Skip to main content
Erschienen in: Journal of Digital Imaging 3/2013

01.06.2013

Properties of Noise in Positron Emission Tomography Images Reconstructed with Filtered-Backprojection and Row-Action Maximum Likelihood Algorithm

verfasst von: A. Teymurazyan, T. Riauka, H.-S. Jans, D. Robinson

Erschienen in: Journal of Imaging Informatics in Medicine | Ausgabe 3/2013

Einloggen, um Zugang zu erhalten

Abstract

Noise levels observed in positron emission tomography (PET) images complicate their geometric interpretation. Post-processing techniques aimed at noise reduction may be employed to overcome this problem. The detailed characteristics of the noise affecting PET images are, however, often not well known. Typically, it is assumed that overall the noise may be characterized as Gaussian. Other PET-imaging-related studies have been specifically aimed at the reduction of noise represented by a Poisson or mixed Poisson + Gaussian model. The effectiveness of any approach to noise reduction greatly depends on a proper quantification of the characteristics of the noise present. This work examines the statistical properties of noise in PET images acquired with a GEMINI PET/CT scanner. Noise measurements have been performed with a cylindrical phantom injected with 11C and well mixed to provide a uniform activity distribution. Images were acquired using standard clinical protocols and reconstructed with filtered-backprojection (FBP) and row-action maximum likelihood algorithm (RAMLA). Statistical properties of the acquired data were evaluated and compared to five noise models (Poisson, normal, negative binomial, log-normal, and gamma). Histograms of the experimental data were used to calculate cumulative distribution functions and produce maximum likelihood estimates for the parameters of the model distributions. Results obtained confirm the poor representation of both RAMLA- and FBP-reconstructed PET data by the Poisson distribution. We demonstrate that the noise in RAMLA-reconstructed PET images is very well characterized by gamma distribution followed closely by normal distribution, while FBP produces comparable conformity with both normal and gamma statistics.
Literatur
1.
Zurück zum Zitat Caldwell CB, et al: Observer variation in contouring gross tumor volume in patients with poorly defined non-small-cell lung tumors on CT: The impact of 18FDG-hybrid PET fusion. Int J Radiat Oncol Biol Phys 51(4):923–931, 2001PubMedCrossRef Caldwell CB, et al: Observer variation in contouring gross tumor volume in patients with poorly defined non-small-cell lung tumors on CT: The impact of 18FDG-hybrid PET fusion. Int J Radiat Oncol Biol Phys 51(4):923–931, 2001PubMedCrossRef
2.
Zurück zum Zitat Sailer SL, et al: Improving treatment planning accuracy through multimodality imaging. Int J Radiat Oncol Biol Phys 35(1):117–124, 1996PubMedCrossRef Sailer SL, et al: Improving treatment planning accuracy through multimodality imaging. Int J Radiat Oncol Biol Phys 35(1):117–124, 1996PubMedCrossRef
3.
Zurück zum Zitat Bar-Shalom R, et al: Clinical performance of PET/CT in evaluation of cancer: Additional value for diagnostic imaging and patient management. J Nucl Med 44(8):1200–1209, 2003PubMed Bar-Shalom R, et al: Clinical performance of PET/CT in evaluation of cancer: Additional value for diagnostic imaging and patient management. J Nucl Med 44(8):1200–1209, 2003PubMed
4.
Zurück zum Zitat Bradley JD, et al: Implementing biologic target volumes in radiation treatment planning for non-small cell lung cancer. J Nucl Med 45(Suppl 1):96S–101S, 2004PubMed Bradley JD, et al: Implementing biologic target volumes in radiation treatment planning for non-small cell lung cancer. J Nucl Med 45(Suppl 1):96S–101S, 2004PubMed
