Skip to main content
Erschienen in: Molecular Imaging and Biology 5/2019

20.11.2018 | Research Article

Quantification of [18F]UCB-H Binding in the Rat Brain: From Kinetic Modelling to Standardised Uptake Value

verfasst von: Maria Elisa Serrano, Mohamed Ali Bahri, Guillaume Becker, Alain Seret, Frédéric Mievis, Fabrice Giacomelli, Christian Lemaire, Eric Salmon, André Luxen, Alain Plenevaux

Erschienen in: Molecular Imaging and Biology | Ausgabe 5/2019

Einloggen, um Zugang zu erhalten

Abstract

Purpose

[18F]UCB-H is a specific positron emission tomography (PET) biomarker for the Synaptic Vesicle protein 2A (SV2A), the binding site of the antiepileptic drug levetiracetam. With a view to optimising acquisition time and simplifying data analysis with this radiotracer, we compared two parameters: the distribution volume (Vt) obtained from Logan graphical analysis using a Population-Based Input Function, and the Standardised Uptake Value (SUV).

Procedures

Twelve Sprague Dawley male rats, pre-treated with three different doses of levetiracetam were employed to develop the methodology. Three additional kainic acid (KA) treated rats (temporal lobe epilepsy model) were also used to test the procedure. Image analyses focused on: (i) length of the dynamic acquisition (90 versus 60 min); (ii) correlations between Vt and SUV over 20-min consecutive time-frames; (iii) and (iv) evaluation of differences between groups using the Vt and the SUV; and (v) preliminary evaluation of the methodology in the KA epilepsy model.

Results

A large correlation between the Vt issued from 60 to 90-min acquisitions was observed. Further analyses highlighted a large correlation (r > 0.8) between the Vt and the SUV. Equivalent differences between groups were detected for both parameters, especially in the 20–40 and 40–60-min time-frames. The same results were also obtained with the epilepsy model.

