
Zurück zum Zitat Sharafi M, Bahramali E, Farjam M, Rezaeian S, Afrashteh S, Amiri Z. Socioeconomic inequality in noncommunicable diseases: results from a baseline Persian cohort study. Med J Islam Repub Iran. 2021;35:78.PubMedPubMedCentral Sharafi M, Bahramali E, Farjam M, Rezaeian S, Afrashteh S, Amiri Z. Socioeconomic inequality in noncommunicable diseases: results from a baseline Persian cohort study. Med J Islam Repub Iran. 2021;35:78.PubMedPubMedCentral
23.
Zurück zum Zitat Ariya M, Shahraki HR, Farjam M, Ehrampoush E, Bahramali E, Homayounfar R, et al. Dietary inflammatory index and metabolic syndrome in Iranian population (Fasa Persian Cohort Study). Sci Rep. 2020;10(1):1–10.CrossRef Ariya M, Shahraki HR, Farjam M, Ehrampoush E, Bahramali E, Homayounfar R, et al. Dietary inflammatory index and metabolic syndrome in Iranian population (Fasa Persian Cohort Study). Sci Rep. 2020;10(1):1–10.CrossRef
24.
Zurück zum Zitat Bedogni G, Bellentani S, Miglioli L, Masutti F, Passalacqua M, Castiglione A, et al. The Fatty Liver Index: a simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006;6(1):1–7.CrossRef Bedogni G, Bellentani S, Miglioli L, Masutti F, Passalacqua M, Castiglione A, et al. The Fatty Liver Index: a simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006;6(1):1–7.CrossRef
25.
Zurück zum Zitat Huang X, Xu M, Chen Y, Peng K, Huang Y, Wang P, et al. Validation of the fatty liver index for nonalcoholic fatty liver disease in middle-aged and elderly Chinese. Medicine. 2015;94(40). Huang X, Xu M, Chen Y, Peng K, Huang Y, Wang P, et al. Validation of the fatty liver index for nonalcoholic fatty liver disease in middle-aged and elderly Chinese. Medicine. 2015;94(40).
26.
Zurück zum Zitat Okada R, Tsushita K, Wakai K, Ishizaka Y, Kato K, Wada T, et al. Lower risk of progression from prediabetes to diabetes with health checkup with lifestyle education: Japan Ningen Dock study. Nutr Metab Cardiovasc Dis. 2017;27(8):679–87.CrossRefPubMed Okada R, Tsushita K, Wakai K, Ishizaka Y, Kato K, Wada T, et al. Lower risk of progression from prediabetes to diabetes with health checkup with lifestyle education: Japan Ningen Dock study. Nutr Metab Cardiovasc Dis. 2017;27(8):679–87.CrossRefPubMed
27.
Zurück zum Zitat Namayandeh SM, Karimi A, Fallahzadeh H, Rahmanian M, Bafghi SMS, Soltani M, et al. The incidence rate of diabetes mellitus (type II) and its related risk factors: a 10-year longitudinal study of Yazd Healthy Heart Cohort (YHHC). Iran Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2019;13(2):1437–41.CrossRef Namayandeh SM, Karimi A, Fallahzadeh H, Rahmanian M, Bafghi SMS, Soltani M, et al. The incidence rate of diabetes mellitus (type II) and its related risk factors: a 10-year longitudinal study of Yazd Healthy Heart Cohort (YHHC). Iran Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2019;13(2):1437–41.CrossRef
28.
Zurück zum Zitat Denova-Gutiérrez E, Muñoz-Aguirre P, Shivappa N, Hébert JR, Tolentino-Mayo L, Batis C, et al. Dietary inflammatory index and type 2 diabetes mellitus in adults: the diabetes mellitus survey of Mexico City. Nutrients. 2018;10(4):385.CrossRefPubMedPubMedCentral Denova-Gutiérrez E, Muñoz-Aguirre P, Shivappa N, Hébert JR, Tolentino-Mayo L, Batis C, et al. Dietary inflammatory index and type 2 diabetes mellitus in adults: the diabetes mellitus survey of Mexico City. Nutrients. 2018;10(4):385.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Hendryx M, Dinh P, Chow A, Kroenke CH, Hingle M, Shadyab AH, et al. Lifestyle and psychosocial patterns and diabetes incidence among women with and without obesity: a prospective latent class analysis. Prev Sci. 2020;21(6):850–60.CrossRefPubMed Hendryx M, Dinh P, Chow A, Kroenke CH, Hingle M, Shadyab AH, et al. Lifestyle and psychosocial patterns and diabetes incidence among women with and without obesity: a prospective latent class analysis. Prev Sci. 2020;21(6):850–60.CrossRefPubMed
30.
