Skip to main content
Erschienen in: Journal of Interventional Cardiac Electrophysiology 3/2018

28.07.2018

Purkinje physiology and pathophysiology

verfasst von: Penelope A. Boyden

Erschienen in: Journal of Interventional Cardiac Electrophysiology | Ausgabe 3/2018

Einloggen, um Zugang zu erhalten

Abstract

There has always been an appreciation of the role of Purkinje fibers in the fast conduction of the normal cardiac impulse. Here, we briefly update our knowledge of this important set of cardiac cells. We discuss the anatomy of a Purkinje fiber strand, the importance of longitudinal conduction within a strand, circus movement within a strand, conduction, and excitability properties of Purkinjes. At the cell level, we discuss the important components of the ion channel makeup in the nonremodeled Purkinjes of healthy hearts. Finally, we discuss the role of the Purkinjes in forming the heritable arrhythmogenic substrates such as long QT, heritable conduction slowing, CPVT, sQT, and Brugada syndromes.
Literatur
1.
Zurück zum Zitat Romero D, Camara O, Sachse F, Sebastian R. Analysis of microstructure of the cardiac conduction system based on three-dimensional confocal microscopy. PLoS One. 2016;11:e0164093.CrossRefPubMedPubMedCentral Romero D, Camara O, Sachse F, Sebastian R. Analysis of microstructure of the cardiac conduction system based on three-dimensional confocal microscopy. PLoS One. 2016;11:e0164093.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Dun W, Lowe JS, Wright P, Hund TJ, Mohler PJ, Boyden PA. Ankyrin-G participates in INa remodeling in myocytes from the border zones of infarcted canine heart. PLoS One. 2013;8:e78087.CrossRefPubMedPubMedCentral Dun W, Lowe JS, Wright P, Hund TJ, Mohler PJ, Boyden PA. Ankyrin-G participates in INa remodeling in myocytes from the border zones of infarcted canine heart. PLoS One. 2013;8:e78087.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Lazzara R, Yeh BK, Samet P. Functional transverse interconnections within the His bundle and the bundle branches. Circ Res. 1973;32:509–15.CrossRefPubMed Lazzara R, Yeh BK, Samet P. Functional transverse interconnections within the His bundle and the bundle branches. Circ Res. 1973;32:509–15.CrossRefPubMed
4.
Zurück zum Zitat Scherlag BJ, El-Sherif N, Hope RR, Lazzara R. The significance of dissociation of conduction in the canine His bundle. Electrophysiological studies in vivo and in vitro. J Electrocardiol. 1978;11:343–54.CrossRefPubMed Scherlag BJ, El-Sherif N, Hope RR, Lazzara R. The significance of dissociation of conduction in the canine His bundle. Electrophysiological studies in vivo and in vitro. J Electrocardiol. 1978;11:343–54.CrossRefPubMed
5.
Zurück zum Zitat Cranefield PF. In. The conduction of the cardiac impulse. The slow response and cardiac arrhythmias. Futura, Mt.Kisco. 1975. Cranefield PF. In. The conduction of the cardiac impulse. The slow response and cardiac arrhythmias. Futura, Mt.Kisco. 1975.
6.
Zurück zum Zitat Anderson GJ, Greenspan K, Bandura JP, Fisch C. Asynchrony of conduction within the canine specialized Purkinje fiber system. Circ Res. 1970;27:691–703.CrossRefPubMed Anderson GJ, Greenspan K, Bandura JP, Fisch C. Asynchrony of conduction within the canine specialized Purkinje fiber system. Circ Res. 1970;27:691–703.CrossRefPubMed
7.
Zurück zum Zitat Myerburg RJ, Nilsson K, Befeler B, Castellanos A Jr, Gelband H. Transverse spread and longitudinal dissociation in the distal A-V conducting system. J Clin Invest. 1973;52:885–95.CrossRefPubMedPubMedCentral Myerburg RJ, Nilsson K, Befeler B, Castellanos A Jr, Gelband H. Transverse spread and longitudinal dissociation in the distal A-V conducting system. J Clin Invest. 1973;52:885–95.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Mines GR. On circulating excitations in heart muscles and their possible relation to tachycardia and fibrillation. Trans R Soc Can IV 1914; 43–52. Mines GR. On circulating excitations in heart muscles and their possible relation to tachycardia and fibrillation. Trans R Soc Can IV 1914; 43–52.
