Skip to main content
Erschienen in:

06.11.2019

Protective Effect of RIVA Against Sunitinib-Induced Cardiotoxicity by Inhibiting Oxidative Stress-Mediated Inflammation: Probable Role of TGF-β and Smad Signaling

verfasst von: Faisal Imam, Naif Obaid Al-Harbi, Mohammad Rashid Khan, Wajhul Qamar, Metab Alharbi, Ali A. Alshamrani, Hussain N. Alhamami, Nasser Bader Alsaleh, Khalid Saad Alharbi

Erschienen in: Cardiovascular Toxicology | Ausgabe 3/2020

Einloggen, um Zugang zu erhalten

Abstract

Sunitinib (SUN) is an oral tyrosine kinase inhibitor approved in 2006 as a first-line treatment for metastatic renal cell cancer. However, weak selectivity to kinase receptors and cardiotoxicity have limited the use of sunitinib. Rivaroxaban (RIVA) is a Factor Xa inhibitor with cardioprotective action. It inhibits atherosclerosis and numerous inflammatory cascades. The present study was designed to investigate the cardioprotective effects of RIVA in sunitinib-induced cardiotoxicity. Thirty male Wistar rats were divided into five groups. Group 1 was the normal control (control). Group 2 was administered i.p. SUN 25 mg kg−1 thrice weekly for 3 weeks. Groups 3 and 4 received the same treatment as Group 2 followed by the administration of RIVA 5 mg kg−1 day−1 and 10 mg kg−1 day−1, respectively, for 3 weeks. Group 5 received only 10 mg kg−1 day−1 RIVA for 3 weeks. Serum levels of Ca2+, Mg2+, Fe3+/Fe2+, lipid profiles, and cardiac enzymes were measured. Cardiac tissues were isolated for the measurements of oxidant/antioxidant balance gene and protein expressions. Relative to the controls, the administration of SUN significantly altered serum levels of (Ca2+, Mg2+, Fe3+/Fe2+, lipid profiles, and cardiac enzymes), intracellular antioxidant enzymes, and the expression levels of the genes encoding certain proteins. RIVA treatment significantly restored these parameters to near-normal levels. RIVA treatment significantly mitigated SUN-induced cardiac injuries by restoring antioxidant enzyme levels and attenuating the proinflammatory cascades resulting from SUN-induced cardiac injuries.
Literatur
1.
Zurück zum Zitat Le Tourneau, C., Raymond, E., & Faivre, S. (2007). Sunitinib: A novel tyrosine kinase inhibitor. A brief review of its therapeutic potential in the treatment of renal carcinoma and gastrointestinal stromal tumors (GIST). Therapeutics and Clinical Risk Management,3, 341.PubMedPubMedCentral Le Tourneau, C., Raymond, E., & Faivre, S. (2007). Sunitinib: A novel tyrosine kinase inhibitor. A brief review of its therapeutic potential in the treatment of renal carcinoma and gastrointestinal stromal tumors (GIST). Therapeutics and Clinical Risk Management,3, 341.PubMedPubMedCentral
2.
Zurück zum Zitat Awazu, Y., Mizutani, A., Nagase, Y., Iwata, H., Oguro, Y., Miki, H., et al. (2012). A novel pyrrolo [3,2-d] pyrimidine derivative, as a vascular endothelial growth factor receptor and platelet-derived growth factor receptor tyrosine kinase inhibitor, shows potent antitumor activity by suppression of tumor angiogenesis. Cancer Science,103(5), 939–944.PubMedPubMedCentral Awazu, Y., Mizutani, A., Nagase, Y., Iwata, H., Oguro, Y., Miki, H., et al. (2012). A novel pyrrolo [3,2-d] pyrimidine derivative, as a vascular endothelial growth factor receptor and platelet-derived growth factor receptor tyrosine kinase inhibitor, shows potent antitumor activity by suppression of tumor angiogenesis. Cancer Science,103(5), 939–944.PubMedPubMedCentral
3.
Zurück zum Zitat Force, T., Krause, D. S., & Van Etten, R. A. (2007). Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nature Reviews Cancer,7, 332–344.PubMed Force, T., Krause, D. S., & Van Etten, R. A. (2007). Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nature Reviews Cancer,7, 332–344.PubMed
4.
