Skip to main content
Erschienen in: Magnetic Resonance Materials in Physics, Biology and Medicine 3/2020

17.10.2019 | Research Article

Quantification of sodium T1 in abdominal tissues at 3 T

verfasst von: Ryszard Stefan Gomolka, Alexander Ciritsis, Andreas Meier, Cristina Rossi

Erschienen in: Magnetic Resonance Materials in Physics, Biology and Medicine | Ausgabe 3/2020

Einloggen, um Zugang zu erhalten

Abstract

Introduction

Although relevant for assessment of sodium in multiple endocrine pathways, 23Na-T1 quantification is challenging due to technical limitations (SAR, B1 inhomogeneity) or influence of tissue’s local molecular dynamics. Hereby, we propose T1 quantification of 23Na-MRI signal acquired over the abdomen using a centric-reordered saturation-recovery (SR) true fast imaging with steady state precession (TrueFISP) sequence.

Materials and methods

Measurements were performed at 3T using a dual-tunable 23Na/1H coil in 7 healthy volunteers (TR/TE = 858–928/1.57 ms; flip angle = 90°; bandwidth = 450 Hz/px; voxel size = 5 × 5 × 10 mm3). Variable T1-weighting was achieved applying non-selective saturation pre-pulses delayed from the centre of the k-space acquisition by 25, 40, 60, 120 and 250 ms. T1-curve fitting was performed slice-wise, separately for average intensity values from the manually segmented areas of the renal parenchyma and spinal canal, over the increasing SR times- assuming monoexponential signal pattern.

Results

Mean ± standard deviation of 23Na-T1 was found as 29 ± 10 ms and 35 ± 8 ms for the renal parenchyma and the spinal canal, respectively.

