Skip to main content
Erschienen in: Lasers in Medical Science 1/2012

01.01.2012 | Original Article

Prospective clinical evaluation of 201 direct laser metal forming implants: results from a 1-year multicenter study

verfasst von: Carlo Mangano, Francesco Mangano, Jamil Awad Shibli, Giuseppe Luongo, Michele De Franco, Francesco Briguglio, Michele Figliuzzi, Tammaro Eccellente, Carmine Rapani, Michele Piombino, Aldo Macchi

Erschienen in: Lasers in Medical Science | Ausgabe 1/2012

Einloggen, um Zugang zu erhalten

Abstract

This prospective clinical study evaluated the survival rate and the implant-crown success of 201 direct laser metal forming (DLMF) implants in different clinical applications, after short-term follow-up of functional loading. At the 1-year scheduled follow-up examination, several clinical, radiographic, and prosthetic parameters were assessed. Success criteria included absence of pain, sensitivity, suppuration, exudation; absence of implant mobility; absence of continuous peri-implant radiolucency, DIB <1.5 mm; absence of prosthetic complications at the implant-abutment interface. A total of 201 implants (106 maxilla, 95 mandible) were inserted in 62 patients (39 males, 23 females; aged between 26 and 65 years) in eight different clinical centers. The sites included anterior (n = 79) and posterior (n = 122) implants. The overall implant survival rate was 99.5%, with one implant loss (maxilla: 99.0%, 1 implant failure; mandible: 100.0%, no implant failures). The mean DIB was 0.4 ± 0.2 mm. Among the survived implants (200), five did not fulfill the success criteria, giving an implant-crown success of 97.5%. This 1-year follow-up prospective clinical study gives evidence of very high survival (99.5%) and success (97.5%) rates using DLMF implants.
Literatur
1.
Zurück zum Zitat Shalabi MM, Gortemaker A, Van’t Hof MA, Jansen JA, Creugers NHJ (2006) Implant surface roughness and bone healing: a systematic review. J Dent Res 85:496–500PubMedCrossRef Shalabi MM, Gortemaker A, Van’t Hof MA, Jansen JA, Creugers NHJ (2006) Implant surface roughness and bone healing: a systematic review. J Dent Res 85:496–500PubMedCrossRef
2.
Zurück zum Zitat Wennerberg A, Albrektsson T (2009) Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res 4(20 Suppl):172–184CrossRef Wennerberg A, Albrektsson T (2009) Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res 4(20 Suppl):172–184CrossRef
3.
Zurück zum Zitat Buser D (2001) Titanium for dental applications (II): implants with roughened surfaces. In: Brunette DM, Tengvall P, Textor M, Thomsen P (eds) Titanium in medicine. Material science, surface science, engineering, biological responses and medical applications. Springer, Berlin Heidelberg New York, pp 875–888 Buser D (2001) Titanium for dental applications (II): implants with roughened surfaces. In: Brunette DM, Tengvall P, Textor M, Thomsen P (eds) Titanium in medicine. Material science, surface science, engineering, biological responses and medical applications. Springer, Berlin Heidelberg New York, pp 875–888
4.
Zurück zum Zitat Shibli JA, Grassi S, Piattelli A, Pecora GE, Ferrari DS, Onuma T, d'Avila S, Coelho PG, Barros R, Iezzi G (2010) Histomorphometric evaluation of bioceramic molecular impregnated and dual acid-etched implant surfaces in the human posterior maxilla. Clin Implant Dent Relat Res 12:281–288PubMedCrossRef Shibli JA, Grassi S, Piattelli A, Pecora GE, Ferrari DS, Onuma T, d'Avila S, Coelho PG, Barros R, Iezzi G (2010) Histomorphometric evaluation of bioceramic molecular impregnated and dual acid-etched implant surfaces in the human posterior maxilla. Clin Implant Dent Relat Res 12:281–288PubMedCrossRef
5.
Zurück zum Zitat Shibli JA, Grassi S, de Figueiredo LC, Feres M, Marcantonio E Jr, Iezzi G, Piattelli A (2007) Influence of implant surface topography on early osseointegration: a histological study in human jaws. J Biomed Mater Res B Appl Biomater 80:377–385PubMed Shibli JA, Grassi S, de Figueiredo LC, Feres M, Marcantonio E Jr, Iezzi G, Piattelli A (2007) Influence of implant surface topography on early osseointegration: a histological study in human jaws. J Biomed Mater Res B Appl Biomater 80:377–385PubMed
6.