Zurück zum Zitat Chu, T. F., Rupnick, M. A., Kerkela, R., Dallabrida, S. M., Zurakowski, D., Nguyen, L., et al. (2007). Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. The Lancet,370, 2011–2019. Chu, T. F., Rupnick, M. A., Kerkela, R., Dallabrida, S. M., Zurakowski, D., Nguyen, L., et al. (2007). Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. The Lancet,370, 2011–2019.
5.
Zurück zum Zitat Kerkela, R., Grazette, L., Yacobi, R., Iliescu, C., Patten, R., Beahm, C., et al. (2006). Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nature Medicine,12, 908–916.PubMed Kerkela, R., Grazette, L., Yacobi, R., Iliescu, C., Patten, R., Beahm, C., et al. (2006). Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nature Medicine,12, 908–916.PubMed
7.
Zurück zum Zitat Vimalesvaran, K., Dockrill, S. J., & Gorog, D. A. (2018). Role of rivaroxaban in the management of atrial fibrillation: Insights from clinical practice. Vascular Health and Risk Management,14, 13–21.PubMedPubMedCentral Vimalesvaran, K., Dockrill, S. J., & Gorog, D. A. (2018). Role of rivaroxaban in the management of atrial fibrillation: Insights from clinical practice. Vascular Health and Risk Management,14, 13–21.PubMedPubMedCentral
8.
Zurück zum Zitat Sharma, A., Garg, A., Borer, J. S., Krishnamoorthy, P., Garg, J., Lavie, C. J., et al. (2014). Role of oral factor Xa inhibitors after acute coronary syndrome. Cardiology,129(4), 224–232.PubMed Sharma, A., Garg, A., Borer, J. S., Krishnamoorthy, P., Garg, J., Lavie, C. J., et al. (2014). Role of oral factor Xa inhibitors after acute coronary syndrome. Cardiology,129(4), 224–232.PubMed
9.
Zurück zum Zitat Hara, T., Fukuda, D., Tanaka, K., Higashikuni, Y., Hirata, Y., Nishimoto, S., et al. (2015). Rivaroxaban, a novel oral anticoagulant, attenuates atherosclerotic plaque progression and destabilization in ApoE-deficient mice. Atherosclerosis,242(2), 639–646.PubMed Hara, T., Fukuda, D., Tanaka, K., Higashikuni, Y., Hirata, Y., Nishimoto, S., et al. (2015). Rivaroxaban, a novel oral anticoagulant, attenuates atherosclerotic plaque progression and destabilization in ApoE-deficient mice. Atherosclerosis,242(2), 639–646.PubMed
10.
Zurück zum Zitat Sparkenbaugh, E. M., Chantrathammachart, P., Mickelson, J., van Ryn, J., Hebbel, R. P., Monroe, D. M., et al. (2014). Differential contribution of FXa and thrombin to vascular inflammation in a mouse model of sickle cell disease. Blood,123(11), 1747–1756.PubMedPubMedCentral Sparkenbaugh, E. M., Chantrathammachart, P., Mickelson, J., van Ryn, J., Hebbel, R. P., Monroe, D. M., et al. (2014). Differential contribution of FXa and thrombin to vascular inflammation in a mouse model of sickle cell disease. Blood,123(11), 1747–1756.PubMedPubMedCentral
11.
Zurück zum Zitat Bukowska, A., Zacharias, I., Weinert, S., Skopp, K., Hartmann, C., Huth, C., et al. (2013). Coagulation factor Xa induces an inflammatory signalling by activation of protease activated receptors in human atrial tissue. European Journal of Pharmacology,718(13), 114–123.PubMed Bukowska, A., Zacharias, I., Weinert, S., Skopp, K., Hartmann, C., Huth, C., et al. (2013). Coagulation factor Xa induces an inflammatory signalling by activation of protease activated receptors in human atrial tissue. European Journal of Pharmacology,718(13), 114–123.PubMed
12.
Zurück zum Zitat Ishibashi, Y., Matsui, T., Ueda, S., Fukami, K., & Yamagishi, S. (2014). Advanced glycation end products potentiate citrated plasma evoked oxidative and inflammatory reactions in endothelial cells by upregulating protease activated receptor 1 expression. Cardiovascular Diabetology,13, 60.PubMedPubMedCentral Ishibashi, Y., Matsui, T., Ueda, S., Fukami, K., & Yamagishi, S. (2014). Advanced glycation end products potentiate citrated plasma evoked oxidative and inflammatory reactions in endothelial cells by upregulating protease activated receptor 1 expression. Cardiovascular Diabetology,13, 60.PubMedPubMedCentral
13.