9.
Zurück zum Zitat Roberts JD, Gollob MH, Young C, Connors SP, Gray C, Wilton SB, et al. Bundle branch re-entrant ventricular-tachycardia: novel genetic mechanisms in a life-threatening arrhythmia. JACC: Clin Electrophysiol. 2017;3:276–88. Roberts JD, Gollob MH, Young C, Connors SP, Gray C, Wilton SB, et al. Bundle branch re-entrant ventricular-tachycardia: novel genetic mechanisms in a life-threatening arrhythmia. JACC: Clin Electrophysiol. 2017;3:276–88.
10.
Zurück zum Zitat Nogami A. Purkinje-related arrhythmias part I: monomorphic ventricular tachycardias. Pacing Clin Electrophysiol. 2011;34:624–50.CrossRefPubMed Nogami A. Purkinje-related arrhythmias part I: monomorphic ventricular tachycardias. Pacing Clin Electrophysiol. 2011;34:624–50.CrossRefPubMed
11.
Zurück zum Zitat Nogami A. Purkinje-related arrhythmias part ii: polymorphic ventricular tachycardia and ventricular fibrillation. Pacing Clin Electrophysiol. 2011;34:1034–49.CrossRefPubMed Nogami A. Purkinje-related arrhythmias part ii: polymorphic ventricular tachycardia and ventricular fibrillation. Pacing Clin Electrophysiol. 2011;34:1034–49.CrossRefPubMed
12.
Zurück zum Zitat Sung RK, Boyden PA, Scheinman M. Cellular physiology and clinical manifestations of fascicular arrhythmias in normal hearts. JACC: Clin Electrophysiol. 2017;3:1343. Sung RK, Boyden PA, Scheinman M. Cellular physiology and clinical manifestations of fascicular arrhythmias in normal hearts. JACC: Clin Electrophysiol. 2017;3:1343.
13.
Zurück zum Zitat Komatsu Y, Nogami A, Kurosaki K, Morishima I, Masuda K, Ozawa T, et al. Fascicular ventricular tachycardia originating from papillary muscles. Circ Arrhythm Electrophysiol. 2017;10:e004549.CrossRefPubMed Komatsu Y, Nogami A, Kurosaki K, Morishima I, Masuda K, Ozawa T, et al. Fascicular ventricular tachycardia originating from papillary muscles. Circ Arrhythm Electrophysiol. 2017;10:e004549.CrossRefPubMed
15.
Zurück zum Zitat Myerburg RJ, Nilsson K, Gelband H. Physiology of canine intraventricular conduction and endocardial excitation. Circ Res. 1972;30:217–43.CrossRefPubMed Myerburg RJ, Nilsson K, Gelband H. Physiology of canine intraventricular conduction and endocardial excitation. Circ Res. 1972;30:217–43.CrossRefPubMed
16.
Zurück zum Zitat Pinto JMB, Boyden PA. Electrophysiologic remodeling in ischemia and infarction. Cardiovasc Res. 1999;42:284–97.CrossRefPubMed Pinto JMB, Boyden PA. Electrophysiologic remodeling in ischemia and infarction. Cardiovasc Res. 1999;42:284–97.CrossRefPubMed
17.
Zurück zum Zitat Friedman PL, Fenoglio JJ Jr, Wit AL. Time course for reversal of electrophysiological and ultrastructural abnormalities in subendocardial Purkinje fibers surviving extensive myocardial infarction in dogs. Circ Res. 1975;36:127–44.CrossRefPubMed Friedman PL, Fenoglio JJ Jr, Wit AL. Time course for reversal of electrophysiological and ultrastructural abnormalities in subendocardial Purkinje fibers surviving extensive myocardial infarction in dogs. Circ Res. 1975;36:127–44.CrossRefPubMed
18.
Zurück zum Zitat Friedman PL, Stewart JR, Wit AL. Spontaneous and induced arrhythmias in subendocardial Purkinje fibers surviving extensive myocardial infarction in dogs. Circ Res. 1973;33:612–26.CrossRefPubMed Friedman PL, Stewart JR, Wit AL. Spontaneous and induced arrhythmias in subendocardial Purkinje fibers surviving extensive myocardial infarction in dogs. Circ Res. 1973;33:612–26.CrossRefPubMed
19.