Discussion

23Na-T1 quantification using a SR-TrueFISP is feasible in clinical settings, in the images constrained by clinically applicable acquisition time of reduced spatial resolution or averages.
Literatur
1.
Zurück zum Zitat Kaniusas E (2012) Physiological and functional basis. Biomedical signals and sensors I: linking physiological phenomena and biosignals. Springer, Heidelberg, pp 27–181 Kaniusas E (2012) Physiological and functional basis. Biomedical signals and sensors I: linking physiological phenomena and biosignals. Springer, Heidelberg, pp 27–181
2.
Zurück zum Zitat Kulbacka J, Choromanska A, Rossowska J, Wezgowiec J, Saczko J, Rols MP (2017) Cell membrane transport mechanisms: ion channels and electrical properties of cell membranes. Adv Anat Embryol Cell Biol 227:39–58PubMed Kulbacka J, Choromanska A, Rossowska J, Wezgowiec J, Saczko J, Rols MP (2017) Cell membrane transport mechanisms: ion channels and electrical properties of cell membranes. Adv Anat Embryol Cell Biol 227:39–58PubMed
3.
Zurück zum Zitat Patel S, Rauf A, Khan H, Abu-Izneid T (2017) Renin–angiotensin–aldosterone (RAAS): the ubiquitous system for homeostasis and pathologies. Biomed Pharmacother 94:317–325PubMed Patel S, Rauf A, Khan H, Abu-Izneid T (2017) Renin–angiotensin–aldosterone (RAAS): the ubiquitous system for homeostasis and pathologies. Biomed Pharmacother 94:317–325PubMed
4.
Zurück zum Zitat Peters J (2012) Local renin-angiotensin systems in the adrenal gland. Peptides 34(2):427–432PubMed Peters J (2012) Local renin-angiotensin systems in the adrenal gland. Peptides 34(2):427–432PubMed
5.
6.
Zurück zum Zitat Thulborn KR (2018) Quantitative sodium MR imaging: A review of its evolving role in medicine. Neuroimage 168:250–268PubMed Thulborn KR (2018) Quantitative sodium MR imaging: A review of its evolving role in medicine. Neuroimage 168:250–268PubMed
7.
Zurück zum Zitat Bottomley PA (2012) Sodium MRI in man: technique and findings. In: Harris RK, Wasylishen RE (eds) Encyclopedia of magnetic resonance (eMagRes), vol 1. Wiley, Chichester, pp 353–366 Bottomley PA (2012) Sodium MRI in man: technique and findings. In: Harris RK, Wasylishen RE (eds) Encyclopedia of magnetic resonance (eMagRes), vol 1. Wiley, Chichester, pp 353–366
8.
Zurück zum Zitat Ra JB, Hilal SK, Oh CH, Mun IK (1988) In vivo magnetic resonance imaging of sodium in the human body. Magn Reson Med 7(1):11–22PubMed Ra JB, Hilal SK, Oh CH, Mun IK (1988) In vivo magnetic resonance imaging of sodium in the human body. Magn Reson Med 7(1):11–22PubMed
9.
Zurück zum Zitat Granot J (1988) Sodium imaging of human body organs and extremities in vivo. Radiology 167(2):547–550PubMed Granot J (1988) Sodium imaging of human body organs and extremities in vivo. Radiology 167(2):547–550PubMed
10.
Zurück zum Zitat Steidle G, Graf H, Schick F (2004) Sodium 3-D MRI of the human torso using a volume coil. Magn Reson Imaging 22(2):171–180PubMed Steidle G, Graf H, Schick F (2004) Sodium 3-D MRI of the human torso using a volume coil. Magn Reson Imaging 22(2):171–180PubMed
11.
Zurück zum Zitat Maril N, Rosen Y, Reynolds GH, Ivanishev A, Ngo L, Lenkinski RE (2006) Sodium MRI of the human kidney at 3 Tesla. Magn Reson Med 56(6):1229–1234PubMed Maril N, Rosen Y, Reynolds GH, Ivanishev A, Ngo L, Lenkinski RE (2006) Sodium MRI of the human kidney at 3 Tesla. Magn Reson Med 56(6):1229–1234PubMed
12.
Zurück zum Zitat Shah NJ, Worthoff WA, Langen KJ (2016) Imaging of sodium in the brain: a brief review. NMR Biomed 29(2):162–174PubMed Shah NJ, Worthoff WA, Langen KJ (2016) Imaging of sodium in the brain: a brief review. NMR Biomed 29(2):162–174PubMed
13.