5.
Zurück zum Zitat Drever LA: Positron emission tomography target volume delineation xiv + 134. Thesis, University of Alberta, 2005 Drever LA: Positron emission tomography target volume delineation xiv + 134. Thesis, University of Alberta, 2005
6.
Zurück zum Zitat Pieterman RM, et al: Preoperative staging of non-small-cell lung cancer with positron-emission tomography. N Engl J Med 343(4):254–261, 2000PubMedCrossRef Pieterman RM, et al: Preoperative staging of non-small-cell lung cancer with positron-emission tomography. N Engl J Med 343(4):254–261, 2000PubMedCrossRef
7.
Zurück zum Zitat Kubota K, et al: Differential diagnosis of lung tumor with positron emission tomography: A prospective study. J Nucl Med 31(12):1927–1932, 1990PubMed Kubota K, et al: Differential diagnosis of lung tumor with positron emission tomography: A prospective study. J Nucl Med 31(12):1927–1932, 1990PubMed
8.
Zurück zum Zitat Weber W, et al: Assessment of pulmonary lesions with 18F-fluorodeoxyglucose positron imaging using coincidence mode gamma cameras. J Nucl Med 40(4):574–578, 1999PubMed Weber W, et al: Assessment of pulmonary lesions with 18F-fluorodeoxyglucose positron imaging using coincidence mode gamma cameras. J Nucl Med 40(4):574–578, 1999PubMed
9.
Zurück zum Zitat Vardi Y, Shepp LA, Kaufman L: A statistical model for positron emission tomography. J Amer Stat Assoc 80(389):8–20, 1985CrossRef Vardi Y, Shepp LA, Kaufman L: A statistical model for positron emission tomography. J Amer Stat Assoc 80(389):8–20, 1985CrossRef
10.
Zurück zum Zitat Tsui BM, et al: Analysis of recorded image noise in nuclear medicine. Phys Med Biol 26(5):883–902, 1981PubMedCrossRef Tsui BM, et al: Analysis of recorded image noise in nuclear medicine. Phys Med Biol 26(5):883–902, 1981PubMedCrossRef
11.
Zurück zum Zitat Rzeszotarski MS: Counting statistics. Radiographics 19(3):765–782, 1999PubMed Rzeszotarski MS: Counting statistics. Radiographics 19(3):765–782, 1999PubMed
12.
Zurück zum Zitat Rowe RW, Dai S: A pseudo-Poisson noise model for simulation of positron emission tomographic projection data. Med Phys 19(4):1113–1119, 1992PubMedCrossRef Rowe RW, Dai S: A pseudo-Poisson noise model for simulation of positron emission tomographic projection data. Med Phys 19(4):1113–1119, 1992PubMedCrossRef
13.
Zurück zum Zitat Lange K, Carson R: EM reconstruction algorithms for emission and transmission tomography. J Comput Assist Tomogr 8(2):306–316, 1984PubMed Lange K, Carson R: EM reconstruction algorithms for emission and transmission tomography. J Comput Assist Tomogr 8(2):306–316, 1984PubMed
14.
Zurück zum Zitat Shepp LA, Vardi Y: Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imag 1(2):113–122, 1982CrossRef Shepp LA, Vardi Y: Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imag 1(2):113–122, 1982CrossRef
15.
Zurück zum Zitat Shepp LA, Logan BF: Fourier reconstruction of a head section. IEEE Trans Nucl Sci NS21(3):21–43, 1974 Shepp LA, Logan BF: Fourier reconstruction of a head section. IEEE Trans Nucl Sci NS21(3):21–43, 1974
16.
Zurück zum Zitat Kadrmas DJ: LOR-OSEM: Statistical PET reconstruction from raw line-of-response histograms. Phys Med Biol 49(20):4731–4744, 2004PubMedCrossRef Kadrmas DJ: LOR-OSEM: Statistical PET reconstruction from raw line-of-response histograms. Phys Med Biol 49(20):4731–4744, 2004PubMedCrossRef
17.