Zurück zum Zitat Bogun F, Good E, Reich S, Elmouchi D, Igic P, Tschopp D, et al. Role of Purkinje fibers in post-infarction ventricular tachycardia. J Am Coll Cardiol. 2006;48:2500–7.CrossRefPubMed Bogun F, Good E, Reich S, Elmouchi D, Igic P, Tschopp D, et al. Role of Purkinje fibers in post-infarction ventricular tachycardia. J Am Coll Cardiol. 2006;48:2500–7.CrossRefPubMed
20.
Zurück zum Zitat Nattel S, Maguy A, Le BS, Yeh YH. Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. Physiol Rev. 2007;87:425–56.CrossRefPubMed Nattel S, Maguy A, Le BS, Yeh YH. Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. Physiol Rev. 2007;87:425–56.CrossRefPubMed
21.
Zurück zum Zitat Boyden PA, Pu J, Pinto JMB, Ter Keurs HEDJ. Ca2+ transients and Ca2+ waves in Purkinje cells. Role in action potential initiation. Circ Res. 2000;86:448–55.CrossRefPubMedPubMedCentral Boyden PA, Pu J, Pinto JMB, Ter Keurs HEDJ. Ca2+ transients and Ca2+ waves in Purkinje cells. Role in action potential initiation. Circ Res. 2000;86:448–55.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Han W, Chartier D, Li D, Nattel S. Ionic remodeling of cardiac Purkinje cells by congestive heart failure. Circulation. 2001;104:2095–100.CrossRefPubMed Han W, Chartier D, Li D, Nattel S. Ionic remodeling of cardiac Purkinje cells by congestive heart failure. Circulation. 2001;104:2095–100.CrossRefPubMed
23.
Zurück zum Zitat Vassalle M, Bocchi L. Differences in ionic currents between canine myocardial and Purkinje cells. Physiological Reports 2013;1. pii; e00036. Vassalle M, Bocchi L. Differences in ionic currents between canine myocardial and Purkinje cells. Physiological Reports 2013;1. pii; e00036.
24.
Zurück zum Zitat Han W, Bao W, Wang Z, Nattel S. Comparison of ion-channel subunit expression in canine cardiac Purkinje fibers and ventricular muscle. Circ Res. 2002;91:790–7.CrossRefPubMed Han W, Bao W, Wang Z, Nattel S. Comparison of ion-channel subunit expression in canine cardiac Purkinje fibers and ventricular muscle. Circ Res. 2002;91:790–7.CrossRefPubMed
25.
Zurück zum Zitat Jeck C, Pinto JMB, Boyden PA. Transient outward currents in subendocardial Purkinje myocytes surviving in the 24 and 48 hr infarcted heart. Circulation. 1995;92:465–73.CrossRefPubMed Jeck C, Pinto JMB, Boyden PA. Transient outward currents in subendocardial Purkinje myocytes surviving in the 24 and 48 hr infarcted heart. Circulation. 1995;92:465–73.CrossRefPubMed
27.
28.
Zurück zum Zitat Robinson RB, Boyden PA, Hoffman BF, Hewett KW. The electrical restitution process in dispersed canine cardiac Purkinje and ventricular cells. Am J Phys. 1987;253:H1018–25. Robinson RB, Boyden PA, Hoffman BF, Hewett KW. The electrical restitution process in dispersed canine cardiac Purkinje and ventricular cells. Am J Phys. 1987;253:H1018–25.
30.