Zurück zum Zitat Iba, T., Aihara, K., Yamada, A., Nagayama, M., Tabe, Y., & Ohsaka, A. (2014). Rivaroxaban attenuates leukocyte adhesion in the microvasculature and thrombus formation in an experimental mouse model of type 2 diabetes Mellitus. Thrombosis Research,133(2), 276–280.PubMed Iba, T., Aihara, K., Yamada, A., Nagayama, M., Tabe, Y., & Ohsaka, A. (2014). Rivaroxaban attenuates leukocyte adhesion in the microvasculature and thrombus formation in an experimental mouse model of type 2 diabetes Mellitus. Thrombosis Research,133(2), 276–280.PubMed
14.
Zurück zum Zitat Dammacco, F., Vacca, A., Procaccio, P., Ria, R., Marech, I., & Racanelli, V. (2013). Cancer related coagulopathy (Trousseau’s syndrome): Review of the literature and experience of a single center of internal medicine. International Journal of Clinical and Experimental Medicine,13(2), 85–97. Dammacco, F., Vacca, A., Procaccio, P., Ria, R., Marech, I., & Racanelli, V. (2013). Cancer related coagulopathy (Trousseau’s syndrome): Review of the literature and experience of a single center of internal medicine. International Journal of Clinical and Experimental Medicine,13(2), 85–97.
15.
Zurück zum Zitat Blasi, E., Heyen, J., Patyna, S., Hemkens, M., Ramirez, D., John-Baptiste, A., et al. (2012). Sunitinib, a receptor tyrosine kinase inhibitor, increases blood pressure in rats without associated changes in cardiac structure and function. Cardiovascular Therapeutics,30(5), 287–294.PubMed Blasi, E., Heyen, J., Patyna, S., Hemkens, M., Ramirez, D., John-Baptiste, A., et al. (2012). Sunitinib, a receptor tyrosine kinase inhibitor, increases blood pressure in rats without associated changes in cardiac structure and function. Cardiovascular Therapeutics,30(5), 287–294.PubMed
16.
Zurück zum Zitat Yang, Y., Li, N., Chen, T., Zhang, C., Liu, L., Qi, Y., et al. (2019). Trimetazidine ameliorates sunitinib-induced cardiotoxicity in mice via the AMPK/mTOR/autophagy pathway. Pharmaceutical Biology,57(1), 625–631.PubMedPubMedCentral Yang, Y., Li, N., Chen, T., Zhang, C., Liu, L., Qi, Y., et al. (2019). Trimetazidine ameliorates sunitinib-induced cardiotoxicity in mice via the AMPK/mTOR/autophagy pathway. Pharmaceutical Biology,57(1), 625–631.PubMedPubMedCentral
17.
Zurück zum Zitat Kerkela, R., Woulfe, K. C., Durand, J. B., Vagnozzi, R., Kramer, D., Chu, T. F., et al. (2009). Sunitinib-induced cardiotoxicity is mediated by off-target inhibition of AMP-activated protein kinase. Clinical and Translational Science,2(1), 15–25.PubMedPubMedCentral Kerkela, R., Woulfe, K. C., Durand, J. B., Vagnozzi, R., Kramer, D., Chu, T. F., et al. (2009). Sunitinib-induced cardiotoxicity is mediated by off-target inhibition of AMP-activated protein kinase. Clinical and Translational Science,2(1), 15–25.PubMedPubMedCentral
18.
Zurück zum Zitat Fujiwara, Y., Ando, H., Ushijima, K., Horiguchi, M., Yamashita, C., & Fujimura, A. (2017). Dosing-time-dependent effect of rivaroxaban on coagulation activity in rats. Journal of Pharmacological Sciences,134(4), 234–238.PubMed Fujiwara, Y., Ando, H., Ushijima, K., Horiguchi, M., Yamashita, C., & Fujimura, A. (2017). Dosing-time-dependent effect of rivaroxaban on coagulation activity in rats. Journal of Pharmacological Sciences,134(4), 234–238.PubMed
19.