Zurück zum Zitat Zollner FG, Konstandin S, Lommen J, Budjan J, Schoenberg SO, Schad LR, Haneder S (2016) Quantitative sodium MRI of kidney. NMR Biomed 29(2):197–205PubMed Zollner FG, Konstandin S, Lommen J, Budjan J, Schoenberg SO, Schad LR, Haneder S (2016) Quantitative sodium MRI of kidney. NMR Biomed 29(2):197–205PubMed
14.
Zurück zum Zitat Haneder S, Konstandin S, Morelli JN, Nagel AM, Zoellner FG, Schad LR, Schoenberg SO, Michaely HJ (2011) Quantitative and qualitative (23)Na MR imaging of the human kidneys at 3 T: before and after a water load. Radiology 260(3):857–865PubMed Haneder S, Konstandin S, Morelli JN, Nagel AM, Zoellner FG, Schad LR, Schoenberg SO, Michaely HJ (2011) Quantitative and qualitative (23)Na MR imaging of the human kidneys at 3 T: before and after a water load. Radiology 260(3):857–865PubMed
15.
Zurück zum Zitat Civan MM, Shporer M (1978) NMR of sodium-23 and potassium-39 in biological systems. In: Berliner LJ, Reuben J (eds) Biological magnetic resonance. Springer, Boston pp 1–32 Civan MM, Shporer M (1978) NMR of sodium-23 and potassium-39 in biological systems. In: Berliner LJ, Reuben J (eds) Biological magnetic resonance. Springer, Boston pp 1–32
16.
Zurück zum Zitat Hubbard PS (1970) Nonexponential nuclear magnetic relaxation by quadrupole interactions. J Chem Phys 53(3):985–987 Hubbard PS (1970) Nonexponential nuclear magnetic relaxation by quadrupole interactions. J Chem Phys 53(3):985–987
17.
Zurück zum Zitat Woessner DE (2001) NMR relaxation of spin-3/2 nuclei: effects of structure, order, and dynamics in aqueous heterogeneous systems. Concepts Magn Reson 13 (5):294-325. Woessner DE (2001) NMR relaxation of spin-3/2 nuclei: effects of structure, order, and dynamics in aqueous heterogeneous systems. Concepts Magn Reson 13 (5):294-325.
18.
Zurück zum Zitat Shinar H, Navon G (1984) NMR relaxation studies of intracellular Na+ in red blood cells. Biophys Chem 20(4):275–283PubMed Shinar H, Navon G (1984) NMR relaxation studies of intracellular Na+ in red blood cells. Biophys Chem 20(4):275–283PubMed
19.
Zurück zum Zitat Ridley B, Nagel AM, Bydder M, Maarouf A, Stellmann JP, Gherib S, Verneuil J, Viout P, Guye M, Ranjeva JP, Zaaraoui W (2018) Distribution of brain sodium long and short relaxation times and concentrations: a multi-echo ultra-high field (23)Na MRI study. Sci Rep 8(1):4357PubMedPubMedCentral Ridley B, Nagel AM, Bydder M, Maarouf A, Stellmann JP, Gherib S, Verneuil J, Viout P, Guye M, Ranjeva JP, Zaaraoui W (2018) Distribution of brain sodium long and short relaxation times and concentrations: a multi-echo ultra-high field (23)Na MRI study. Sci Rep 8(1):4357PubMedPubMedCentral
20.
Zurück zum Zitat Fleysher L, Oesingmann N, Brown R, Sodickson DK, Wiggins GC, Inglese M (2013) Noninvasive quantification of intracellular sodium in human brain using ultrahigh-field MRI. NMR Biomed 26(1):9–19PubMed Fleysher L, Oesingmann N, Brown R, Sodickson DK, Wiggins GC, Inglese M (2013) Noninvasive quantification of intracellular sodium in human brain using ultrahigh-field MRI. NMR Biomed 26(1):9–19PubMed
21.
Zurück zum Zitat Atthe BK, Babsky AM, Hopewell PN, Phillips CL, Molitoris BA, Bansal N (2009) Early monitoring of acute tubular necrosis in the rat kidney by 23Na-MRI. Am J Physiol Renal Physiol 297(5):F1288–F1298PubMedPubMedCentral Atthe BK, Babsky AM, Hopewell PN, Phillips CL, Molitoris BA, Bansal N (2009) Early monitoring of acute tubular necrosis in the rat kidney by 23Na-MRI. Am J Physiol Renal Physiol 297(5):F1288–F1298PubMedPubMedCentral
22.
Zurück zum Zitat Bansal N, Germann MJ, Seshan V, Shires GT 3rd, Malloy CR, Sherry AD (1993) Thulium 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylene phosphonate) as a 23Na shift reagent for the in vivo rat liver. Biochemistry 32(21):5638–5643PubMed Bansal N, Germann MJ, Seshan V, Shires GT 3rd, Malloy CR, Sherry AD (1993) Thulium 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylene phosphonate) as a 23Na shift reagent for the in vivo rat liver. Biochemistry 32(21):5638–5643PubMed