Zurück zum Zitat Boyden PA, Barbhaiya C, Lee T, Ter Keurs HEDJ. Nonuniform Ca2+ transients in arrhythmogenic Purkinje cells that survive in the infarcted canine heart. Cardiovasc Res. 2003;57:681–93.CrossRefPubMedPubMedCentral Boyden PA, Barbhaiya C, Lee T, Ter Keurs HEDJ. Nonuniform Ca2+ transients in arrhythmogenic Purkinje cells that survive in the infarcted canine heart. Cardiovasc Res. 2003;57:681–93.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Hirose M, Stuyvers BD, Dun W, ter Keurs HE, Boyden PA. Function of Ca(2+) release channels in Purkinje cells that survive in the infarcted canine heart: a mechanism for triggered Purkinje ectopy. Circ Arrhythm Electrophysiol. 2008;1:387–95.CrossRefPubMedPubMedCentral Hirose M, Stuyvers BD, Dun W, ter Keurs HE, Boyden PA. Function of Ca(2+) release channels in Purkinje cells that survive in the infarcted canine heart: a mechanism for triggered Purkinje ectopy. Circ Arrhythm Electrophysiol. 2008;1:387–95.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Laurent G, Saal S, Amarouch MY, Beziau DM, Marsman RFJ, Faivre L, et al. Multifocal ectopic Purkinje-related premature contractions: a new SCN5A-related cardiac channelopathy. J Am Coll Cardiol. 2012;60:144–56.CrossRefPubMed Laurent G, Saal S, Amarouch MY, Beziau DM, Marsman RFJ, Faivre L, et al. Multifocal ectopic Purkinje-related premature contractions: a new SCN5A-related cardiac channelopathy. J Am Coll Cardiol. 2012;60:144–56.CrossRefPubMed
34.
Zurück zum Zitat Mann SA, Castro ML, Ohanian M, Guo G, Zodgekar P, Sheu A, et al. R222Q SCN5A mutation is associated with reversible ventricular ectopy and dilated cardiomyopathy. J Am Coll Cardiol. 2012;60:1566–73.CrossRefPubMed Mann SA, Castro ML, Ohanian M, Guo G, Zodgekar P, Sheu A, et al. R222Q SCN5A mutation is associated with reversible ventricular ectopy and dilated cardiomyopathy. J Am Coll Cardiol. 2012;60:1566–73.CrossRefPubMed
35.
Zurück zum Zitat Watanabe H, Koopmann TT, Le SS, Yang T, Ingram CR, Schott JJ, et al. Sodium channel beta1 subunit mutations associated with Brugada syndrome and cardiac conduction disease in humans. J Clin Invest. 2008;118:2260–8.PubMedPubMedCentral Watanabe H, Koopmann TT, Le SS, Yang T, Ingram CR, Schott JJ, et al. Sodium channel beta1 subunit mutations associated with Brugada syndrome and cardiac conduction disease in humans. J Clin Invest. 2008;118:2260–8.PubMedPubMedCentral
36.
Zurück zum Zitat Holst AG, Saber S, Houshmand M, Zaklyazminskaya EV, Wang Y, Jensen HK, et al. Sodium current and potassium transient outward current genes in Brugada syndrome: screening and bioinformatics. Can J Cardiol. 2012;28:196–200.CrossRefPubMed Holst AG, Saber S, Houshmand M, Zaklyazminskaya EV, Wang Y, Jensen HK, et al. Sodium current and potassium transient outward current genes in Brugada syndrome: screening and bioinformatics. Can J Cardiol. 2012;28:196–200.CrossRefPubMed
37.
Zurück zum Zitat Gaborit N, Le BS, Szuts V, Varro A, Escande D, Nattel S, et al. Regional and tissue specific transcript signatures of ion channel genes in the non-diseased human heart. J Physiol. 2007;582:675–93.CrossRefPubMedPubMedCentral Gaborit N, Le BS, Szuts V, Varro A, Escande D, Nattel S, et al. Regional and tissue specific transcript signatures of ion channel genes in the non-diseased human heart. J Physiol. 2007;582:675–93.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Haissaguerre M, Extramiana F, Hocini M, Cauchemez B, Jais P, Cabrera JA, et al. Mapping and ablation of ventricular fibrillation associated with long-QT and Brugada syndromes. Circulation. 2003;108:925–8.CrossRefPubMed Haissaguerre M, Extramiana F, Hocini M, Cauchemez B, Jais P, Cabrera JA, et al. Mapping and ablation of ventricular fibrillation associated with long-QT and Brugada syndromes. Circulation. 2003;108:925–8.CrossRefPubMed
39.
