Skip to main content
main-content

24.05.2017 | Basic Science | Ausgabe 7/2017

Graefe's Archive for Clinical and Experimental Ophthalmology 7/2017

Proteomic profiling reveals crucial retinal protein alterations in the early phase of an experimental glaucoma model

Zeitschrift:
Graefe's Archive for Clinical and Experimental Ophthalmology > Ausgabe 7/2017
Autoren:
Fabian Anders, Julia Teister, Sebstian Funke, Norbert Pfeiffer, Franz Grus, Thanos Solon, Verena Prokosch

Abstract

Purpose

Clinical glaucoma is difficult to assess in terms of molecular pathophysiology, prompting studies in experimental models of glaucoma. The purpose of this study was to investigate quantitative changes in retinal protein expression at the onset of experimental glaucoma in rats. Analyzing the proteome provides a suitable tool to decipher the pathophysiological processes in glaucomatous degeneration.

Methods

Thermic cauterization of episcleral veins was utilized to elevate the intraocular pressure in Sprague Dawley rats. Morphological changes were surveyed on a cellular level with a staining of Brn3a-positive cells. The retinal nerve fiber layer was investigated using optical coherence tomography (OCT, Heidelberg Engineering) and the optic nerve was analyzed by an axonal grading system. Mass spectrometry-featured quantitative proteomics and immunohistochemical staining was used to identify specifically altered proteins in the course of intraocular pressure elevation and initial neurodegeneration. Proteomic data were further analyzed with Ingenuity Pathway Analysis and Cytoscape to analyze further molecular associations.

Results

The intraocular pressure rose significantly (p < 0.001) for the follow-up period of 3 weeks after which animals were sacrificed. Eyes exposed to an elevated intraocular pressure showed an initial decrease of retinal ganglion cells, retinal nerve fiber layer (p < 0.05) and an impairment of the optic nerve (p < 0.01). Mass spectrometry led to the identification and quantification of 931 retinal proteins, whereas 32 were considerably altered. Bioinformatics-assisted clustering revealed that a majority of these proteins are functionally associated with cell differentiation, apoptosis and stress response. The creation of an interactive protein network showed that numerous altered proteins are connected regarding their cellular function. Protein kinase b, mitogen-activated protein kinase 1 and the NF-κB complex seem to be essential molecules in this context.

Conclusions

In conclusion, these results provide further lines of evidence that substantial molecular changes occur at the onset of the disease, identifying potential key players, which might be useful as biomarkers for diagnostics and development of medical treatment in the future.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

★ PREMIUM-INHALT
e.Med Interdisziplinär

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de. Zusätzlich können Sie eine Zeitschrift Ihrer Wahl in gedruckter Form beziehen – ohne Aufpreis.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 7/2017

Graefe's Archive for Clinical and Experimental Ophthalmology 7/2017 Zur Ausgabe

Letter to the Editor (by invitation)

A recent finding in Fuchs uveitis: choroidal thinning

Neu im Fachgebiet Augenheilkunde

19.02.2019 | Refraktionsfehler | CME | Ausgabe 3/2019 Open Access

Astigmatismus

11.02.2019 | Leitlinien, Stellungnahmen und Empfehlungen | Ausgabe 3/2019

Stellungnahmen der Verkehrskommission des BVA und der DOG

November 2018