23.
Zurück zum Zitat Burstein D, Fossel ET (1987) Intracellular sodium and lithium NMR relaxation times in the perfused frog heart. Magn Reson Med 4(3):261–273PubMed Burstein D, Fossel ET (1987) Intracellular sodium and lithium NMR relaxation times in the perfused frog heart. Magn Reson Med 4(3):261–273PubMed
24.
Zurück zum Zitat Banni S, Casu M, Corongiu FP, Dessi MA, Lai A, Meloni C (1987) NMR spin-lattice relaxation times of intracellular Na-23 on rat livers and related lipid peroxidation following CCl4 intoxication. Chem Biol Interact 63(3):207–214PubMed Banni S, Casu M, Corongiu FP, Dessi MA, Lai A, Meloni C (1987) NMR spin-lattice relaxation times of intracellular Na-23 on rat livers and related lipid peroxidation following CCl4 intoxication. Chem Biol Interact 63(3):207–214PubMed
25.
Zurück zum Zitat Nagel AM, Amarteifio E, Lehmann-Horn F, Jurkat-Rott K, Semmler W, Schad LR, Weber MA (2011) 3 Tesla sodium inversion recovery magnetic resonance imaging allows for improved visualization of intracellular sodium content changes in muscular channelopathies. Invest Radiol 46(12):759–766PubMed Nagel AM, Amarteifio E, Lehmann-Horn F, Jurkat-Rott K, Semmler W, Schad LR, Weber MA (2011) 3 Tesla sodium inversion recovery magnetic resonance imaging allows for improved visualization of intracellular sodium content changes in muscular channelopathies. Invest Radiol 46(12):759–766PubMed
26.
Zurück zum Zitat Stobbe R, Beaulieu C (2005) In vivo sodium magnetic resonance imaging of the human brain using soft inversion recovery fluid attenuation. Magn Reson Med 54(5):1305–1310PubMed Stobbe R, Beaulieu C (2005) In vivo sodium magnetic resonance imaging of the human brain using soft inversion recovery fluid attenuation. Magn Reson Med 54(5):1305–1310PubMed
27.
Zurück zum Zitat Burstein D, Springer CS Jr (2019) Sodium MRI revisited. Magn Reson Med 82(2):521–524PubMed Burstein D, Springer CS Jr (2019) Sodium MRI revisited. Magn Reson Med 82(2):521–524PubMed
28.
Zurück zum Zitat Scheffler K, Hennig J (2001) T(1) quantification with inversion recovery TrueFISP. Magn Reson Med 45(4):720–723PubMed Scheffler K, Hennig J (2001) T(1) quantification with inversion recovery TrueFISP. Magn Reson Med 45(4):720–723PubMed
29.
Zurück zum Zitat Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3):1116–1128PubMed Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3):1116–1128PubMed
30.
Zurück zum Zitat Gonzalez RC, Woods RE (2018) Digital image processing, fourth edn. Pearson, New York Gonzalez RC, Woods RE (2018) Digital image processing, fourth edn. Pearson, New York
31.
Zurück zum Zitat Casu M, Corongiu FP, Dessi MA, Frau M, Lai A (1986) Na-23 NMR spin-lattice relaxation times in rat tissues, and related modifications following CCl4 intoxication. Biochem Biophys Res Commun 134(3):1079–1085PubMed Casu M, Corongiu FP, Dessi MA, Frau M, Lai A (1986) Na-23 NMR spin-lattice relaxation times in rat tissues, and related modifications following CCl4 intoxication. Biochem Biophys Res Commun 134(3):1079–1085PubMed
32.
Zurück zum Zitat Maril N, Margalit R, Mispelter J, Degani H (2004) Functional sodium magnetic resonance imaging of the intact rat kidney. Kidney Int 65(3):927–935PubMed Maril N, Margalit R, Mispelter J, Degani H (2004) Functional sodium magnetic resonance imaging of the intact rat kidney. Kidney Int 65(3):927–935PubMed
33.
Zurück zum Zitat Wolff SD, Eng J, Berkowitz BA, James S, Balaban RS (1990) Sodium-23 nuclear magnetic resonance imaging of the rabbit kidney in vivo. Am J Physiol 258(4 Pt 2):F1125–F1131PubMed Wolff SD, Eng J, Berkowitz BA, James S, Balaban RS (1990) Sodium-23 nuclear magnetic resonance imaging of the rabbit kidney in vivo. Am J Physiol 258(4 Pt 2):F1125–F1131PubMed