Zurück zum Zitat Romeo E, Lops D, Margutti E, Ghisolfi M, Chiapasco M, Vogel G (2004) Long-term survival and success of oral implants in the treatment of full and partial arches: a 7-year prospective study with the ITI dental implant system. Int J Oral Maxillofac Implants 19:247–259PubMed Romeo E, Lops D, Margutti E, Ghisolfi M, Chiapasco M, Vogel G (2004) Long-term survival and success of oral implants in the treatment of full and partial arches: a 7-year prospective study with the ITI dental implant system. Int J Oral Maxillofac Implants 19:247–259PubMed
7.
Zurück zum Zitat Khayat PG, Milliez SN (2007) Prospective clinical evaluation of 835 multithreaded tapered screw vent implants: results after two years of functional loading. J Oral Implantol 33:225–231PubMedCrossRef Khayat PG, Milliez SN (2007) Prospective clinical evaluation of 835 multithreaded tapered screw vent implants: results after two years of functional loading. J Oral Implantol 33:225–231PubMedCrossRef
8.
Zurück zum Zitat Astrand P, Engquist B, Dahlgren S, Grondhal K, Engquist E, Feldmann H (2004) Astra Tech and Branemark system implants: a 5-year prospective study of marginal bone reactions. Clin Oral Implants Res 15:413–420PubMedCrossRef Astrand P, Engquist B, Dahlgren S, Grondhal K, Engquist E, Feldmann H (2004) Astra Tech and Branemark system implants: a 5-year prospective study of marginal bone reactions. Clin Oral Implants Res 15:413–420PubMedCrossRef
9.
Zurück zum Zitat Lueck RA, Galante JO, Rostoker W, Ray R (1969) Development of an open pore metallic implant to permit attachment to bone. Surg Forum 20:456–457PubMed Lueck RA, Galante JO, Rostoker W, Ray R (1969) Development of an open pore metallic implant to permit attachment to bone. Surg Forum 20:456–457PubMed
10.
Zurück zum Zitat Welsh RP, Pilliar RM, Macnab I (1971) Surgical implants. The role of surface porosity in fixation to bone and acrylic. J Bone Joint Surg Am 53:963–977PubMed Welsh RP, Pilliar RM, Macnab I (1971) Surgical implants. The role of surface porosity in fixation to bone and acrylic. J Bone Joint Surg Am 53:963–977PubMed
11.
Zurück zum Zitat Kroger H, Venesmaa P, Jurvelin J, Miettinen H, Suomalainen O, Alhava E (1998) Bone density at the proximal femur after total hip arthroplasty. Clin Orthop Relat Res 352:66–74PubMed Kroger H, Venesmaa P, Jurvelin J, Miettinen H, Suomalainen O, Alhava E (1998) Bone density at the proximal femur after total hip arthroplasty. Clin Orthop Relat Res 352:66–74PubMed
12.
Zurück zum Zitat Traini T, Mangano C, Sammons RL et al (2008) Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants. Dent Mater 24:1525–1533PubMedCrossRef Traini T, Mangano C, Sammons RL et al (2008) Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants. Dent Mater 24:1525–1533PubMedCrossRef
13.
Zurück zum Zitat Mangano C, Shibli JA, Mangano F, Sammons R, Macchi A (2009) Dental implants from the laser fusion of titanium microparticles: from research to clinical applications. J Osseoint 1:9–22 Mangano C, Shibli JA, Mangano F, Sammons R, Macchi A (2009) Dental implants from the laser fusion of titanium microparticles: from research to clinical applications. J Osseoint 1:9–22
14.
Zurück zum Zitat Larsson C, Esposito M, Liao H, Thomsen P (2001) The titanium-bone interface in vivo. In: Brunette DM, Tengvall P, Textor M, Thomsen P (eds) Titanium in medicine. Material science, surface science, engineering, biological responses and medical applications. Springer, Berlin Heidelberg New York, pp 587–648 Larsson C, Esposito M, Liao H, Thomsen P (2001) The titanium-bone interface in vivo. In: Brunette DM, Tengvall P, Textor M, Thomsen P (eds) Titanium in medicine. Material science, surface science, engineering, biological responses and medical applications. Springer, Berlin Heidelberg New York, pp 587–648
15.
Zurück zum Zitat Ryan GE, Pandit AS, Apatsidis DP (2008) Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique. Biomaterials 29:3625–3635PubMedCrossRef Ryan GE, Pandit AS, Apatsidis DP (2008) Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique. Biomaterials 29:3625–3635PubMedCrossRef
16.
Zurück zum Zitat Gruner H (2001) Thermal spray coatings on titanium. In: Brunette DM, Tengvall P, Textor M, Thomsen P (eds) Titanium in medicine. Material science, surface science, engineering, biological responses and medical applications. Springer, Berlin Heidelberg New York, pp 375–416 Gruner H (2001) Thermal spray coatings on titanium. In: Brunette DM, Tengvall P, Textor M, Thomsen P (eds) Titanium in medicine. Material science, surface science, engineering, biological responses and medical applications. Springer, Berlin Heidelberg New York, pp 375–416
