Skip to main content
Erschienen in: Inflammation 3/2015

01.06.2015

Propofol Attenuates Lipopolysaccharide-Induced Monocyte Chemoattractant Protein-1 Production Through Enhancing apoM and foxa2 Expression in HepG2 Cells

verfasst von: Xin Ma, Jia-Yi Zhao, Zhen-Long Zhao, Jing Ye, Shu-Fen Li, Hai-Hong Fang, Miao-Ning Gu, Yan-Wei Hu, Zai-Sheng Qin

Erschienen in: Inflammation | Ausgabe 3/2015

Einloggen, um Zugang zu erhalten

Abstract

Monocyte chemoattractant protein-1 (MCP-1) is a cytokine that mediates the influx of cells to sites of inflammation. Our group recently reported that propofol exerted an anti-inflammatory effect and could inhibit lipopolysaccharide (LPS)-induced production of pro-inflammatory cytokines. However, the effect and possible mechanisms of propofol on MCP-1 expression remain unclear. LPS-stimulated HepG2 cells were treated with 50 μM propofol for 0, 6, 12, and 24 h, respectively. The transcript and protein levels were measured by real-time quantitative PCR and Western blot analyses, respectively. We found that propofol markedly decreased both MCP-1 messenger RNA (mRNA) and protein levels in LPS-stimulated HepG2 cells in a time-dependent manner. Expression of apolipoprotein M (apoM) and forkhead box protein A2 (foxa2) was increased by propofol treatment in HepG2 cells. In addition, the inhibitory effect of propofol on MCP-1 expression was significantly abolished by small interfering RNA against apoM and foxa2 in LPS-stimulated HepG2 cells. Propofol attenuates LPS-induced MCP-1 production through enhancing apoM and foxa2 expression in HepG2 cells.
Literatur
1.
Zurück zum Zitat Marik, P.E. 2004. Propofol: Therapeutic indications and side-effects. Current Pharmaceutical Design 10: 3639–3649.CrossRefPubMed Marik, P.E. 2004. Propofol: Therapeutic indications and side-effects. Current Pharmaceutical Design 10: 3639–3649.CrossRefPubMed
2.
Zurück zum Zitat Vasileiou, I., T. Xanthos, E. Koudouna, D. Perrea, C. Klonaris, et al. 2009. Propofol: A review of its non-anaesthetic effects. European Journal of Pharmacology 605: 1–8.CrossRefPubMed Vasileiou, I., T. Xanthos, E. Koudouna, D. Perrea, C. Klonaris, et al. 2009. Propofol: A review of its non-anaesthetic effects. European Journal of Pharmacology 605: 1–8.CrossRefPubMed
3.
Zurück zum Zitat Acquaviva, R., A. Campisi, P. Murabito, G. Raciti, R. Avola, et al. 2004. Propofol attenuates peroxynitrite-mediated DNA damage and apoptosis in cultured astrocytes: An alternative protective mechanism. Anesthesiology 101: 1363–1371.CrossRefPubMed Acquaviva, R., A. Campisi, P. Murabito, G. Raciti, R. Avola, et al. 2004. Propofol attenuates peroxynitrite-mediated DNA damage and apoptosis in cultured astrocytes: An alternative protective mechanism. Anesthesiology 101: 1363–1371.CrossRefPubMed
4.
Zurück zum Zitat Sanchez-Conde, P., J.M. Rodriguez-Lopez, J.L. Nicolas, F.S. Lozano, F.J. Garcia-Criado, et al. 2008. The comparative abilities of propofol and sevoflurane to modulate inflammation and oxidative stress in the kidney after aortic cross-clamping. Anesthesia and Analgesia 106: 371–378.CrossRefPubMed Sanchez-Conde, P., J.M. Rodriguez-Lopez, J.L. Nicolas, F.S. Lozano, F.J. Garcia-Criado, et al. 2008. The comparative abilities of propofol and sevoflurane to modulate inflammation and oxidative stress in the kidney after aortic cross-clamping. Anesthesia and Analgesia 106: 371–378.CrossRefPubMed
5.