34.
Zurück zum Zitat Solanky BS, Riemer F, Golay X, Wheeler-Kingshott CA (2013) Sodium quantification in the spinal cord at 3T. Magn Reson Med 69(5):1201–1208PubMed Solanky BS, Riemer F, Golay X, Wheeler-Kingshott CA (2013) Sodium quantification in the spinal cord at 3T. Magn Reson Med 69(5):1201–1208PubMed
35.
Zurück zum Zitat Coste A, Boumezbeur F, Vignaud A, Madelin G, Reetz K, Le Bihan D, Rabrait-Lerman C, Romanzetti S (2019) Tissue sodium concentration and sodium T1 mapping of the human brain at 3T using a Variable Flip Angle method. Magn Reson Imaging 58:116–124PubMedPubMedCentral Coste A, Boumezbeur F, Vignaud A, Madelin G, Reetz K, Le Bihan D, Rabrait-Lerman C, Romanzetti S (2019) Tissue sodium concentration and sodium T1 mapping of the human brain at 3T using a Variable Flip Angle method. Magn Reson Imaging 58:116–124PubMedPubMedCentral
36.
Zurück zum Zitat Leroi L, Coste A, de Rochefort L, Santin MD, Valabregue R, Mauconduit F, Giacomini E, Luong M, Chazel E, Valette J, Le Bihan D, Poupon C, Boumezbeur F, Rabrait-Lerman C, Vignaud A (2018) Simultaneous multi-parametric mapping of total sodium concentration, T1, T2 and ADC at 7 T using a multi-contrast unbalanced SSFP. Magn Reson Imaging 53:156–163PubMed Leroi L, Coste A, de Rochefort L, Santin MD, Valabregue R, Mauconduit F, Giacomini E, Luong M, Chazel E, Valette J, Le Bihan D, Poupon C, Boumezbeur F, Rabrait-Lerman C, Vignaud A (2018) Simultaneous multi-parametric mapping of total sodium concentration, T1, T2 and ADC at 7 T using a multi-contrast unbalanced SSFP. Magn Reson Imaging 53:156–163PubMed
37.
Zurück zum Zitat Constantinides CD, Gillen JS, Boada FE, Pomper MG, Bottomley PA (2000) Human skeletal muscle: sodium MR imaging and quantification—potential applications in exercise and disease. Radiology 216(2):559–568PubMed Constantinides CD, Gillen JS, Boada FE, Pomper MG, Bottomley PA (2000) Human skeletal muscle: sodium MR imaging and quantification—potential applications in exercise and disease. Radiology 216(2):559–568PubMed
38.
Zurück zum Zitat Navon G, Shinar H, Eliav U, Seo Y (2001) Multiquantum filters and order in tissues. NMR Biomed 14(2):112–132PubMed Navon G, Shinar H, Eliav U, Seo Y (2001) Multiquantum filters and order in tissues. NMR Biomed 14(2):112–132PubMed
39.
Zurück zum Zitat Petracca M, Vancea RO, Fleysher L, Jonkman LE, Oesingmann N, Inglese M (2016) Brain intra- and extracellular sodium concentration in multiple sclerosis: a 7 T MRI study. Brain 139(Pt 3):795–806PubMed Petracca M, Vancea RO, Fleysher L, Jonkman LE, Oesingmann N, Inglese M (2016) Brain intra- and extracellular sodium concentration in multiple sclerosis: a 7 T MRI study. Brain 139(Pt 3):795–806PubMed
40.
Zurück zum Zitat Inglese M, Oesingmann N, Zaaraoui W, Ranjeva JP, Fleysher L (2013) Sodium imaging as a marker of tissue injury in patients with multiple sclerosis. Multiple Sclerosis Relat Disord 2(4):263–269 Inglese M, Oesingmann N, Zaaraoui W, Ranjeva JP, Fleysher L (2013) Sodium imaging as a marker of tissue injury in patients with multiple sclerosis. Multiple Sclerosis Relat Disord 2(4):263–269
41.
Zurück zum Zitat Bouhrara M, Reiter DA, Celik H, Bonny JM, Lukas V, Fishbein KW, Spencer RG (2015) Incorporation of Rician noise in the analysis of biexponential transverse relaxation in cartilage using a multiple gradient echo sequence at 3 and 7 Tesla. Magn Reson Med 73(1):352–366PubMed Bouhrara M, Reiter DA, Celik H, Bonny JM, Lukas V, Fishbein KW, Spencer RG (2015) Incorporation of Rician noise in the analysis of biexponential transverse relaxation in cartilage using a multiple gradient echo sequence at 3 and 7 Tesla. Magn Reson Med 73(1):352–366PubMed
42.