Zurück zum Zitat Razifar P: Novel approaches for application of principal component analysis on dynamic pet images for improvement of image quality and clinical diagnosis. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, x + 89, 2005 Razifar P: Novel approaches for application of principal component analysis on dynamic pet images for improvement of image quality and clinical diagnosis. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, x + 89, 2005
18.
Zurück zum Zitat Wahl RL: In: Wahl RL Ed. Principles and Practice of Positron Emission Tomography. Lippincott Williams & Wilkins, Philadelphia, 2002, p 442 Wahl RL: In: Wahl RL Ed. Principles and Practice of Positron Emission Tomography. Lippincott Williams & Wilkins, Philadelphia, 2002, p 442
19.
Zurück zum Zitat Green GC: Wavelet-based denoising of cardiac PET data xiv + 135. Dissertation, Carleton University, 2005 Green GC: Wavelet-based denoising of cardiac PET data xiv + 135. Dissertation, Carleton University, 2005
20.
Zurück zum Zitat Ollinger JM, Fessler JA: Positron-emission tomography. EEE Signal Process Mag 14(1):43–55, 1997CrossRef Ollinger JM, Fessler JA: Positron-emission tomography. EEE Signal Process Mag 14(1):43–55, 1997CrossRef
21.
Zurück zum Zitat Coxson PG, Huesman RH, Borland L: Consequences of using a simplified kinetic model for dynamic PET data. J Nucl Med 38(4):660–667, 1997PubMed Coxson PG, Huesman RH, Borland L: Consequences of using a simplified kinetic model for dynamic PET data. J Nucl Med 38(4):660–667, 1997PubMed
22.
Zurück zum Zitat Slifstein M, Mawlawi OR, Laruelle M: Chapter 11 (816): Partial volume effect correction: Methodological considerations. In: Gjedde A, Hansen SB, Knudsen GM, Paulson OB Eds. Physiological Imaging of the Brain with PET. Academic, San Diego, 2000, p 413 Slifstein M, Mawlawi OR, Laruelle M: Chapter 11 (816): Partial volume effect correction: Methodological considerations. In: Gjedde A, Hansen SB, Knudsen GM, Paulson OB Eds. Physiological Imaging of the Brain with PET. Academic, San Diego, 2000, p 413
23.
Zurück zum Zitat Rodrigues I, Sanches J, Bioucas-Dias J: Denoising of medical images corrupted by poisson noise. 15th IEEE International Conference on Image Processing 1–5(ICIP 2008):1756–1759, 2008 Rodrigues I, Sanches J, Bioucas-Dias J: Denoising of medical images corrupted by poisson noise. 15th IEEE International Conference on Image Processing 1–5(ICIP 2008):1756–1759, 2008
24.
Zurück zum Zitat Hannequin P, Mas J: Statistical and heuristic image noise extraction (SHINE): A new method for processing Poisson noise in scintigraphic images. Phys Med Biol 47(24):4329–4344, 2002PubMedCrossRef Hannequin P, Mas J: Statistical and heuristic image noise extraction (SHINE): A new method for processing Poisson noise in scintigraphic images. Phys Med Biol 47(24):4329–4344, 2002PubMedCrossRef
25.
Zurück zum Zitat Němeček P: Filtrace šumu ve scintigrafických snímcích metodou založenou na Correspondence Analysis. v + 47, 2006 Němeček P: Filtrace šumu ve scintigrafických snímcích metodou založenou na Correspondence Analysis. v + 47, 2006
26.
Zurück zum Zitat Seret A, Vanhove C, Defrise M: Resolution improvement and noise reduction in human pinhole SPECT using a multi-ray approach and the SHINE method. Nuklearmedizin 48(4):159–165, 2009PubMed Seret A, Vanhove C, Defrise M: Resolution improvement and noise reduction in human pinhole SPECT using a multi-ray approach and the SHINE method. Nuklearmedizin 48(4):159–165, 2009PubMed
27.
Zurück zum Zitat Budinger TF, et al: Quantitative potentials of dynamic emission computed tomography. J Nucl Med 19(3):309–315, 1978PubMed Budinger TF, et al: Quantitative potentials of dynamic emission computed tomography. J Nucl Med 19(3):309–315, 1978PubMed
28.