Zurück zum Zitat Mangge, H., K. Becker, D. Fuchs, and J.M. Gostner. 2014. Antioxidants, inflammation and cardiovascular disease. World Journal of Cardiology 6: 462–477.CrossRefPubMedCentralPubMed Mangge, H., K. Becker, D. Fuchs, and J.M. Gostner. 2014. Antioxidants, inflammation and cardiovascular disease. World Journal of Cardiology 6: 462–477.CrossRefPubMedCentralPubMed
6.
Zurück zum Zitat Golia, E., G. Limongelli, F. Natale, F. Fimiani, V. Maddaloni, et al. 2014. Inflammation and cardiovascular disease: From pathogenesis to therapeutic target. Current Atherosclerosis Reports 16: 435.CrossRefPubMed Golia, E., G. Limongelli, F. Natale, F. Fimiani, V. Maddaloni, et al. 2014. Inflammation and cardiovascular disease: From pathogenesis to therapeutic target. Current Atherosclerosis Reports 16: 435.CrossRefPubMed
7.
Zurück zum Zitat Kolattukudy, P.E., and J. Niu. 2012. Inflammation, endoplasmic reticulum stress, autophagy, and the monocyte chemoattractant protein-1/CCR2 pathway. Circulation Research 110: 174–189.CrossRefPubMedCentralPubMed Kolattukudy, P.E., and J. Niu. 2012. Inflammation, endoplasmic reticulum stress, autophagy, and the monocyte chemoattractant protein-1/CCR2 pathway. Circulation Research 110: 174–189.CrossRefPubMedCentralPubMed
8.
Zurück zum Zitat Chiu, W.T., Y.L. Lin, C.W. Chou, and R.M. Chen. 2009. Propofol inhibits lipoteichoic acid-induced iNOS gene expression in macrophages possibly through downregulation of toll-like receptor 2-mediated activation of Raf-MEK1/2-ERK1/2-IKK-NFkappaB. Chemico-Biological Interactions 181: 430–439.CrossRefPubMed Chiu, W.T., Y.L. Lin, C.W. Chou, and R.M. Chen. 2009. Propofol inhibits lipoteichoic acid-induced iNOS gene expression in macrophages possibly through downregulation of toll-like receptor 2-mediated activation of Raf-MEK1/2-ERK1/2-IKK-NFkappaB. Chemico-Biological Interactions 181: 430–439.CrossRefPubMed
9.
Zurück zum Zitat Hsing, C.H., M.C. Lin, P.C. Choi, W.C. Huang, J.I. Kai, et al. 2011. Anesthetic propofol reduces endotoxic inflammation by inhibiting reactive oxygen species-regulated Akt/IKKbeta/NF-kappaB signaling. PloS One 6: e17598.CrossRefPubMedCentralPubMed Hsing, C.H., M.C. Lin, P.C. Choi, W.C. Huang, J.I. Kai, et al. 2011. Anesthetic propofol reduces endotoxic inflammation by inhibiting reactive oxygen species-regulated Akt/IKKbeta/NF-kappaB signaling. PloS One 6: e17598.CrossRefPubMedCentralPubMed
10.
Zurück zum Zitat Chen, R.M., T.G. Chen, T.L. Chen, L.L. Lin, C.C. Chang, et al. 2005. Anti-inflammatory and antioxidative effects of propofol on lipopolysaccharide-activated macrophages. Annals of the New York Academy of Sciences 1042: 262–271.CrossRefPubMed Chen, R.M., T.G. Chen, T.L. Chen, L.L. Lin, C.C. Chang, et al. 2005. Anti-inflammatory and antioxidative effects of propofol on lipopolysaccharide-activated macrophages. Annals of the New York Academy of Sciences 1042: 262–271.CrossRefPubMed
11.
Zurück zum Zitat Ma, X., Y.W. Hu, Z.L. Zhao, L. Zheng, Y.R. Qiu, et al. 2013. Anti-inflammatory effects of propofol are mediated by apolipoprotein M in a hepatocyte nuclear factor-1α-dependent manner. Archives of Biochemistry and Biophysics 533: 1–10.CrossRefPubMed Ma, X., Y.W. Hu, Z.L. Zhao, L. Zheng, Y.R. Qiu, et al. 2013. Anti-inflammatory effects of propofol are mediated by apolipoprotein M in a hepatocyte nuclear factor-1α-dependent manner. Archives of Biochemistry and Biophysics 533: 1–10.CrossRefPubMed
12.