Zurück zum Zitat Perzborn, Elisabeth, Hirth-Dietrich, Claudia, Fischer, Elke, Groth, Martin, Hartmann, Elke, & Sperlich-Wulf, Kerstin. (2007). Rivaroxaban has protective effects in a model of disseminated intravascular coagulation (DIC) in rats. Blood,110, 935. Perzborn, Elisabeth, Hirth-Dietrich, Claudia, Fischer, Elke, Groth, Martin, Hartmann, Elke, & Sperlich-Wulf, Kerstin. (2007). Rivaroxaban has protective effects in a model of disseminated intravascular coagulation (DIC) in rats. Blood,110, 935.
20.
Zurück zum Zitat Imam, F., Al-Harbi, N. O., Al-Harbi, M. M., et al. (2015). Diosmin downregulates the expression of T cell receptors, pro-inflammatory cytokines and NF-kB activation against LPS-induced acute lung injury in mice. Pharmacological Research,102, 1–11.PubMed Imam, F., Al-Harbi, N. O., Al-Harbi, M. M., et al. (2015). Diosmin downregulates the expression of T cell receptors, pro-inflammatory cytokines and NF-kB activation against LPS-induced acute lung injury in mice. Pharmacological Research,102, 1–11.PubMed
21.
Zurück zum Zitat Imam, F., Al-Harbi, N. O., Al-Harbia, M. M., Korashy, H. M., Ansari, M. A., Sayed-Ahmed, M. M., et al. (2017). Rutin attenuates carfilzomib-induced cardiotoxicity through inhibition of NF-kappaB, hypertrophic gene expression and oxidative stress. Cardiovascular Toxicology,17(1), 58–66.PubMed Imam, F., Al-Harbi, N. O., Al-Harbia, M. M., Korashy, H. M., Ansari, M. A., Sayed-Ahmed, M. M., et al. (2017). Rutin attenuates carfilzomib-induced cardiotoxicity through inhibition of NF-kappaB, hypertrophic gene expression and oxidative stress. Cardiovascular Toxicology,17(1), 58–66.PubMed
22.
Zurück zum Zitat Sedlak, J., & Lindsay, R. H. (1968). Estimation of total, protein bound and non-protein bound sulfhydryl groups in tissue with Ellman’s reagent. Analytical Biochemistry,25, 192–205.PubMed Sedlak, J., & Lindsay, R. H. (1968). Estimation of total, protein bound and non-protein bound sulfhydryl groups in tissue with Ellman’s reagent. Analytical Biochemistry,25, 192–205.PubMed
23.
Zurück zum Zitat Carlberg, I., & Mannervik, B. (1985). Glutathione reductase. Methods in Enzymology, 113, 484–490.PubMed Carlberg, I., & Mannervik, B. (1985). Glutathione reductase. Methods in Enzymology, 113, 484–490.PubMed
24.
Zurück zum Zitat Al-Harbi, N. O. (2016). Carfilzomib-induced cardiotoxicity mitigated by dexrazoxane through inhibition of hypertrophic gene expression and oxidative stress in rats. Toxicology Mechanisms and Methods,26(3), 189–195.PubMed Al-Harbi, N. O. (2016). Carfilzomib-induced cardiotoxicity mitigated by dexrazoxane through inhibition of hypertrophic gene expression and oxidative stress in rats. Toxicology Mechanisms and Methods,26(3), 189–195.PubMed
25.
Zurück zum Zitat Ahmad, S. F., Zoheir, K. M., Ansari, M. A., et al. (2015). Histamine 4 receptor promotes expression of costimulatory B7.1/B7.2 molecules, CD28 signaling and cytokine production in stress induced immune responses. Journal of Neuroimmunology,15(289), 30–42. Ahmad, S. F., Zoheir, K. M., Ansari, M. A., et al. (2015). Histamine 4 receptor promotes expression of costimulatory B7.1/B7.2 molecules, CD28 signaling and cytokine production in stress induced immune responses. Journal of Neuroimmunology,15(289), 30–42.
26.
Zurück zum Zitat Barakat, M. M., El-Kadi, A. O., & du Souich, P. (2001). L-NAME prevents in vivo the inactivation but not the down-regulation of hepatic cytochrome P450 caused by an acute inflammatory reaction. Life Sciences,69, 1559–1571.PubMed Barakat, M. M., El-Kadi, A. O., & du Souich, P. (2001). L-NAME prevents in vivo the inactivation but not the down-regulation of hepatic cytochrome P450 caused by an acute inflammatory reaction. Life Sciences,69, 1559–1571.PubMed
27.