Zurück zum Zitat Sadek MM, Benhayon D, Sureddi R, Chik W, Santangeli P, Supple GE, et al. Idiopathic ventricular arrhythmias originating from the moderator band: electrocardiographic characteristics and treatment by catheter ablation. Heart Rhythm. 2015;12:67–75.CrossRefPubMed Sadek MM, Benhayon D, Sureddi R, Chik W, Santangeli P, Supple GE, et al. Idiopathic ventricular arrhythmias originating from the moderator band: electrocardiographic characteristics and treatment by catheter ablation. Heart Rhythm. 2015;12:67–75.CrossRefPubMed
40.
Zurück zum Zitat Andelfinger G, Tapper AR, Welch RC, Vanoye CG, George AL Jr, Benson DW. KCNJ2 mutation results in Andersen syndrome with sex-specific cardiac and skeletal muscle phenotypes. Am J Hum Genet. 2002;71:663–8.CrossRefPubMedPubMedCentral Andelfinger G, Tapper AR, Welch RC, Vanoye CG, George AL Jr, Benson DW. KCNJ2 mutation results in Andersen syndrome with sex-specific cardiac and skeletal muscle phenotypes. Am J Hum Genet. 2002;71:663–8.CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Makita N, Seki A, Sumitomo N, Chkourko H, Fukuhara S, Watanabe H, et al. A Connexin40 mutation associated with a malignant variant of progressive familial heart block. Circ Arrhythm Electrophysiol. 2012;5:163–72.CrossRefPubMedPubMedCentral Makita N, Seki A, Sumitomo N, Chkourko H, Fukuhara S, Watanabe H, et al. A Connexin40 mutation associated with a malignant variant of progressive familial heart block. Circ Arrhythm Electrophysiol. 2012;5:163–72.CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Friedrich C, Rinne S, Zumhagen S, Kiper AK, Silbernagel N, Netter MF, et al. Gain-of-function mutation in TASK-4 channels and severe cardiac conduction disorder. EMBO Mol Med. 2014;6:937–51.CrossRefPubMedPubMedCentral Friedrich C, Rinne S, Zumhagen S, Kiper AK, Silbernagel N, Netter MF, et al. Gain-of-function mutation in TASK-4 channels and severe cardiac conduction disorder. EMBO Mol Med. 2014;6:937–51.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Liu H, El ZL, Kruse M, Guinamard R, Beckmann A, Bozio A, et al. Gain-of-function mutations in TRPM4 cause autosomal dominant isolated cardiac conduction disease. Circ Cardiovasc Genet. 2010;3:374–85.CrossRefPubMed Liu H, El ZL, Kruse M, Guinamard R, Beckmann A, Bozio A, et al. Gain-of-function mutations in TRPM4 cause autosomal dominant isolated cardiac conduction disease. Circ Cardiovasc Genet. 2010;3:374–85.CrossRefPubMed
45.
Zurück zum Zitat Guinamard R, Bouvagnet P, Hof T, Liu H, Simard C, Salle L. TRPM4 in cardiac electrical activity. Cardiovasc Res. 2015;108:21–30.CrossRefPubMed Guinamard R, Bouvagnet P, Hof T, Liu H, Simard C, Salle L. TRPM4 in cardiac electrical activity. Cardiovasc Res. 2015;108:21–30.CrossRefPubMed
46.
Zurück zum Zitat Iyer V, Roman-Campos D, Sampson KJ, Kang G, Fishman GI, Kass RS. Purkinje cells as sources of arrhythmias in long QT syndrome type 3. Sci Rep. 2015;5:13287.CrossRefPubMedPubMedCentral Iyer V, Roman-Campos D, Sampson KJ, Kang G, Fishman GI, Kass RS. Purkinje cells as sources of arrhythmias in long QT syndrome type 3. Sci Rep. 2015;5:13287.CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat McPate MJ, Duncan RS, Milnes JT, Witchel HJ, Hancox JC. The N588K-HERG K+ channel mutation in the ‘short QT syndrome’: mechanism of gain-in-function determined at 37 degrees C. Biochem Biophys Res Commun. 2005;334:441–9.CrossRefPubMed McPate MJ, Duncan RS, Milnes JT, Witchel HJ, Hancox JC. The N588K-HERG K+ channel mutation in the ‘short QT syndrome’: mechanism of gain-in-function determined at 37 degrees C. Biochem Biophys Res Commun. 2005;334:441–9.CrossRefPubMed
48.