Zurück zum Zitat Strecker, J.K., J. Minnerup, B. Gess, E.B. Ringelstein, W.R. Schabitz, et al. 2011. Monocyte chemoattractant protein-1-deficiency impairs the expression of IL-6, IL-1β and G-CSF after transient focal ischemia in mice. PloS One 6: e25863.CrossRefPubMedCentralPubMed Strecker, J.K., J. Minnerup, B. Gess, E.B. Ringelstein, W.R. Schabitz, et al. 2011. Monocyte chemoattractant protein-1-deficiency impairs the expression of IL-6, IL-1β and G-CSF after transient focal ischemia in mice. PloS One 6: e25863.CrossRefPubMedCentralPubMed
13.
Zurück zum Zitat Panasiuk, A., D. Prokopowicz, and B. Panasiuk. 2004. Monocyte chemotactic protein-1 and soluble adhesion molecules as possible prognostic markers of the efficacy of antiviral treatment in chronic hepatitis C. World Journal of Gastroenterology 10: 3639–3642.PubMed Panasiuk, A., D. Prokopowicz, and B. Panasiuk. 2004. Monocyte chemotactic protein-1 and soluble adhesion molecules as possible prognostic markers of the efficacy of antiviral treatment in chronic hepatitis C. World Journal of Gastroenterology 10: 3639–3642.PubMed
14.
Zurück zum Zitat Takada, Y., T. Hisamatsu, N. Kamada, M.T. Kitazume, H. Honda, et al. 2010. Monocyte chemoattractant protein-1 contributes to gut homeostasis and intestinal inflammation by composition of IL-10-producing regulatory macrophage subset. Journal of Immunology 184: 2671–2676.CrossRef Takada, Y., T. Hisamatsu, N. Kamada, M.T. Kitazume, H. Honda, et al. 2010. Monocyte chemoattractant protein-1 contributes to gut homeostasis and intestinal inflammation by composition of IL-10-producing regulatory macrophage subset. Journal of Immunology 184: 2671–2676.CrossRef
15.
Zurück zum Zitat Niu, J., and P.E. Kolattukudy. 2009. Role of MCP-1 in cardiovascular disease: Molecular mechanisms and clinical implications. Clinical Science (London) 117: 95–109.CrossRef Niu, J., and P.E. Kolattukudy. 2009. Role of MCP-1 in cardiovascular disease: Molecular mechanisms and clinical implications. Clinical Science (London) 117: 95–109.CrossRef
16.
Zurück zum Zitat Deshmane, S.L., S. Kremlev, S. Amini, and B.E. Sawaya. 2009. Monocyte chemoattractant protein-1 (MCP-1): An overview. Journal of Interferon and Cytokine Research 29: 313–326.CrossRefPubMedCentralPubMed Deshmane, S.L., S. Kremlev, S. Amini, and B.E. Sawaya. 2009. Monocyte chemoattractant protein-1 (MCP-1): An overview. Journal of Interferon and Cytokine Research 29: 313–326.CrossRefPubMedCentralPubMed
17.
Zurück zum Zitat O’Hayre, M., C.L. Salanga, T.M. Handel, and S.J. Allen. 2008. Chemokines and cancer: migration, intracellular signalling and intercellular communication in the microenvironment. The Biochemical Journal 409: 635–649.CrossRefPubMed O’Hayre, M., C.L. Salanga, T.M. Handel, and S.J. Allen. 2008. Chemokines and cancer: migration, intracellular signalling and intercellular communication in the microenvironment. The Biochemical Journal 409: 635–649.CrossRefPubMed
18.
Zurück zum Zitat Shin, W.S., A. Szuba, and S.G. Rockson. 2002. The role of chemokines in human cardiovascular pathology: enhanced biological insights. Atherosclerosis 160: 91–102.CrossRefPubMed Shin, W.S., A. Szuba, and S.G. Rockson. 2002. The role of chemokines in human cardiovascular pathology: enhanced biological insights. Atherosclerosis 160: 91–102.CrossRefPubMed
19.
Zurück zum Zitat Xu, N., and B. Dahlback. 1999. A novel human apolipoprotein (apoM). Journal of Biological Chemistry 274: 31286–31290.CrossRefPubMed Xu, N., and B. Dahlback. 1999. A novel human apolipoprotein (apoM). Journal of Biological Chemistry 274: 31286–31290.CrossRefPubMed
20.