17.
Zurück zum Zitat Fujibayashi S, Neo M, Kim HM, Kokubo T, Nakamura T (2004) Osteoinduction of porous bioactive titanium metal. Biomaterials 25:443–450PubMedCrossRef Fujibayashi S, Neo M, Kim HM, Kokubo T, Nakamura T (2004) Osteoinduction of porous bioactive titanium metal. Biomaterials 25:443–450PubMedCrossRef
18.
Zurück zum Zitat Galante J, Rostoker W, Lueck R (1971) Sintered fibre metal composites as a basis for attachment of implants to bone. J Bone Joint Surg Am 53A:101–114 Galante J, Rostoker W, Lueck R (1971) Sintered fibre metal composites as a basis for attachment of implants to bone. J Bone Joint Surg Am 53A:101–114
19.
Zurück zum Zitat Li JP, de Wijn JR, van Blitterswijk CA, de Groot K (2006) Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: preparation and in vitro experiment. Biomaterials 27:1223–1235PubMedCrossRef Li JP, de Wijn JR, van Blitterswijk CA, de Groot K (2006) Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: preparation and in vitro experiment. Biomaterials 27:1223–1235PubMedCrossRef
20.
Zurück zum Zitat Ryan G, Pandit A, Apatsidis DP (2006) Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 27:2651–2670PubMedCrossRef Ryan G, Pandit A, Apatsidis DP (2006) Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 27:2651–2670PubMedCrossRef
21.
Zurück zum Zitat Lopez-Heredia M, Sohier J, Gaillard C, Quillard S, Dorget M, Layrolle P (2008) Rapid prototyped porous titanium coated with calcium phosphate as scaffold for bone tissue engineering. Biomaterials 29:2608–2615PubMedCrossRef Lopez-Heredia M, Sohier J, Gaillard C, Quillard S, Dorget M, Layrolle P (2008) Rapid prototyped porous titanium coated with calcium phosphate as scaffold for bone tissue engineering. Biomaterials 29:2608–2615PubMedCrossRef
22.
Zurück zum Zitat Hollander DA, von Walter M, Wirtz T et al (2006) Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V implants produced by direct laser forming. Biomaterials 27:955–963PubMedCrossRef Hollander DA, von Walter M, Wirtz T et al (2006) Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V implants produced by direct laser forming. Biomaterials 27:955–963PubMedCrossRef
23.
Zurück zum Zitat Mangano C, Raspanti M, Traini T, Sammons R, Piattelli A (2008) Stereo imaging and cytocompatibility of a model dental implant surface formed by direct laser fabrication. J Biomed Mater Res (part A) 88:823–831 Mangano C, Raspanti M, Traini T, Sammons R, Piattelli A (2008) Stereo imaging and cytocompatibility of a model dental implant surface formed by direct laser fabrication. J Biomed Mater Res (part A) 88:823–831
24.
Zurück zum Zitat Mangano C, De Rosa A, Desiderio V et al (2010) The osteoblastic differentiation of dental pulp stem cells and bone formation on different titanium surface textures. Biomaterials 31:3543–3551PubMedCrossRef Mangano C, De Rosa A, Desiderio V et al (2010) The osteoblastic differentiation of dental pulp stem cells and bone formation on different titanium surface textures. Biomaterials 31:3543–3551PubMedCrossRef
25.
Zurück zum Zitat Shibli JA, Mangano C, d’Avila S et al (2010) Influence of direct laser fabrication implant topography on type IV bone: a histomorphometric study in humans. J Biomed Mater Res (part A) 93:607–614 Shibli JA, Mangano C, d’Avila S et al (2010) Influence of direct laser fabrication implant topography on type IV bone: a histomorphometric study in humans. J Biomed Mater Res (part A) 93:607–614
26.
Zurück zum Zitat Mangano C, Piattelli A, d’Avila S et al (2010) Early human bone response to laser metal sintering surface topography. A histologic report. J Oral Implantol 36:91–96PubMedCrossRef Mangano C, Piattelli A, d’Avila S et al (2010) Early human bone response to laser metal sintering surface topography. A histologic report. J Oral Implantol 36:91–96PubMedCrossRef
27.
Zurück zum Zitat Mombelli A, Lang NP (1994) Clinical parameters for the evaluation of dental implants. Periodontol 2000 4:81–86PubMedCrossRef Mombelli A, Lang NP (1994) Clinical parameters for the evaluation of dental implants. Periodontol 2000 4:81–86PubMedCrossRef
28.
Zurück zum Zitat Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491PubMedCrossRef Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491PubMedCrossRef