Zurück zum Zitat Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein with the Folin phenol reagent. Journal of Biological Chemistry,193(1), 265–275. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein with the Folin phenol reagent. Journal of Biological Chemistry,193(1), 265–275.
28.
Zurück zum Zitat Abrams, T. J., Lee, J. B., Murray, L. J., Pryer, N. K., & Cherrington, J. M. (2003). SU11248 inhibits KIT and platelet-derived growth factor receptor beta in preclinical models of human small cell lung cancer. Molecular Cancer Therapeutics,2, 471–478.PubMed Abrams, T. J., Lee, J. B., Murray, L. J., Pryer, N. K., & Cherrington, J. M. (2003). SU11248 inhibits KIT and platelet-derived growth factor receptor beta in preclinical models of human small cell lung cancer. Molecular Cancer Therapeutics,2, 471–478.PubMed
29.
Zurück zum Zitat Mendel, D. B., Laird, A. D., Xin, X., et al. (2003). In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: Determination of a pharmacokinetic/pharmacodynamic relationship. Clinical Cancer Research,9, 327–337.PubMed Mendel, D. B., Laird, A. D., Xin, X., et al. (2003). In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: Determination of a pharmacokinetic/pharmacodynamic relationship. Clinical Cancer Research,9, 327–337.PubMed
30.
Zurück zum Zitat Le Tourneau, Christophe, Raymond, Eric, & Faivre, Sandrine. (2007). Sunitinib: a novel tyrosine kinase inhibitor: A brief review of its therapeutic potential in the treatment of renal carcinoma and gastrointestinal stromal tumors (GIST). Therapeutics and Clinical Risk Management,3(2), 341–348.PubMedPubMedCentral Le Tourneau, Christophe, Raymond, Eric, & Faivre, Sandrine. (2007). Sunitinib: a novel tyrosine kinase inhibitor: A brief review of its therapeutic potential in the treatment of renal carcinoma and gastrointestinal stromal tumors (GIST). Therapeutics and Clinical Risk Management,3(2), 341–348.PubMedPubMedCentral
31.
Zurück zum Zitat Sandhu, Hardip, Cooper, Samantha, Hussain, Afthab, Mee, Christopher, & Maddock, Helen. (2017). Attenuation of Sunitinib-induced cardiotoxicity through the A3 adenosine receptor activation. European Journal of Pharmacology,814, 95–105.PubMed Sandhu, Hardip, Cooper, Samantha, Hussain, Afthab, Mee, Christopher, & Maddock, Helen. (2017). Attenuation of Sunitinib-induced cardiotoxicity through the A3 adenosine receptor activation. European Journal of Pharmacology,814, 95–105.PubMed
32.
Zurück zum Zitat Uraizee, I., Cheng, S., & Moslehi, J. (2011). Reversible cardiomyopathy associated with sunitinib and sorafenib. New England Journal of Medicine,365, 1649–1650. Uraizee, I., Cheng, S., & Moslehi, J. (2011). Reversible cardiomyopathy associated with sunitinib and sorafenib. New England Journal of Medicine,365, 1649–1650.
33.
Zurück zum Zitat Mooney, L., Skinner, M., Coker, S., & Currie, S. (2015). Effects of acute and chronic sunitinib treatment on cardiac function and calcium/calmodulin-dependent protein kinase II. British Journal of Pharmacology,172, 4342–4354.PubMedPubMedCentral Mooney, L., Skinner, M., Coker, S., & Currie, S. (2015). Effects of acute and chronic sunitinib treatment on cardiac function and calcium/calmodulin-dependent protein kinase II. British Journal of Pharmacology,172, 4342–4354.PubMedPubMedCentral
35.
Zurück zum Zitat Georgieva, E., Ivanova, D., Zhelev, Z., Bakalova, R., Gulubova, M., & Aoki, I. (2017). Mitochondrial dysfunction and redox imbalance as a diagnostic marker of “Free Radical Diseases”. Anticancer Research,37(10), 5373–5381.PubMed Georgieva, E., Ivanova, D., Zhelev, Z., Bakalova, R., Gulubova, M., & Aoki, I. (2017). Mitochondrial dysfunction and redox imbalance as a diagnostic marker of “Free Radical Diseases”. Anticancer Research,37(10), 5373–5381.PubMed
37.
