Skip to main content
Erschienen in: Journal of Clinical Monitoring and Computing 6/2019

19.01.2019 | Original Research

Pulmonary lung Doppler signals: normative data in a pediatric population compared with adults

verfasst von: Danielle S. Burstein, Rachel K. Hopper, Elisa K. McCarthy, Keeley Hall, Rachel Schatzberger, Yoram Palti, Jeffrey A. Feinstein

Erschienen in: Journal of Clinical Monitoring and Computing | Ausgabe 6/2019

Einloggen, um Zugang zu erhalten

Abstract

Lung Doppler signals (LDS) acquired via transthoracic echocardiography is a novel technology previously reported in adults for use in detecting pulmonary hypertension. The aim of this study was to characterize LDS in healthy children to establish normative pediatric LDS data, and compare the pediatric data to the previously published healthy adult LDS. In this prospective, two-center study, LDS were acquired in children without cardiopulmonary disease using a 2 MHz transthoracic pulsed Doppler transducer. The data were processed to obtain Doppler velocity patterns corresponding to phases of the cardiac cycle. Signals were analyzed using a parametric Doppler signal-processing package and performance evaluation of the trained classifiers was performed using cross validation method. Pediatric signals were then compared to a retrospective cohort of healthy adults. Eighty-six healthy pediatric subjects (mean age 9.1 ± 5.1 years) and 79 healthy adult controls (mean age 59.7 ± 10.7 years) were included. The normative LDS velocity profiles were defined for pediatric subjects and then compared to adults; the highest discriminating LDS parameters between healthy children and adults were acceleration of atrial (A) signal contraction (46 ± 18 vs. 90 ± 34; p < 0.001), peak systolic (S) signal velocity (10.0 ± 3.5 vs. 11.7 ± 3.5; p < 0.001), and ratio of peak diastolic (D)-to-atrial (A) signal velocity (1.4 ± 0.5 vs. 0.4 ± 0.3; p < 0.001). The sensitivity and specificity of this LDS based method to discern between healthy children and adult subjects was 98.6% and 97.4%, respectively. Subgroup analyses between younger (2–8 years) and older (9–18 years) pediatric LDS yielded significant differences between atrial (A) acceleration (43.7 ± 33.9 vs. 47.7 ± 42.1; p = 0.04) and diastolic (D)-to-atrial (A) signal velocity (1.2 ± 0.5 vs. 1.5 ± 0.5; p = 0.01) but not systolic (S) signals (0.14 ± 0.05 vs. 0.14 ± 0.05; p = 0.97). In this study, we defined the normal LDS profile for healthy children and have demonstrated differences in LDS between children and adults. Specifically, healthy children had lower atrial contraction power, differences in ventricular compliance and increased chronotropic response. Further studies are warranted to investigate the application of this technology, for example as a tool to aid in the detection of pulmonary hypertension in children.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Taleb M, et al., The diagnostic accuracy of doppler echocardiography in assessment of pulmonary artery systolic pressure: a meta-analysis. Echocardiography 2012;(30)3:258–65. Taleb M, et al., The diagnostic accuracy of doppler echocardiography in assessment of pulmonary artery systolic pressure: a meta-analysis. Echocardiography 2012;(30)3:258–65.
2.
Zurück zum Zitat Rich JD, et al. Inaccuracy of Doppler echocardiographic estimates of pulmonary artery pressures in patients with pulmonary hypertension: implications for clinical practice. Chest. 2011;139(5):988–93.CrossRef Rich JD, et al. Inaccuracy of Doppler echocardiographic estimates of pulmonary artery pressures in patients with pulmonary hypertension: implications for clinical practice. Chest. 2011;139(5):988–93.CrossRef
3.
Zurück zum Zitat Farber HW, et al. REVEAL Registry: correlation of right heart catheterization and echocardiography in patients with pulmonary arterial hypertension. Congest Heart Fail. 2011;17(2):56–64.CrossRef Farber HW, et al. REVEAL Registry: correlation of right heart catheterization and echocardiography in patients with pulmonary arterial hypertension. Congest Heart Fail. 2011;17(2):56–64.CrossRef
4.
Zurück zum Zitat Mikhak Z, Pedersen PC. Acoustic attenuation properties of the lung: an open question. Ultrasound Med Biol. 2002;28(9):1209–16.CrossRef Mikhak Z, Pedersen PC. Acoustic attenuation properties of the lung: an open question. Ultrasound Med Biol. 2002;28(9):1209–16.CrossRef
5.
Zurück zum Zitat Palti Y, et al. Pulmonary Doppler signals: a potentially new diagnostic tool. Eur J Echocardiogr. 2011;12(12):940–4.CrossRef Palti Y, et al. Pulmonary Doppler signals: a potentially new diagnostic tool. Eur J Echocardiogr. 2011;12(12):940–4.CrossRef
6.