Conclusions

Our results enable the acquisition setting to be changed from a 90-min dynamic to a 20-min static PET acquisition. According to a better image quality, the 20–40-min time-frame appears optimal. Due to its equivalence to the Vt, the SUV parameter can be considered in order to quantify [18F]UCB-H uptake in the rat brain. This work, therefore, establishes a starting point for the simplification of SV2A in vivo quantification with [18F]UCB-H, and represents a step forward to the clinical application of this PET radiotracer.
Literatur
1.
Zurück zum Zitat Heurling K, Leuzy A, Jonasson M, Frick A, Zimmer ER, Nordberg A, Lubberink M (2017) Quantitative positron emission tomography in brain research. Brain Res 1670:220–234CrossRefPubMed Heurling K, Leuzy A, Jonasson M, Frick A, Zimmer ER, Nordberg A, Lubberink M (2017) Quantitative positron emission tomography in brain research. Brain Res 1670:220–234CrossRefPubMed
2.
Zurück zum Zitat Maria Moresco R, Messa C, Lucignani G, Rizzo G G, Todde S, Carla Gilardi M, Grimaldi A, Fazio F (2001) PET in psychopharmacology. Pharmacol Res 44:151–159CrossRefPubMed Maria Moresco R, Messa C, Lucignani G, Rizzo G G, Todde S, Carla Gilardi M, Grimaldi A, Fazio F (2001) PET in psychopharmacology. Pharmacol Res 44:151–159CrossRefPubMed
3.
Zurück zum Zitat Vāvere AL, Scott PJH (2017) Clinical applications of small-molecule PET radiotracers: current progress and future outlook. Semin Nucl Med 47:429–453CrossRefPubMed Vāvere AL, Scott PJH (2017) Clinical applications of small-molecule PET radiotracers: current progress and future outlook. Semin Nucl Med 47:429–453CrossRefPubMed
4.
Zurück zum Zitat Acton PD, Zhuang H, Alavi A (2004) Quantification in PET. Radiol Clin N Am 42:1055–1062 viiiCrossRefPubMed Acton PD, Zhuang H, Alavi A (2004) Quantification in PET. Radiol Clin N Am 42:1055–1062 viiiCrossRefPubMed
5.
Zurück zum Zitat Cunningham VJ, Gunn RN, Matthews JC (2004) Quantification in positron emission tomography for research in pharmacology and drug development. Nucl Med Commun 25:643–646CrossRefPubMed Cunningham VJ, Gunn RN, Matthews JC (2004) Quantification in positron emission tomography for research in pharmacology and drug development. Nucl Med Commun 25:643–646CrossRefPubMed
6.
Zurück zum Zitat Fang Y-H, Kao T, Liu R-S, Wu L-C (2004) Estimating the input function non-invasively for FDG-PET quantification with multiple linear regression analysis: simulation and verification with in vivo data. Eur J Nucl Med Mol Imaging 31:692–702CrossRefPubMed Fang Y-H, Kao T, Liu R-S, Wu L-C (2004) Estimating the input function non-invasively for FDG-PET quantification with multiple linear regression analysis: simulation and verification with in vivo data. Eur J Nucl Med Mol Imaging 31:692–702CrossRefPubMed
7.
Zurück zum Zitat Li F, Joergensen JT, Hansen AE, Kjaer A (2014) Kinetic modeling in PET imaging of hypoxia. Am J Nucl Med Mol Imaging 4:490–506PubMedPubMedCentral Li F, Joergensen JT, Hansen AE, Kjaer A (2014) Kinetic modeling in PET imaging of hypoxia. Am J Nucl Med Mol Imaging 4:490–506PubMedPubMedCentral
8.
Zurück zum Zitat Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, MacGregor RR, Hitzemann R, Bendriem B, Gatley SJ, Christman DR (1990) Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(−)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab 10:740–747CrossRefPubMed Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, MacGregor RR, Hitzemann R, Bendriem B, Gatley SJ, Christman DR (1990) Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(−)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab 10:740–747CrossRefPubMed
10.