Zurück zum Zitat Ohno S, Zankov DP, Ding WG, Itoh H, Makiyama T, Doi T, et al. Variants are novel modulators of Brugada syndrome and idiopathic ventricular fibrillation; clinical perspective. Circ Arrhythm Electrophysiol. 2011;4:352–61.CrossRefPubMed Ohno S, Zankov DP, Ding WG, Itoh H, Makiyama T, Doi T, et al. Variants are novel modulators of Brugada syndrome and idiopathic ventricular fibrillation; clinical perspective. Circ Arrhythm Electrophysiol. 2011;4:352–61.CrossRefPubMed
49.
Zurück zum Zitat Xiao L, Koopmann TT, Ordog B, Postema PG, Verkerk AO, Iyer V, et al. Unique cardiac Purkinje fiber transient outward current subunit composition; novelty and significance. Circ Res. 2013;112:1310–22.CrossRefPubMedPubMedCentral Xiao L, Koopmann TT, Ordog B, Postema PG, Verkerk AO, Iyer V, et al. Unique cardiac Purkinje fiber transient outward current subunit composition; novelty and significance. Circ Res. 2013;112:1310–22.CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Sturm AC, Kline CF, Glynn P, Johnson BL, Curran J, Kilic A, et al. Use of whole exome sequencing for the identification of Ito-based arrhythmia mechanism and therapy. J Am Heart Assoc. 2015;4:e001762.CrossRefPubMedPubMedCentral Sturm AC, Kline CF, Glynn P, Johnson BL, Curran J, Kilic A, et al. Use of whole exome sequencing for the identification of Ito-based arrhythmia mechanism and therapy. J Am Heart Assoc. 2015;4:e001762.CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Priori SG, Napolitano C, Tiso N, Memmi M, Vignati G, Bloise R, et al. Mutations in the cardiac ryanodine receptor gene (hRYR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation. 2000;102:r49–53.CrossRef Priori SG, Napolitano C, Tiso N, Memmi M, Vignati G, Bloise R, et al. Mutations in the cardiac ryanodine receptor gene (hRYR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation. 2000;102:r49–53.CrossRef
52.
Zurück zum Zitat Herron TJ, Milstein ML, Anumonwo J, Priori SG, Jalife J. Purkinje cell calcium dysregulation is the cellular mechanism that underlies catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm. 2010;7:1122–8.CrossRefPubMedPubMedCentral Herron TJ, Milstein ML, Anumonwo J, Priori SG, Jalife J. Purkinje cell calcium dysregulation is the cellular mechanism that underlies catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm. 2010;7:1122–8.CrossRefPubMedPubMedCentral
53.
Zurück zum Zitat Laitinen PJ, Brown KM, Piipo K, Swan H, Devaney JM, Brahmbhatt B, et al. Mutations of the cardiac ryanodine receptor (RYR2) gene in familial polymorphic ventricular tachycardia. Circulation. 2001;103:r7–r12.CrossRef Laitinen PJ, Brown KM, Piipo K, Swan H, Devaney JM, Brahmbhatt B, et al. Mutations of the cardiac ryanodine receptor (RYR2) gene in familial polymorphic ventricular tachycardia. Circulation. 2001;103:r7–r12.CrossRef
54.
Zurück zum Zitat Liu N, Denegri M, Dun W, Boncompagni S, Lodola F, Protasi F, et al. Abnormal propagation of calcium waves and ultrastructural remodeling in recessive catecholaminergic polymorphic ventricular tachycardia. Circ Res. 2013;113:142–52.CrossRefPubMed Liu N, Denegri M, Dun W, Boncompagni S, Lodola F, Protasi F, et al. Abnormal propagation of calcium waves and ultrastructural remodeling in recessive catecholaminergic polymorphic ventricular tachycardia. Circ Res. 2013;113:142–52.CrossRefPubMed
55.