Zurück zum Zitat Godinas L, et al. Non-invasive diagnosis of pulmonary hypertension from lung Doppler signal: a proof of concept study. J Clin Monit Comput. 2017;31(5):903–10.CrossRef Godinas L, et al. Non-invasive diagnosis of pulmonary hypertension from lung Doppler signal: a proof of concept study. J Clin Monit Comput. 2017;31(5):903–10.CrossRef
7.
Zurück zum Zitat Palti Y, et al. Footprints of cardiac mechanical activity as expressed in lung Doppler signals. Echocardiography. 2015;32(3):407–10.CrossRef Palti Y, et al. Footprints of cardiac mechanical activity as expressed in lung Doppler signals. Echocardiography. 2015;32(3):407–10.CrossRef
8.
Zurück zum Zitat Naeye RL. Development of systemic and pulmonary arteries from birth through early childhood. Biol Neonat. 1966;10(1):8–16.CrossRef Naeye RL. Development of systemic and pulmonary arteries from birth through early childhood. Biol Neonat. 1966;10(1):8–16.CrossRef
9.
Zurück zum Zitat Hislop A, Reid L. Pulmonary arterial development during childhood: branching pattern and structure. Thorax. 1973;28(2):129–35.CrossRef Hislop A, Reid L. Pulmonary arterial development during childhood: branching pattern and structure. Thorax. 1973;28(2):129–35.CrossRef
10.
Zurück zum Zitat Haworth SG, Hislop AA. Pulmonary vascular development: normal values of peripheral vascular structure. Am J Cardiol. 1983;52(5):578–83.CrossRef Haworth SG, Hislop AA. Pulmonary vascular development: normal values of peripheral vascular structure. Am J Cardiol. 1983;52(5):578–83.CrossRef
11.
Zurück zum Zitat Rabinovitch M, Hopper R. Pathophysiology of pulmonary hypertension. In: Hugh A, Daniel P, Feltes D, Cetta F, editors. Moss and Adams’ heart disease in infants, children and adolescents. Philadelphia: Wolters Kluwer; 2016. p. 1483–517. Rabinovitch M, Hopper R. Pathophysiology of pulmonary hypertension. In: Hugh A, Daniel P, Feltes D, Cetta F, editors. Moss and Adams’ heart disease in infants, children and adolescents. Philadelphia: Wolters Kluwer; 2016. p. 1483–517.
12.
Zurück zum Zitat Rendas A, Branthwaite M, Reid L. Growth of pulmonary circulation in normal pig–structural analysis and cardiopulmonary function. J Appl Physiol Respir Environ Exerc Physiol. 1978;45(5):806–17.PubMed Rendas A, Branthwaite M, Reid L. Growth of pulmonary circulation in normal pig–structural analysis and cardiopulmonary function. J Appl Physiol Respir Environ Exerc Physiol. 1978;45(5):806–17.PubMed
13.
Zurück zum Zitat Suzue M, et al. Developmental changes in the left ventricular diastolic wall strain on M-mode echocardiography. J Echocardiogr. 2014;12(3):98–105.CrossRef Suzue M, et al. Developmental changes in the left ventricular diastolic wall strain on M-mode echocardiography. J Echocardiogr. 2014;12(3):98–105.CrossRef
14.
Zurück zum Zitat Friedman WF. The intrinsic physiologic properties of the developing heart. Prog Cardiovasc Dis. 1972;15(1):87–111.CrossRef Friedman WF. The intrinsic physiologic properties of the developing heart. Prog Cardiovasc Dis. 1972;15(1):87–111.CrossRef
15.
Zurück zum Zitat Eidem BW, et al. Impact of cardiac growth on Doppler tissue imaging velocities: a study in healthy children. J Am Soc Echocardiogr. 2004;17(3):212–21.CrossRef Eidem BW, et al. Impact of cardiac growth on Doppler tissue imaging velocities: a study in healthy children. J Am Soc Echocardiogr. 2004;17(3):212–21.CrossRef
16.
Zurück zum Zitat Fleming S, et al. Normal ranges of heart rate and respiratory rate in children from birth to 18 years of age: a systematic review of observational studies. Lancet. 2011;377(9770):1011–8.CrossRef Fleming S, et al. Normal ranges of heart rate and respiratory rate in children from birth to 18 years of age: a systematic review of observational studies. Lancet. 2011;377(9770):1011–8.CrossRef
17.
Zurück zum Zitat Ploegstra MJ, et al. Pulmonary arterial stiffness indices assessed by intravascular ultrasound in children with early pulmonary vascular disease: prediction of advanced disease and mortality during 20-year follow-up. Eur Heart J Cardiovasc Imaging. 2018;19(2):216–24.CrossRef Ploegstra MJ, et al. Pulmonary arterial stiffness indices assessed by intravascular ultrasound in children with early pulmonary vascular disease: prediction of advanced disease and mortality during 20-year follow-up. Eur Heart J Cardiovasc Imaging. 2018;19(2):216–24.CrossRef
Metadaten
Titel
Pulmonary lung Doppler signals: normative data in a pediatric population compared with adults
verfasst von
Danielle S. Burstein
Rachel K. Hopper
Elisa K. McCarthy
Keeley Hall
Rachel Schatzberger
Yoram Palti
Jeffrey A. Feinstein
Publikationsdatum
19.01.2019
Verlag
Springer Netherlands
Erschienen in
Journal of Clinical Monitoring and Computing / Ausgabe 6/2019
Print ISSN: 1387-1307
Elektronische ISSN: 1573-2614
DOI
https://doi.org/10.1007/s10877-019-00258-3

Weitere Artikel der Ausgabe 6/2019

Journal of Clinical Monitoring and Computing 6/2019 Zur Ausgabe

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.