Zurück zum Zitat Tomasi G, Turkheimer F, Aboagye E (2012) Importance of quantification for the analysis of PET data in oncology: review of current methods and trends for the future. Mol Imaging Biol 14:131–146CrossRefPubMed Tomasi G, Turkheimer F, Aboagye E (2012) Importance of quantification for the analysis of PET data in oncology: review of current methods and trends for the future. Mol Imaging Biol 14:131–146CrossRefPubMed
11.
Zurück zum Zitat Kinahan PE, Fletcher JW (2010) Positron emission tomography-computed tomography standardized uptake values in clinical practice and assessing response to therapy. Semin Ultrasound CT MR 31:496–505CrossRefPubMedPubMedCentral Kinahan PE, Fletcher JW (2010) Positron emission tomography-computed tomography standardized uptake values in clinical practice and assessing response to therapy. Semin Ultrasound CT MR 31:496–505CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Bahri MA, Plenevaux A, Aerts J, Bastin C, Becker G, Mercier J, Valade A, Buchanan T, Mestdagh N, Ledoux D, Seret A, Luxen A, Salmon E (2017) Measuring brain synaptic vesicle protein 2A with positron emission tomography and [18F]UCB-H. TRCI 3:481–486 Bahri MA, Plenevaux A, Aerts J, Bastin C, Becker G, Mercier J, Valade A, Buchanan T, Mestdagh N, Ledoux D, Seret A, Luxen A, Salmon E (2017) Measuring brain synaptic vesicle protein 2A with positron emission tomography and [18F]UCB-H. TRCI 3:481–486
13.
Zurück zum Zitat Zanotti-Fregonara P, Chen K, Liow J-S, Fujita M, Innis RB (2011) Image-derived input function for brain PET studies: many challenges and few opportunities. J Cereb Blood Flow Metab 31:1986–1998CrossRefPubMedPubMedCentral Zanotti-Fregonara P, Chen K, Liow J-S, Fujita M, Innis RB (2011) Image-derived input function for brain PET studies: many challenges and few opportunities. J Cereb Blood Flow Metab 31:1986–1998CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Rissanen E, Tuisku J, Luoto P, Arponen E, Johansson J, Oikonen V, Parkkola R, Airas L, Rinne JO (2015) Automated reference region extraction and population-based input function for brain [11C]TMSX PET image analyses. J Cereb Blood Flow Metab 35:157–165CrossRefPubMed Rissanen E, Tuisku J, Luoto P, Arponen E, Johansson J, Oikonen V, Parkkola R, Airas L, Rinne JO (2015) Automated reference region extraction and population-based input function for brain [11C]TMSX PET image analyses. J Cereb Blood Flow Metab 35:157–165CrossRefPubMed
15.
Zurück zum Zitat Mabrouk R, Strafella AP, Knezevic D, Ghadery C, Mizrahi R, Gharehgazlou A, Koshimori Y, Houle S, Rusjan P (2017) Feasibility study of TSPO quantification with [18F]FEPPA using population-based input function. PLoS One 12:e0177785CrossRefPubMedPubMedCentral Mabrouk R, Strafella AP, Knezevic D, Ghadery C, Mizrahi R, Gharehgazlou A, Koshimori Y, Houle S, Rusjan P (2017) Feasibility study of TSPO quantification with [18F]FEPPA using population-based input function. PLoS One 12:e0177785CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Zanotti-Fregonara P, Hirvonen J, Lyoo CH, Zoghbi SS, Rallis-Frutos D, Huestis MA, Morse C, Pike VW, Innis RB (2013) Population-based input function modeling for [18F]FMPEP-d 2, an inverse agonist radioligand for cannabinoid CB1 receptors: validation in clinical studies. PLoS One 8:e60231CrossRefPubMedPubMedCentral Zanotti-Fregonara P, Hirvonen J, Lyoo CH, Zoghbi SS, Rallis-Frutos D, Huestis MA, Morse C, Pike VW, Innis RB (2013) Population-based input function modeling for [18F]FMPEP-d 2, an inverse agonist radioligand for cannabinoid CB1 receptors: validation in clinical studies. PLoS One 8:e60231CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Zanotti-Fregonara P, Hines CS, Zoghbi SS, Liow