Zurück zum Zitat Paschke NK, Neumann W, Uhrig T, Winkler M, Neumaier-Probst E, Fatar M, Schad LR, Zollner FG (2018) Influence of gadolinium-based contrast agents on tissue sodium quantification in sodium magnetic resonance imaging. Invest Radiol 53(9):555–562PubMed Paschke NK, Neumann W, Uhrig T, Winkler M, Neumaier-Probst E, Fatar M, Schad LR, Zollner FG (2018) Influence of gadolinium-based contrast agents on tissue sodium quantification in sodium magnetic resonance imaging. Invest Radiol 53(9):555–562PubMed
43.
Zurück zum Zitat Schmitt P, Griswold MA, Jakob PM, Kotas M, Gulani V, Flentje M, Haase A (2004) Inversion recovery TrueFISP: quantification of T(1), T(2), and spin density. Magn Reson Med 51(4):661–667PubMed Schmitt P, Griswold MA, Jakob PM, Kotas M, Gulani V, Flentje M, Haase A (2004) Inversion recovery TrueFISP: quantification of T(1), T(2), and spin density. Magn Reson Med 51(4):661–667PubMed
44.
45.
Zurück zum Zitat Nagel AM, Laun FB, Weber MA, Matthies C, Semmler W, Schad LR (2009) Sodium MRI using a density-adapted 3D radial acquisition technique. Magn Reson Med 62(6):1565–1573PubMed Nagel AM, Laun FB, Weber MA, Matthies C, Semmler W, Schad LR (2009) Sodium MRI using a density-adapted 3D radial acquisition technique. Magn Reson Med 62(6):1565–1573PubMed
46.
Zurück zum Zitat Lommen J, Konstandin S, Kramer P, Schad LR (2016) Enhancing the quantification of tissue sodium content by MRI: time-efficient sodium B1 mapping at clinical field strengths. NMR Biomed 29(2):129–136PubMed Lommen J, Konstandin S, Kramer P, Schad LR (2016) Enhancing the quantification of tissue sodium content by MRI: time-efficient sodium B1 mapping at clinical field strengths. NMR Biomed 29(2):129–136PubMed
47.
Zurück zum Zitat Gast LV, Gerhalter T, Hensel B, Uder M, Nagel AM (2018) Double quantum filtered (23) Na MRI with magic angle excitation of human skeletal muscle in the presence of B0 and B1 inhomogeneities. NMR Biomed 31(12):e4010PubMed Gast LV, Gerhalter T, Hensel B, Uder M, Nagel AM (2018) Double quantum filtered (23) Na MRI with magic angle excitation of human skeletal muscle in the presence of B0 and B1 inhomogeneities. NMR Biomed 31(12):e4010PubMed
48.
Zurück zum Zitat Stobbe RW, Beaulieu C (2014) Exploring and enhancing relaxation-based sodium MRI contrast. MAGMA 27(1):21–33PubMed Stobbe RW, Beaulieu C (2014) Exploring and enhancing relaxation-based sodium MRI contrast. MAGMA 27(1):21–33PubMed
49.
Zurück zum Zitat Kline RP, Wu EX, Petrylak DP, Szabolcs M, Alderson PO, Weisfeldt ML, Cannon P, Katz J (2000) Rapid in vivo monitoring of chemotherapeutic response using weighted sodium magnetic resonance imaging. Clin Cancer Res 6(6):2146–2156PubMed Kline RP, Wu EX, Petrylak DP, Szabolcs M, Alderson PO, Weisfeldt ML, Cannon P, Katz J (2000) Rapid in vivo monitoring of chemotherapeutic response using weighted sodium magnetic resonance imaging. Clin Cancer Res 6(6):2146–2156PubMed
50.
Zurück zum Zitat Decker CM, Zollner FG, Konstandin S, Schad LR (2012) Comparing anisotropic diffusion filters for the enhancement of sodium magnetic resonance images. Magn Reson Imaging 30(8):1192–1200PubMed Decker CM, Zollner FG, Konstandin S, Schad LR (2012) Comparing anisotropic diffusion filters for the enhancement of sodium magnetic resonance images. Magn Reson Imaging 30(8):1192–1200PubMed
Metadaten
Titel
Quantification of sodium T1 in abdominal tissues at 3 T
verfasst von
Ryszard Stefan Gomolka
Alexander Ciritsis
Andreas Meier
Cristina Rossi
Publikationsdatum
17.10.2019
Verlag
Springer International Publishing
Erschienen in
Magnetic Resonance Materials in Physics, Biology and Medicine / Ausgabe 3/2020
Print ISSN: 0968-5243
Elektronische ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-019-00786-8

Weitere Artikel der Ausgabe 3/2020

Magnetic Resonance Materials in Physics, Biology and Medicine 3/2020 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.