Zurück zum Zitat Schulze MB, Hu FB. Primary prevention of diabetes: what can be done and how much can be prevented? Annu Rev Public Health. 2005;26:445–67.CrossRefPubMed Schulze MB, Hu FB. Primary prevention of diabetes: what can be done and how much can be prevented? Annu Rev Public Health. 2005;26:445–67.CrossRefPubMed
31.
Zurück zum Zitat Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96.CrossRefPubMed Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96.CrossRefPubMed
32.
Zurück zum Zitat Shivappa N, Hébert JR, Rietzschel ER, De Buyzere ML, Langlois M, Debruyne E, et al. Associations between dietary inflammatory index and inflammatory markers in the Asklepios Study. Br J Nutr. 2015;113(4):665–71.CrossRefPubMedPubMedCentral Shivappa N, Hébert JR, Rietzschel ER, De Buyzere ML, Langlois M, Debruyne E, et al. Associations between dietary inflammatory index and inflammatory markers in the Asklepios Study. Br J Nutr. 2015;113(4):665–71.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Dogani F, Najjari F, Naghizadeh MM, Dehghan A, Jeihooni AK, Askari A, et al. Analyzing food patterns and preferences of urban population of FasA (phase I of studying the nutritional healthy city in Fasa). Gazi Med J. 2019;30(4):352–7. Dogani F, Najjari F, Naghizadeh MM, Dehghan A, Jeihooni AK, Askari A, et al. Analyzing food patterns and preferences of urban population of FasA (phase I of studying the nutritional healthy city in Fasa). Gazi Med J. 2019;30(4):352–7.
34.
Zurück zum Zitat Calder PC, Albers R, Antoine J-M, Blum S, Bourdet-Sicard R, Ferns G, et al. Inflammatory disease processes and interactions with nutrition. Br J Nutr. 2009;101(S1):1–45.CrossRef Calder PC, Albers R, Antoine J-M, Blum S, Bourdet-Sicard R, Ferns G, et al. Inflammatory disease processes and interactions with nutrition. Br J Nutr. 2009;101(S1):1–45.CrossRef
35.
Zurück zum Zitat Fung TT, McCullough ML, Newby P, Manson JE, Meigs JB, Rifai N, et al. Diet-quality scores and plasma concentrations of markers of inflammation and endothelial dysfunction–. Am J Clin Nutr. 2005;82(1):163–73.CrossRefPubMed Fung TT, McCullough ML, Newby P, Manson JE, Meigs JB, Rifai N, et al. Diet-quality scores and plasma concentrations of markers of inflammation and endothelial dysfunction–. Am J Clin Nutr. 2005;82(1):163–73.CrossRefPubMed
36.
Zurück zum Zitat Hodge AM, Karim MN, Hébert JR, Shivappa N, de Courten B. Association between diet quality indices and incidence of type 2 diabetes in the Melbourne Collaborative Cohort Study. Nutrients. 2021;13(11):4162.CrossRefPubMedPubMedCentral Hodge AM, Karim MN, Hébert JR, Shivappa N, de Courten B. Association between diet quality indices and incidence of type 2 diabetes in the Melbourne Collaborative Cohort Study. Nutrients. 2021;13(11):4162.CrossRefPubMedPubMedCentral
37.
38.