JS, Zhang Y, Pike VW, Drevets WC, Mallinger AG, Zarate CA Jr, Fujita M, Innis RB (2012) Population-based input function and image-derived input function for [11C](R)-rolipram PET imaging: methodology, validation and application to the study of major depressive disorder. Neuroimage 63:1532–1541CrossRefPubMedPubMedCentral Zanotti-Fregonara P, Hines CS, Zoghbi SS, Liow JS, Zhang Y, Pike VW, Drevets WC, Mallinger AG, Zarate CA Jr, Fujita M, Innis RB (2012) Population-based input function and image-derived input function for [11C](R)-rolipram PET imaging: methodology, validation and application to the study of major depressive disorder. Neuroimage 63:1532–1541CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Zanotti-Fregonara P, Maroy R, Peyronneau M-A, Trebossen R, Bottlaender M (2012) Minimally invasive input function for 2-18F-fluoro-A-85380 brain PET studies. Eur J Nucl Med Mol Imaging 39:651–659CrossRefPubMed Zanotti-Fregonara P, Maroy R, Peyronneau M-A, Trebossen R, Bottlaender M (2012) Minimally invasive input function for 2-18F-fluoro-A-85380 brain PET studies. Eur J Nucl Med Mol Imaging 39:651–659CrossRefPubMed
19.
Zurück zum Zitat Zanderigo F, Ogden RT, Parsey RV (2013) Reference region approaches in PET: a comparative study on multiple radioligands. J Cereb Blood Flow Metab 33:888–897CrossRefPubMedPubMedCentral Zanderigo F, Ogden RT, Parsey RV (2013) Reference region approaches in PET: a comparative study on multiple radioligands. J Cereb Blood Flow Metab 33:888–897CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Lammertsma AA (2017) Forward to the past: the case for quantitative PET imaging. J Nucl Med 58:1019–1024CrossRefPubMed Lammertsma AA (2017) Forward to the past: the case for quantitative PET imaging. J Nucl Med 58:1019–1024CrossRefPubMed
21.
Zurück zum Zitat Lucignani G, Paganelli G, Bombardieri E (2004) The use of standardized uptake values for assessing FDG uptake with PET in oncology: a clinical perspective. Nucl Med Commun 25:651–656CrossRefPubMed Lucignani G, Paganelli G, Bombardieri E (2004) The use of standardized uptake values for assessing FDG uptake with PET in oncology: a clinical perspective. Nucl Med Commun 25:651–656CrossRefPubMed
22.
Zurück zum Zitat Strauss LG, Dimitrakopoulou-Strauss A, Haberkorn U (2003) Shortened PET data acquisition protocol for the quantification of 18F-FDG kinetics. J Nucl Med 44:1933–1939PubMed Strauss LG, Dimitrakopoulou-Strauss A, Haberkorn U (2003) Shortened PET data acquisition protocol for the quantification of 18F-FDG kinetics. J Nucl Med 44:1933–1939PubMed
23.
Zurück zum Zitat Dimitrakopoulou-Strauss A, Pan L, Strauss LG (2012) Quantitative approaches of dynamic FDG-PET and PET/CT studies (dPET/CT) for the evaluation of oncological patients. Cancer Imaging 12:283–289CrossRefPubMedPubMedCentral Dimitrakopoulou-Strauss A, Pan L, Strauss LG (2012) Quantitative approaches of dynamic FDG-PET and PET/CT studies (dPET/CT) for the evaluation of oncological patients. Cancer Imaging 12:283–289CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Lockhart SN, Baker SL, Okamura N, Furukawa K, Ishiki A, Furumoto S, Tashiro M, Yanai K, Arai H, Kudo Y, Harada R, Tomita N, Hiraoka K, Watanuki S, Jagust WJ (2016) Dynamic PET measures of tau accumulation in cognitively normal older adults and Alzheimer’s disease patients measured using [18F] THK-5351. PLoS One 11:e0158460CrossRefPubMedPubMedCentral Lockhart SN, Baker SL, Okamura N, Furukawa K, Ishiki A, Furumoto S, Tashiro M, Yanai K, Arai H, Kudo Y, Harada R, Tomita N, Hiraoka K, Watanuki S, Jagust WJ (2016) Dynamic PET measures of tau accumulation in cognitively normal older adults and Alzheimer’s disease patients measured using [18F] THK-5351. PLoS One 11:e0158460CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Lopes Alves I, Vállez García DV, Parente A, et al. (2017) Parametric imaging of [11C]flumazenil binding in the rat brain. Mol Imaging Biol 1–10 Lopes Alves I, Vállez García DV, Parente A, et al. (2017) Parametric imaging of [11C]flumazenil binding in the rat brain. Mol Imaging Biol 1–10