Zurück zum Zitat Browne J, de Pierro AB: A row-action alternative to the EM algorithm for maximizing likelihood in emission tomography. IEEE Trans Med Imag 15(5):687–699, 1996CrossRef Browne J, de Pierro AB: A row-action alternative to the EM algorithm for maximizing likelihood in emission tomography. IEEE Trans Med Imag 15(5):687–699, 1996CrossRef
29.
Zurück zum Zitat Mandelkern MA: Nuclear techniques for medical imaging: Positron emission tomography. Annu Rev Nucl Part Sci 45:205–254, 1995CrossRef Mandelkern MA: Nuclear techniques for medical imaging: Positron emission tomography. Annu Rev Nucl Part Sci 45:205–254, 1995CrossRef
30.
Zurück zum Zitat Wilson DW, Tsui BMW: Noise properties of filtered-backprojection and ML-EM reconstructed emission tomographic images. IEEE Trans Nucl Sci 40(4):1198–1203, 1993CrossRef Wilson DW, Tsui BMW: Noise properties of filtered-backprojection and ML-EM reconstructed emission tomographic images. IEEE Trans Nucl Sci 40(4):1198–1203, 1993CrossRef
31.
Zurück zum Zitat Soares EJ, Byrne CL, Glick SJ: Noise characterization of block-iterative reconstruction algorithms: I. Theory. IEEE Trans Med Imaging 19(4):261–270, 2000PubMedCrossRef Soares EJ, Byrne CL, Glick SJ: Noise characterization of block-iterative reconstruction algorithms: I. Theory. IEEE Trans Med Imaging 19(4):261–270, 2000PubMedCrossRef
32.
Zurück zum Zitat Tanaka E, Kudo H: Subset-dependent relaxation in block-iterative algorithms for image reconstruction in emission tomography. Phys Med Biol 48(10):1405–1422, 2003PubMedCrossRef Tanaka E, Kudo H: Subset-dependent relaxation in block-iterative algorithms for image reconstruction in emission tomography. Phys Med Biol 48(10):1405–1422, 2003PubMedCrossRef
33.
Zurück zum Zitat Dempster AP, Laird NM, Rubin DB: Maximum likelihood from incomplete data via the EM algorithm. J Roy Stat Soc B Meth 39(1):1–38, 1977 Dempster AP, Laird NM, Rubin DB: Maximum likelihood from incomplete data via the EM algorithm. J Roy Stat Soc B Meth 39(1):1–38, 1977
34.
Zurück zum Zitat Hudson HM, Larkin RS: Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 13(4):601–609, 1994PubMedCrossRef Hudson HM, Larkin RS: Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 13(4):601–609, 1994PubMedCrossRef
35.
Zurück zum Zitat Gonzalez RC, Woods RE: Digital Image Processing, 3rd edition. Pearson Prentice Hall, Upper Saddle River, 2008, p 954 Gonzalez RC, Woods RE: Digital Image Processing, 3rd edition. Pearson Prentice Hall, Upper Saddle River, 2008, p 954
36.
Zurück zum Zitat NIST/SEMATECH: e-handbook of statistical methods. 2006(07/05/2006), 2010 NIST/SEMATECH: e-handbook of statistical methods. 2006(07/05/2006), 2010
37.
Zurück zum Zitat Hilbe J: Negative Binomial Regression. Cambridge University Press, Cambridge, 2007, p 251CrossRef Hilbe J: Negative Binomial Regression. Cambridge University Press, Cambridge, 2007, p 251CrossRef
38.
Zurück zum Zitat Barrett HH, Wilson DW, Tsui BM: Noise properties of the EM algorithm: I. Theory. Phys Med Biol 39(5):833–846, 1994PubMedCrossRef Barrett HH, Wilson DW, Tsui BM: Noise properties of the EM algorithm: I. Theory. Phys Med Biol 39(5):833–846, 1994PubMedCrossRef
Metadaten
Titel
Properties of Noise in Positron Emission Tomography Images Reconstructed with Filtered-Backprojection and Row-Action Maximum Likelihood Algorithm
verfasst von
A. Teymurazyan
T. Riauka
H.-S. Jans
D. Robinson
Publikationsdatum
01.06.2013
Verlag
Springer-Verlag
Erschienen in
Journal of Imaging Informatics in Medicine / Ausgabe 3/2013
Print ISSN: 2948-2925
Elektronische ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-012-9511-5

Weitere Artikel der Ausgabe 3/2013

Journal of Digital Imaging 3/2013 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.