Zurück zum Zitat Ishibashi, Y., Matsui, T., Fukami, K., Ueda, S., Okuda, S., & Yamagishi, S. (2015). Rivaroxaban inhibits oxidative and inflammatory reactions in advanced glycation end product-exposed tubular cells by blocking thrombin/protease-activated receptor-2 system. Thrombosis Research,135, 770–773.PubMed Ishibashi, Y., Matsui, T., Fukami, K., Ueda, S., Okuda, S., & Yamagishi, S. (2015). Rivaroxaban inhibits oxidative and inflammatory reactions in advanced glycation end product-exposed tubular cells by blocking thrombin/protease-activated receptor-2 system. Thrombosis Research,135, 770–773.PubMed
38.
Zurück zum Zitat Balasubramaniyan, V., & Nalini, N. (2007). Effect of leptin on peroxidation and antioxidant defense in ethanol-supplemented Mus musculus heart. Fundamental & Clinical Pharmacology,21, 245–253. Balasubramaniyan, V., & Nalini, N. (2007). Effect of leptin on peroxidation and antioxidant defense in ethanol-supplemented Mus musculus heart. Fundamental & Clinical Pharmacology,21, 245–253.
39.
Zurück zum Zitat Saravanan, R., & Pugalendi, V. (2006). Impact of ursolic acid on chronic ethanol-induced oxidative stress in the rat heart. Pharmacological Reports,58, 41–47.PubMed Saravanan, R., & Pugalendi, V. (2006). Impact of ursolic acid on chronic ethanol-induced oxidative stress in the rat heart. Pharmacological Reports,58, 41–47.PubMed
40.
Zurück zum Zitat Subbaiah, G. V., Mallikarjuna, K., Shanmugam, B., Ravi, S., Taj, P. U., & Reddy, K. S. (2017). Ginger treatment ameliorates alcohol-induced myocardial damage by suppression of hyperlipidemia and cardiac biomarkers in rats. Pharmacognosy Magazine,13(Suppl 1), S69–S75.PubMedPubMedCentral Subbaiah, G. V., Mallikarjuna, K., Shanmugam, B., Ravi, S., Taj, P. U., & Reddy, K. S. (2017). Ginger treatment ameliorates alcohol-induced myocardial damage by suppression of hyperlipidemia and cardiac biomarkers in rats. Pharmacognosy Magazine,13(Suppl 1), S69–S75.PubMedPubMedCentral
41.
Zurück zum Zitat Huang, Q., Zhou, C., Chen, X., Dong, B., Chen, S., Zhang, N., et al. (2015). Prodrug AST-003 improves the therapeutic index of the multi-targeted tyrosine kinase inhibitor sunitinib. PLoS ONE,10(10), e0141395.PubMedPubMedCentral Huang, Q., Zhou, C., Chen, X., Dong, B., Chen, S., Zhang, N., et al. (2015). Prodrug AST-003 improves the therapeutic index of the multi-targeted tyrosine kinase inhibitor sunitinib. PLoS ONE,10(10), e0141395.PubMedPubMedCentral
42.
Zurück zum Zitat Janet, K., Lighthouse, C., & Eric, M. (2016). Small. Transcriptional control of cardiac fibroblast plasticity. Journal of Molecular and Cellular Cardiology,91, 52–60. Janet, K., Lighthouse, C., & Eric, M. (2016). Small. Transcriptional control of cardiac fibroblast plasticity. Journal of Molecular and Cellular Cardiology,91, 52–60.
43.
Zurück zum Zitat Bujak, M., & Frangogiannis, N. G. (2007). The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovascular Research,74(2), 184–195.PubMed Bujak, M., & Frangogiannis, N. G. (2007). The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovascular Research,74(2), 184–195.PubMed
44.
Zurück zum Zitat Creemers, E. E., & Pinto, Y. M. (2011). Molecular mechanisms that control interstitial fibrosis in the pressure-overloaded heart. Cardiovascular Research,89, 265–272.PubMed Creemers, E. E., & Pinto, Y. M. (2011). Molecular mechanisms that control interstitial fibrosis in the pressure-overloaded heart. Cardiovascular Research,89, 265–272.PubMed
45.