26.
Zurück zum Zitat Bretin F, Warnock G, Bahri MA, Aerts J, Mestdagh N, Buchanan T, Valade A, Mievis F, Giacomelli F, Lemaire C, Luxen A, Salmon E, Seret A, Plenevaux A (2013) Preclinical radiation dosimetry for the novel SV2A radiotracer [18F]UCB-H. EJNMMI Res 3:35CrossRefPubMedPubMedCentral Bretin F, Warnock G, Bahri MA, Aerts J, Mestdagh N, Buchanan T, Valade A, Mievis F, Giacomelli F, Lemaire C, Luxen A, Salmon E, Seret A, Plenevaux A (2013) Preclinical radiation dosimetry for the novel SV2A radiotracer [18F]UCB-H. EJNMMI Res 3:35CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Warnock GI, Aerts J, Bahri MA, Bretin F, Lemaire C, Giacomelli F, Mievis F, Mestdagh N, Buchanan T, Valade A, Mercier J, Wood M, Gillard M, Seret A, Luxen A, Salmon E, Plenevaux A (2014) Evaluation of 18F-UCB-H as a novel PET tracer for synaptic vesicle protein 2A in the brain. J Nucl Med 55:1336–1341CrossRefPubMed Warnock GI, Aerts J, Bahri MA, Bretin F, Lemaire C, Giacomelli F, Mievis F, Mestdagh N, Buchanan T, Valade A, Mercier J, Wood M, Gillard M, Seret A, Luxen A, Salmon E, Plenevaux A (2014) Evaluation of 18F-UCB-H as a novel PET tracer for synaptic vesicle protein 2A in the brain. J Nucl Med 55:1336–1341CrossRefPubMed
28.
Zurück zum Zitat Bretin F, Bahri MA, Bernard C, Warnock G, Aerts J, Mestdagh N, Buchanan T, Otoul C, Koestler F, Mievis F, Giacomelli F, Degueldre C, Hustinx R, Luxen A, Seret A, Plenevaux A, Salmon E (2015) Biodistribution and radiation dosimetry for the novel SV2A radiotracer [18F]UCB-H: first-in-human study. Mol Imaging Biol 17:557–564CrossRefPubMed Bretin F, Bahri MA, Bernard C, Warnock G, Aerts J, Mestdagh N, Buchanan T, Otoul C, Koestler F, Mievis F, Giacomelli F, Degueldre C, Hustinx R, Luxen A, Seret A, Plenevaux A, Salmon E (2015) Biodistribution and radiation dosimetry for the novel SV2A radiotracer [18F]UCB-H: first-in-human study. Mol Imaging Biol 17:557–564CrossRefPubMed
29.
Zurück zum Zitat Becker G, Warnier C, Serrano ME, Bahri MA, Mercier J, Lemaire C, Salmon E, Luxen A, Plenevaux A (2017) Pharmacokinetic characterization of [18F]UCB-H PET radiopharmaceutical in the rat brain. Mol Pharm 14:2719–2725CrossRefPubMed Becker G, Warnier C, Serrano ME, Bahri MA, Mercier J, Lemaire C, Salmon E, Luxen A, Plenevaux A (2017) Pharmacokinetic characterization of [18F]UCB-H PET radiopharmaceutical in the rat brain. Mol Pharm 14:2719–2725CrossRefPubMed
30.
Zurück zum Zitat Kaminski RM, Gillard M, Klitgaard H (2012) Targeting SV2A for discovery of antiepileptic drugs. In: Jasper’s Basic Mechanisms of the Epilepsies Kaminski RM, Gillard M, Klitgaard H (2012) Targeting SV2A for discovery of antiepileptic drugs. In: Jasper’s Basic Mechanisms of the Epilepsies
31.
Zurück zum Zitat Klitgaard H, Verdru P (2007) Levetiracetam: the first SV2A ligand for the treatment of epilepsy. Expert Opin Drug Discovery 2:1537–1545CrossRef Klitgaard H, Verdru P (2007) Levetiracetam: the first SV2A ligand for the treatment of epilepsy. Expert Opin Drug Discovery 2:1537–1545CrossRef
32.