Zurück zum Zitat Duan, J., B. Dahlback, and B.O. Villoutreix. 2001. Proposed lipocalin fold for apolipoprotein M based on bioinformatics and site-directed mutagenesis. FEBS Letters 499: 127–132.CrossRefPubMed Duan, J., B. Dahlback, and B.O. Villoutreix. 2001. Proposed lipocalin fold for apolipoprotein M based on bioinformatics and site-directed mutagenesis. FEBS Letters 499: 127–132.CrossRefPubMed
21.
Zurück zum Zitat Sevvana, M., J. Ahnstrom, C. Egerer-Sieber, H.A. Lange, B. Dahlback, et al. 2009. Serendipitous fatty acid binding reveals the structural determinants for ligand recognition in apolipoprotein M. Journal of Molecular Biology 393: 920–936.CrossRefPubMed Sevvana, M., J. Ahnstrom, C. Egerer-Sieber, H.A. Lange, B. Dahlback, et al. 2009. Serendipitous fatty acid binding reveals the structural determinants for ligand recognition in apolipoprotein M. Journal of Molecular Biology 393: 920–936.CrossRefPubMed
23.
Zurück zum Zitat Richter, S., D.Q. Shih, E.R. Pearson, C. Wolfrum, S.S. Fajans, et al. 2003. Regulation of apolipoprotein M gene expression by MODY3 gene hepatocyte nuclear factor-1alpha: Haploinsufficiency is associated with reduced serum apolipoprotein M levels. Diabetes 52: 2989–2995.CrossRefPubMed Richter, S., D.Q. Shih, E.R. Pearson, C. Wolfrum, S.S. Fajans, et al. 2003. Regulation of apolipoprotein M gene expression by MODY3 gene hepatocyte nuclear factor-1alpha: Haploinsufficiency is associated with reduced serum apolipoprotein M levels. Diabetes 52: 2989–2995.CrossRefPubMed
24.
Zurück zum Zitat Wolfrum, C., M.N. Poy, and M. Stoffel. 2005. Apolipoprotein M is required for prebeta-HDL formation and cholesterol efflux to HDL and protects against atherosclerosis. Nature Medicine 11: 418–422.CrossRefPubMed Wolfrum, C., M.N. Poy, and M. Stoffel. 2005. Apolipoprotein M is required for prebeta-HDL formation and cholesterol efflux to HDL and protects against atherosclerosis. Nature Medicine 11: 418–422.CrossRefPubMed
25.
Zurück zum Zitat Tolle, M., A. Pawlak, M. Schuchardt, A. Kawamura, U.J. Tietge, et al. 2008. HDL-associated lysosphingolipids inhibit NAD(P)H oxidase-dependent monocyte chemoattractant protein-1 production. Arteriosclerosis, Thrombosis, and Vascular Biology 28: 1542–1548.CrossRefPubMedCentralPubMed Tolle, M., A. Pawlak, M. Schuchardt, A. Kawamura, U.J. Tietge, et al. 2008. HDL-associated lysosphingolipids inhibit NAD(P)H oxidase-dependent monocyte chemoattractant protein-1 production. Arteriosclerosis, Thrombosis, and Vascular Biology 28: 1542–1548.CrossRefPubMedCentralPubMed
26.
Zurück zum Zitat Feingold, K.R., J.K. Shigenaga, L.G. Chui, A. Moser, W. Khovidhunkit, et al. 2008. Infection and inflammation decrease apolipoprotein M expression. Atherosclerosis 199: 19–26.CrossRefPubMed Feingold, K.R., J.K. Shigenaga, L.G. Chui, A. Moser, W. Khovidhunkit, et al. 2008. Infection and inflammation decrease apolipoprotein M expression. Atherosclerosis 199: 19–26.CrossRefPubMed
27.
Zurück zum Zitat Ang, S.L., A. Wierda, D. Wong, K.A. Stevens, S. Cascio, et al. 1993. The formation and maintenance of the definitive endoderm lineage in the mouse: Involvement of HNF3/forkhead proteins. Development 119: 1301–1315.PubMed Ang, S.L., A. Wierda, D. Wong, K.A. Stevens, S. Cascio, et al. 1993. The formation and maintenance of the definitive endoderm lineage in the mouse: Involvement of HNF3/forkhead proteins. Development 119: 1301–1315.PubMed
28.