Zurück zum Zitat Massague, J., Seoane, J., & Wotton, D. (2008). Smad transcription factors. Genes & Development,19(23), 2783–2810. Massague, J., Seoane, J., & Wotton, D. (2008). Smad transcription factors. Genes & Development,19(23), 2783–2810.
46.
Zurück zum Zitat Nakao, A., Afrakhte, M., Morén, A., Nakayama, T., Christian, J. L., Heuchel, R., et al. (1997). Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature,389(6651), 631–635.PubMed Nakao, A., Afrakhte, M., Morén, A., Nakayama, T., Christian, J. L., Heuchel, R., et al. (1997). Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature,389(6651), 631–635.PubMed
47.
Zurück zum Zitat Dobaczewski, M., Bujak, M., Li, N., Gonzalez-Quesada, C., Mendoza, L. H., Wang, X. F., et al. (2010). Smad3 signaling critically regulates fibroblast phenotype and function in healing myocardial infarction. Circulation Research,107(3), 418–428.PubMedPubMedCentral Dobaczewski, M., Bujak, M., Li, N., Gonzalez-Quesada, C., Mendoza, L. H., Wang, X. F., et al. (2010). Smad3 signaling critically regulates fibroblast phenotype and function in healing myocardial infarction. Circulation Research,107(3), 418–428.PubMedPubMedCentral
48.
Zurück zum Zitat Biernacka, A., Cavalera, M., Wang, J., Russo, I., Shinde, A., Kong, P., et al. (2015). Smad3 signaling promotes fibrosis while preserving cardiac and aortic geometry in obese diabetic mice. Circulation: Heart Failure,8(4), 788–798. Biernacka, A., Cavalera, M., Wang, J., Russo, I., Shinde, A., Kong, P., et al. (2015). Smad3 signaling promotes fibrosis while preserving cardiac and aortic geometry in obese diabetic mice. Circulation: Heart Failure,8(4), 788–798.
49.
Zurück zum Zitat Massagué, J. (1998). TGF-β signal transduction. Annual Review of Biochemistry,67, 753–791.PubMed Massagué, J. (1998). TGF-β signal transduction. Annual Review of Biochemistry,67, 753–791.PubMed
50.
Zurück zum Zitat Yuan, S. M., & Jing, H. (2010). Cardiac pathologies in relation to Smad-dependent pathways. Interactive CardioVascular and Thoracic Surgery,11, 455–460.PubMed Yuan, S. M., & Jing, H. (2010). Cardiac pathologies in relation to Smad-dependent pathways. Interactive CardioVascular and Thoracic Surgery,11, 455–460.PubMed
51.
Zurück zum Zitat Barnette, D. N., Hulin, A., Ahmed, A. S., Colige, A. C., Azhar, M., & Lincoln, J. (2013). TGF-β-Smad and MAPK signaling mediate scleraxis and proteoglycan expression in heart valves. Journal of Molecular and Cellular Cardiology,65, 137–146.PubMed Barnette, D. N., Hulin, A., Ahmed, A. S., Colige, A. C., Azhar, M., & Lincoln, J. (2013). TGF-β-Smad and MAPK signaling mediate scleraxis and proteoglycan expression in heart valves. Journal of Molecular and Cellular Cardiology,65, 137–146.PubMed
52.
Zurück zum Zitat Rodríguez-Vita, J., Sánchez-López, E., Esteban, V., Rupérez, M., Egido, J., & Ruiz-Ortega, M. (2005). Angiotensin II activates the Smad pathway in vascular smooth muscle cells by a transforming growth factor-β–independent mechanism. Circulation,111, 2509–2517.PubMed Rodríguez-Vita, J., Sánchez-López, E., Esteban, V., Rupérez, M., Egido, J., & Ruiz-Ortega, M. (2005). Angiotensin II activates the Smad pathway in vascular smooth muscle cells by a transforming growth factor-β–independent mechanism. Circulation,111, 2509–2517.PubMed
53.