29.
Zurück zum Zitat Taboas JM, Maddox RD, Krebsbach PH, Hollister SJ (2003) Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. Biomaterials 24:181–194PubMedCrossRef Taboas JM, Maddox RD, Krebsbach PH, Hollister SJ (2003) Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. Biomaterials 24:181–194PubMedCrossRef
30.
Zurück zum Zitat Kuboki Y, Jin Q, Takita H (2001) Geometry of carriers controlling phenotypic expression in BMP-induced osteogenesis and chondrogenesis. J Bone Joint Surg Am 83:105–115 Kuboki Y, Jin Q, Takita H (2001) Geometry of carriers controlling phenotypic expression in BMP-induced osteogenesis and chondrogenesis. J Bone Joint Surg Am 83:105–115
31.
Zurück zum Zitat Sachlos E, Czernuska JT (2003) Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater 5:29–39PubMed Sachlos E, Czernuska JT (2003) Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater 5:29–39PubMed
32.
Zurück zum Zitat Leong KF, Cheah CM, Chua CK (2003) Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 24:2363–2378PubMedCrossRef Leong KF, Cheah CM, Chua CK (2003) Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 24:2363–2378PubMedCrossRef
33.
Zurück zum Zitat Boyan BD, Hummert TW, Dean DD, Schwartz Z (1996) Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 17:137–146PubMedCrossRef Boyan BD, Hummert TW, Dean DD, Schwartz Z (1996) Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 17:137–146PubMedCrossRef
34.
Zurück zum Zitat Yoshikawa T, Ohgushi H, Tamai S (1996) Intermediate bone forming capability of prefabricated osteogenic hydroxyapatite. J Biomed Mater Res 32:481–492PubMedCrossRef Yoshikawa T, Ohgushi H, Tamai S (1996) Intermediate bone forming capability of prefabricated osteogenic hydroxyapatite. J Biomed Mater Res 32:481–492PubMedCrossRef
35.
Zurück zum Zitat Xue W, Krishna BV, Bandyopadhyay A, Bose S (2007) Processing and biocompatibility evaluation of laser processed prous titanium. Acta Biomater 3:1007–1018PubMedCrossRef Xue W, Krishna BV, Bandyopadhyay A, Bose S (2007) Processing and biocompatibility evaluation of laser processed prous titanium. Acta Biomater 3:1007–1018PubMedCrossRef
36.
Zurück zum Zitat Davies JE (1998) Mechanisms of endosseous integration. Int J Prosthodont 11:391–401PubMed Davies JE (1998) Mechanisms of endosseous integration. Int J Prosthodont 11:391–401PubMed
37.
Zurück zum Zitat Di Iorio D, Traini T, Degidi M, Caputi S, Neugebauer J, Piattelli A (2005) Quantitative evaluation of the fibrin clot extension on different implant surfaces: an in vitro study. J Biomed Mater Res (part B) 74:636–642CrossRef Di Iorio D, Traini T, Degidi M, Caputi S, Neugebauer J, Piattelli A (2005) Quantitative evaluation of the fibrin clot extension on different implant surfaces: an in vitro study. J Biomed Mater Res (part B) 74:636–642CrossRef
38.
Zurück zum Zitat Ingber D (2008) From molecular cell engineering to biologically inspired engineering. Cell Mol Bioeng 1:51–57CrossRef Ingber D (2008) From molecular cell engineering to biologically inspired engineering. Cell Mol Bioeng 1:51–57CrossRef
39.
Zurück zum Zitat Ripamonti U (2004) Soluble, insoluble and geometric signals sculpt the architecture of mineralized tissues. J Cell Mol Med 8:169–180PubMedCrossRef Ripamonti U (2004) Soluble, insoluble and geometric signals sculpt the architecture of mineralized tissues. J Cell Mol Med 8:169–180PubMedCrossRef
40.
Zurück zum Zitat Cretel E, Pierres A, Benoliel AM, Bongrand P (2008) How cells feel their environment: a focus on early dynamic events. Cell Mol Bioeng 1:5–14PubMedCrossRef Cretel E, Pierres A, Benoliel AM, Bongrand P (2008) How cells feel their environment: a focus on early dynamic events. Cell Mol Bioeng 1:5–14PubMedCrossRef
Metadaten
Titel
Prospective clinical evaluation of 201 direct laser metal forming implants: results from a 1-year multicenter study
verfasst von
Carlo Mangano
Francesco Mangano
Jamil Awad Shibli
Giuseppe Luongo
Michele De Franco
Francesco Briguglio
Michele Figliuzzi
Tammaro Eccellente
Carmine Rapani
Michele Piombino
Aldo Macchi
Publikationsdatum
01.01.2012
Verlag
Springer-Verlag
Erschienen in
Lasers in Medical Science / Ausgabe 1/2012
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-011-0904-3

Weitere Artikel der Ausgabe 1/2012

Lasers in Medical Science 1/2012 Zur Ausgabe