Zurück zum Zitat Sund, N.J., M.Z. Vatamaniuk, M. Casey, S.L. Ang, M.A. Magnuson, et al. 2001. Tissue-specific deletion of Foxa2 in pancreatic beta cells results in hyperinsulinemic hypoglycemia. Genes and Development 15: 1706–1715.CrossRefPubMedCentralPubMed Sund, N.J., M.Z. Vatamaniuk, M. Casey, S.L. Ang, M.A. Magnuson, et al. 2001. Tissue-specific deletion of Foxa2 in pancreatic beta cells results in hyperinsulinemic hypoglycemia. Genes and Development 15: 1706–1715.CrossRefPubMedCentralPubMed
29.
Zurück zum Zitat Lee, C.S., J.R. Friedman, J.T. Fulmer, and K.H. Kaestner. 2005. The initiation of liver development is dependent on Foxa transcription factors. Nature 435: 944–947.CrossRefPubMed Lee, C.S., J.R. Friedman, J.T. Fulmer, and K.H. Kaestner. 2005. The initiation of liver development is dependent on Foxa transcription factors. Nature 435: 944–947.CrossRefPubMed
30.
Zurück zum Zitat Mirosevich, J., N. Gao, A. Gupta, S.B. Shappell, R. Jove, et al. 2006. Expression and role of Foxa proteins in prostate cancer. Prostate 66: 1013–1028.CrossRefPubMed Mirosevich, J., N. Gao, A. Gupta, S.B. Shappell, R. Jove, et al. 2006. Expression and role of Foxa proteins in prostate cancer. Prostate 66: 1013–1028.CrossRefPubMed
31.
Zurück zum Zitat Wolfrum, C., J.J. Howell, E. Ndungo, and M. Stoffel. 2008. Foxa2 activity increases plasma high density lipoprotein levels by regulating apolipoprotein M. Journal of Biological Chemistry 283: 16940–16949.CrossRefPubMed Wolfrum, C., J.J. Howell, E. Ndungo, and M. Stoffel. 2008. Foxa2 activity increases plasma high density lipoprotein levels by regulating apolipoprotein M. Journal of Biological Chemistry 283: 16940–16949.CrossRefPubMed
32.
Zurück zum Zitat Zhao, J.Y., Y.W. Hu, S.F. Li, Y.R. Hu, X. Ma, et al. 2014. Dihydrocapsaicin down-regulates apoM expression through inhibiting Foxa2 expression and enhancing LXRα expression in HepG2 cells. Lipids in Health and Disease 13: 50.CrossRefPubMedCentralPubMed Zhao, J.Y., Y.W. Hu, S.F. Li, Y.R. Hu, X. Ma, et al. 2014. Dihydrocapsaicin down-regulates apoM expression through inhibiting Foxa2 expression and enhancing LXRα expression in HepG2 cells. Lipids in Health and Disease 13: 50.CrossRefPubMedCentralPubMed
33.
Zurück zum Zitat Ziraldo, C., Y. Vodovotz, R.A. Namas, K. Almahmoud, V. Tapias, et al. 2013. Central role for MCP-1/CCL2 in injury-induced inflammation revealed by in vitro, in silico, and clinical studies. PloS One 8: e79804.CrossRefPubMedCentralPubMed Ziraldo, C., Y. Vodovotz, R.A. Namas, K. Almahmoud, V. Tapias, et al. 2013. Central role for MCP-1/CCL2 in injury-induced inflammation revealed by in vitro, in silico, and clinical studies. PloS One 8: e79804.CrossRefPubMedCentralPubMed
34.
Zurück zum Zitat Tacke, F. 2012. Functional role of intrahepatic monocyte subsets for the progression of liver inflammation and liver fibrosis in vivo. Fibrogenesis & Tissue Repair 5: S27.CrossRef Tacke, F. 2012. Functional role of intrahepatic monocyte subsets for the progression of liver inflammation and liver fibrosis in vivo. Fibrogenesis & Tissue Repair 5: S27.CrossRef
Metadaten
Titel
Propofol Attenuates Lipopolysaccharide-Induced Monocyte Chemoattractant Protein-1 Production Through Enhancing apoM and foxa2 Expression in HepG2 Cells
verfasst von
Xin Ma
Jia-Yi Zhao
Zhen-Long Zhao
Jing Ye
Shu-Fen Li
Hai-Hong Fang
Miao-Ning Gu
Yan-Wei Hu
Zai-Sheng Qin
Publikationsdatum
01.06.2015
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 3/2015
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-014-0104-y

Weitere Artikel der Ausgabe 3/2015

Inflammation 3/2015 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.