Zurück zum Zitat Isono, M., Chen, S., Won Hong, S., Iglesias-de, Carmen, la Cruz, M., & Ziyadeh, F. N. (2002). Smad pathway is activated in the diabetic mouse kidney and Smad3 mediates TGF-β-induced fibronectin in mesangial cells. Biochemical and Biophysical Research Communications,296, 1356–1365.PubMed Isono, M., Chen, S., Won Hong, S., Iglesias-de, Carmen, la Cruz, M., & Ziyadeh, F. N. (2002). Smad pathway is activated in the diabetic mouse kidney and Smad3 mediates TGF-β-induced fibronectin in mesangial cells. Biochemical and Biophysical Research Communications,296, 1356–1365.PubMed
54.
Zurück zum Zitat Chen, Y. G., Hata, A., Lo, R. S., Wotton, D., Shi, Y., Pavletich, N., et al. (1998). Determinants of specificity in TGF-β signal transduction. Genes & Development,12, 2144–2152. Chen, Y. G., Hata, A., Lo, R. S., Wotton, D., Shi, Y., Pavletich, N., et al. (1998). Determinants of specificity in TGF-β signal transduction. Genes & Development,12, 2144–2152.
55.
Zurück zum Zitat Akhurst, R. J., & Hata, A. (2012). Targeting the TGF-β signalling pathway in disease. Nature Reviews Drug Discovery,11, 790–811.PubMedPubMedCentral Akhurst, R. J., & Hata, A. (2012). Targeting the TGF-β signalling pathway in disease. Nature Reviews Drug Discovery,11, 790–811.PubMedPubMedCentral
56.
Zurück zum Zitat Bujak, M., & Frangogiannis, N. G. (2007). The role of TGF-β signaling in myocardial infarction and cardiac remodeling. Cardiovascular Research,74, 184–195.PubMed Bujak, M., & Frangogiannis, N. G. (2007). The role of TGF-β signaling in myocardial infarction and cardiac remodeling. Cardiovascular Research,74, 184–195.PubMed
57.
Zurück zum Zitat Derynck, R., & Zhang, Y. E. (2003). Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature,425, 577–584.PubMed Derynck, R., & Zhang, Y. E. (2003). Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature,425, 577–584.PubMed
58.
Zurück zum Zitat Massagué, J., & Chen, Y. G. (2000). Controlling TGF-β signaling. Genes & Development,14(6), 627–644. Massagué, J., & Chen, Y. G. (2000). Controlling TGF-β signaling. Genes & Development,14(6), 627–644.
59.
Zurück zum Zitat Jumeau, C., Rupin, A., Chieng-Yane, P., Mougenot, N., Zahr, N., David-Dufilho, M., et al. (2016). Direct thrombin inhibitors prevent left atrial remodeling associated with heart failure in rats. JACC: Basic to Translational Science,1(5), 328–339.PubMedPubMedCentral Jumeau, C., Rupin, A., Chieng-Yane, P., Mougenot, N., Zahr, N., David-Dufilho, M., et al. (2016). Direct thrombin inhibitors prevent left atrial remodeling associated with heart failure in rats. JACC: Basic to Translational Science,1(5), 328–339.PubMedPubMedCentral
60.
Zurück zum Zitat Korashy, H. M., Al-Suwayeh, H. A., Maayah, Z. H., Ansari, M. A., Ahmad, S. F., & Bakheet, S. A. (2015). Mitogen-activated protein kinases pathways mediate the sunitinib-induced hypertrophy in rat cardiomyocyte H9c2 cells. Cardiovascular Toxicology,15(1), 41–51.PubMed Korashy, H. M., Al-Suwayeh, H. A., Maayah, Z. H., Ansari, M. A., Ahmad, S. F., & Bakheet, S. A. (2015). Mitogen-activated protein kinases pathways mediate the sunitinib-induced hypertrophy in rat cardiomyocyte H9c2 cells. Cardiovascular Toxicology,15(1), 41–51.PubMed
Metadaten
Titel
Protective Effect of RIVA Against Sunitinib-Induced Cardiotoxicity by Inhibiting Oxidative Stress-Mediated Inflammation: Probable Role of TGF-β and Smad Signaling
verfasst von
Faisal Imam
Naif Obaid Al-Harbi
Mohammad Rashid Khan
Wajhul Qamar
Metab Alharbi
Ali A. Alshamrani
Hussain N. Alhamami
Nasser Bader Alsaleh
Khalid Saad Alharbi
Publikationsdatum
06.11.2019
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 3/2020
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-019-09551-8