Zurück zum Zitat Nicolas J-M, Hannestad J, Holden D, Kervyn S, Nabulsi N, Tytgat D, Huang Y, Chanteux H, Staelens L, Matagne A, Mathy FX, Mercier J, Stockis A, Carson RE, Klitgaard H (2016) Brivaracetam, a selective high-affinity synaptic vesicle protein 2A (SV2A) ligand with preclinical evidence of high brain permeability and fast onset of action. Epilepsia 57:201–209CrossRefPubMed Nicolas J-M, Hannestad J, Holden D, Kervyn S, Nabulsi N, Tytgat D, Huang Y, Chanteux H, Staelens L, Matagne A, Mathy FX, Mercier J, Stockis A, Carson RE, Klitgaard H (2016) Brivaracetam, a selective high-affinity synaptic vesicle protein 2A (SV2A) ligand with preclinical evidence of high brain permeability and fast onset of action. Epilepsia 57:201–209CrossRefPubMed
33.
Zurück zum Zitat Mercier J, Provins L, Valade A (2017) Discovery and development of SV2A PET tracers: potential for imaging synaptic density and clinical applications. Drug Discov Today Technol 25:45–52CrossRefPubMed Mercier J, Provins L, Valade A (2017) Discovery and development of SV2A PET tracers: potential for imaging synaptic density and clinical applications. Drug Discov Today Technol 25:45–52CrossRefPubMed
34.
Zurück zum Zitat Rabiner EIA (2017) Imaging synaptic density: a different look at neurological diseases. J Nucl Med Rabiner EIA (2017) Imaging synaptic density: a different look at neurological diseases. J Nucl Med
35.
Zurück zum Zitat Faul F, Erdfelder E, Lang A-G, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191CrossRef Faul F, Erdfelder E, Lang A-G, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191CrossRef
36.
Zurück zum Zitat Hellier JL, Patrylo PR, Buckmaster PS, Dudek FE (1998) Recurrent spontaneous motor seizures after repeated low-dose systemic treatment with kainate: assessment of a rat model of temporal lobe epilepsy. Epilepsy Res 31:73–84CrossRefPubMed Hellier JL, Patrylo PR, Buckmaster PS, Dudek FE (1998) Recurrent spontaneous motor seizures after repeated low-dose systemic treatment with kainate: assessment of a rat model of temporal lobe epilepsy. Epilepsy Res 31:73–84CrossRefPubMed
37.
Zurück zum Zitat Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32:281–294CrossRef Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32:281–294CrossRef
38.
Zurück zum Zitat Gano LB, Liang L-P, Ryan K, Michel CR, Gomez J, Vassilopoulos A, Reisdorph N, Fritz KS, Patel M (2018) Altered mitochondrial acetylation profiles in a kainic acid model of temporal lobe epilepsy. Free Radic Biol Med 123:116–124CrossRefPubMedPubMedCentral Gano LB, Liang L-P, Ryan K, Michel CR, Gomez J, Vassilopoulos A, Reisdorph N, Fritz KS, Patel M (2018) Altered mitochondrial acetylation profiles in a kainic acid model of temporal lobe epilepsy. Free Radic Biol Med 123:116–124CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Bertoglio D, Amhaoul H, Van Eetveldt A et al (2017) Kainic acid-induced post-status epilepticus models of temporal lobe epilepsy with diverging seizure phenotype and neuropathology. Front Neurol 8:588CrossRefPubMedPubMedCentral Bertoglio D, Amhaoul H, Van Eetveldt A et al (2017) Kainic acid-induced post-status epilepticus models of temporal lobe epilepsy with diverging seizure phenotype and neuropathology. Front Neurol 8:588CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Van Nieuwenhuyse B, Raedt R, Sprengers M et al (2015) The systemic kainic acid rat model of temporal lobe epilepsy: long-term EEG monitoring. Brain Res 1627:1–11CrossRefPubMed Van Nieuwenhuyse B, Raedt R, Sprengers M et al (2015) The systemic kainic acid rat model of temporal lobe epilepsy: long-term EEG monitoring. Brain Res 1627:1–11CrossRefPubMed
41.