Zurück zum Zitat Festi D, Schiumerini R, Marzi L, Di Biase A, Mandolesi D, Montrone L, et al. the diagnosis of non-alcoholic fatty liver disease–availability and accuracy of non-invasive methods. Aliment Pharmacol Ther. 2013;37(4):392–400.CrossRefPubMed Festi D, Schiumerini R, Marzi L, Di Biase A, Mandolesi D, Montrone L, et al. the diagnosis of non-alcoholic fatty liver disease–availability and accuracy of non-invasive methods. Aliment Pharmacol Ther. 2013;37(4):392–400.CrossRefPubMed
39.
Zurück zum Zitat Jäger S, Jacobs S, Kröger J, Stefan N, Fritsche A, Weikert C, et al. Association between the fatty liver index and risk of type 2 diabetes in the EPIC-Potsdam study. PLoS ONE. 2015;10(4): e0124749.CrossRefPubMedPubMedCentral Jäger S, Jacobs S, Kröger J, Stefan N, Fritsche A, Weikert C, et al. Association between the fatty liver index and risk of type 2 diabetes in the EPIC-Potsdam study. PLoS ONE. 2015;10(4): e0124749.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Birkenfeld AL, Shulman GI. Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes. Hepatology. 2014;59(2):713–23.CrossRefPubMed Birkenfeld AL, Shulman GI. Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes. Hepatology. 2014;59(2):713–23.CrossRefPubMed
41.
Zurück zum Zitat Anstee QM, Targher G, Day CP. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat Rev Gastroenterol Hepatol. 2013;10(6):330–44.CrossRefPubMed Anstee QM, Targher G, Day CP. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat Rev Gastroenterol Hepatol. 2013;10(6):330–44.CrossRefPubMed
42.
Zurück zum Zitat Zhang FL, Ren JX, Zhang P, Jin H, Qu Y, Yu Y, et al. Strong association of Waist Circumference (WC), Body Mass Index (BMI), Waist-to-Height Ratio (WHtR), and Waist-to-Hip Ratio (WHR) with diabetes: a population-based cross-sectional study in Jilin province, China. J Diabetes Res. 2021 May 14;2021. Zhang FL, Ren JX, Zhang P, Jin H, Qu Y, Yu Y, et al. Strong association of Waist Circumference (WC), Body Mass Index (BMI), Waist-to-Height Ratio (WHtR), and Waist-to-Hip Ratio (WHR) with diabetes: a population-based cross-sectional study in Jilin province, China. J Diabetes Res. 2021 May 14;2021.
43.
Zurück zum Zitat Glechner A, Keuchel L, Affengruber L, Titscher V, Sommer I, Matyas N, et al. Effects of lifestyle changes on adults with prediabetes: a systematic review and meta-analysis. Prim Care Diabetes. 2018;12(5):393–408.CrossRefPubMed Glechner A, Keuchel L, Affengruber L, Titscher V, Sommer I, Matyas N, et al. Effects of lifestyle changes on adults with prediabetes: a systematic review and meta-analysis. Prim Care Diabetes. 2018;12(5):393–408.CrossRefPubMed
44.
Zurück zum Zitat Neuenschwander M, Ballon A, Weber KS, Norat T, Aune D, Schwingshackl L, et al. Role of diet in type 2 diabetes incidence: umbrella review of meta-analyses of prospective observational studies. BMJ. 2019 Jul 3;366. Neuenschwander M, Ballon A, Weber KS, Norat T, Aune D, Schwingshackl L, et al. Role of diet in type 2 diabetes incidence: umbrella review of meta-analyses of prospective observational studies. BMJ. 2019 Jul 3;366.
Metadaten
Titel
Progression of prediabetes to diabetes and its associated factors: The Fasa Adult Cohort Study(FACS)
verfasst von
Mehdi Sharafi
Mohammad Hassan Eftekhari
Mohammad Ali Mohsenpour
Sima Afrashteh
Najibullah Baeradeh
Mohammad Fararouei
Babak Pezeshki
Publikationsdatum
06.02.2023
Verlag
Springer India
Erschienen in
International Journal of Diabetes in Developing Countries / Ausgabe 6/2023
Print ISSN: 0973-3930
Elektronische ISSN: 1998-3832
DOI
https://doi.org/10.1007/s13410-023-01172-w