Zurück zum Zitat Cerrone M, Colombi B, Santoro M, di Barletta MR, Scelsi M, Villani L, et al. Bidirectional ventricular tachycardia and fibrillation elicited in a knock-in mouse model carrier of a mutation in the cardiac ryanodine receptor. Circ Res. 2005;96:e77–82.CrossRefPubMed Cerrone M, Colombi B, Santoro M, di Barletta MR, Scelsi M, Villani L, et al. Bidirectional ventricular tachycardia and fibrillation elicited in a knock-in mouse model carrier of a mutation in the cardiac ryanodine receptor. Circ Res. 2005;96:e77–82.CrossRefPubMed
56.
Zurück zum Zitat Willis BC, Pandit SV, Ponce-Balbuena D, Zarzoso M, Guerrero-Serna G, Limbu B, et al. Constitutive intracellular Na+ excess in Purkinje cells promotes arrhythmogenesis at lower levels of stress than ventricular myocytes from mice with catecholaminergic polymorphic ventricular tachycardia. Circulation. 2016;133:2348–59.CrossRefPubMedPubMedCentral Willis BC, Pandit SV, Ponce-Balbuena D, Zarzoso M, Guerrero-Serna G, Limbu B, et al. Constitutive intracellular Na+ excess in Purkinje cells promotes arrhythmogenesis at lower levels of stress than ventricular myocytes from mice with catecholaminergic polymorphic ventricular tachycardia. Circulation. 2016;133:2348–59.CrossRefPubMedPubMedCentral
57.
Zurück zum Zitat Kang G, Giovannone SF, Liu N, Liu FY, Zhang J, Priori SG, et al. Purkinje cells from RyR2 mutant mice are highly arrhythmogenic but responsive to targeted therapy. Circ Res. 2010;107:512–9.CrossRefPubMedPubMedCentral Kang G, Giovannone SF, Liu N, Liu FY, Zhang J, Priori SG, et al. Purkinje cells from RyR2 mutant mice are highly arrhythmogenic but responsive to targeted therapy. Circ Res. 2010;107:512–9.CrossRefPubMedPubMedCentral
58.
Zurück zum Zitat Fujii Y, Itoh H, Ohno S, Murayama T, Kurebayashi N, Aoki H, et al. A type 2 ryanodine receptor variant associated with reduced Ca(2+) release and short-coupled torsades de pointes ventricular arrhythmia. Heart Rhythm. 2017;14:98–107.CrossRefPubMed Fujii Y, Itoh H, Ohno S, Murayama T, Kurebayashi N, Aoki H, et al. A type 2 ryanodine receptor variant associated with reduced Ca(2+) release and short-coupled torsades de pointes ventricular arrhythmia. Heart Rhythm. 2017;14:98–107.CrossRefPubMed
59.
Zurück zum Zitat Jiang D, Chen W, Wang R, Zhang L, Chen SRW. Loss of luminal Ca2+ activation in the cardiac ryanodine receptor is associated with ventricular fibrillation and sudden death. PNAS. 2007;104:18309–14.CrossRefPubMed Jiang D, Chen W, Wang R, Zhang L, Chen SRW. Loss of luminal Ca2+ activation in the cardiac ryanodine receptor is associated with ventricular fibrillation and sudden death. PNAS. 2007;104:18309–14.CrossRefPubMed
60.
Zurück zum Zitat Zhao YT, Valdivia CR, Gurrola GB, Powers PP, Willis BC, Moss RL, et al. Arrhythmogenesis in a catecholaminergic polymorphic ventricular tachycardia mutation that depresses ryanodine receptor function. PNAS. 2015;112:E1669–77.CrossRefPubMed Zhao YT, Valdivia CR, Gurrola GB, Powers PP, Willis BC, Moss RL, et al. Arrhythmogenesis in a catecholaminergic polymorphic ventricular tachycardia mutation that depresses ryanodine receptor function. PNAS. 2015;112:E1669–77.CrossRefPubMed
Metadaten
Titel
Purkinje physiology and pathophysiology
verfasst von
Penelope A. Boyden
Publikationsdatum
28.07.2018
Verlag
Springer US
Erschienen in
Journal of Interventional Cardiac Electrophysiology / Ausgabe 3/2018
Print ISSN: 1383-875X
Elektronische ISSN: 1572-8595
DOI
https://doi.org/10.1007/s10840-018-0414-3

Weitere Artikel der Ausgabe 3/2018

Journal of Interventional Cardiac Electrophysiology 3/2018 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.