Zurück zum Zitat Warnier C, Lemaire C, Becker G, Zaragoza G, Giacomelli F, Aerts J, Otabashi M, Bahri MA, Mercier J, Plenevaux A, Luxen A (2016) Enabling efficient positron emission tomography (PET) imaging of synaptic vesicle glycoprotein 2A (SV2A) with a robust and one-step radiosynthesis of a highly potent 18F-labeled ligand (18[F]UCB-H). J Med Chem 59:8955–8966CrossRefPubMed Warnier C, Lemaire C, Becker G, Zaragoza G, Giacomelli F, Aerts J, Otabashi M, Bahri MA, Mercier J, Plenevaux A, Luxen A (2016) Enabling efficient positron emission tomography (PET) imaging of synaptic vesicle glycoprotein 2A (SV2A) with a robust and one-step radiosynthesis of a highly potent 18F-labeled ligand (18[F]UCB-H). J Med Chem 59:8955–8966CrossRefPubMed
42.
Zurück zum Zitat Kim JS, Lee JS, Im KC, Kim SJ, Kim SY, Lee DS, Moon DH (2007) Performance measurement of the microPET focus 120 scanner. J Nucl Med 48:1527–1535CrossRefPubMed Kim JS, Lee JS, Im KC, Kim SJ, Kim SY, Lee DS, Moon DH (2007) Performance measurement of the microPET focus 120 scanner. J Nucl Med 48:1527–1535CrossRefPubMed
43.
Zurück zum Zitat Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet (London, England) 1:307–310CrossRef Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet (London, England) 1:307–310CrossRef
44.
Zurück zum Zitat Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8:135–160CrossRefPubMed Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8:135–160CrossRefPubMed
45.
Zurück zum Zitat Ludbrook J (2008) Statistics in biomedical laboratory and clinical science: applications, issues and pitfalls. Med Princ Pract 17:1–13CrossRefPubMed Ludbrook J (2008) Statistics in biomedical laboratory and clinical science: applications, issues and pitfalls. Med Princ Pract 17:1–13CrossRefPubMed
46.
Zurück zum Zitat Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd editio. Lawrence Erlbaum Associates Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd editio. Lawrence Erlbaum Associates
47.
Zurück zum Zitat van Vliet EA, Aronica E, Redeker S, Boer K, Gorter JA (2009) Decreased expression of synaptic vesicle protein 2A, the binding site for levetiracetam, during epileptogenesis and chronic epilepsy. Epilepsia 50:422–433CrossRefPubMed van Vliet EA, Aronica E, Redeker S, Boer K, Gorter JA (2009) Decreased expression of synaptic vesicle protein 2A, the binding site for levetiracetam, during epileptogenesis and chronic epilepsy. Epilepsia 50:422–433CrossRefPubMed
48.
Zurück zum Zitat Bajjalieh SM, Peterson K, Linial M, Scheller RH (1993) Brain contains two forms of synaptic vesicle protein 2. Proc Natl Acad Sci U S A 90:2150–2154CrossRefPubMedPubMedCentral Bajjalieh SM, Peterson K, Linial M, Scheller RH (1993) Brain contains two forms of synaptic vesicle protein 2. Proc Natl Acad Sci U S A 90:2150–2154CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Ziai P, Hayeri MR, Salei A, Salavati A, Houshmand S, Alavi A, Teytelboym OM (2016) Role of optimal quantification of FDG PET imaging in the clinical practice of radiology. RadioGraphics 36:481–496CrossRefPubMed Ziai P, Hayeri MR, Salei A, Salavati A, Houshmand S, Alavi A, Teytelboym OM (2016) Role of optimal quantification of FDG PET imaging in the clinical practice of radiology. RadioGraphics 36:481–496CrossRefPubMed
Metadaten
Titel
Quantification of [18F]UCB-H Binding in the Rat Brain: From Kinetic Modelling to Standardised Uptake Value
verfasst von
Maria Elisa Serrano
Mohamed Ali Bahri
Guillaume Becker
Alain Seret
Frédéric Mievis
Fabrice Giacomelli
Christian Lemaire
Eric Salmon
André Luxen
Alain Plenevaux
Publikationsdatum
20.11.2018
Verlag
Springer International Publishing
Erschienen in
Molecular Imaging and Biology / Ausgabe 5/2019
Print ISSN: 1536-1632
Elektronische ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-018-1301-0

Weitere Artikel der Ausgabe 5/2019

Molecular Imaging and Biology 5/2019 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.