Skip to main content
Erschienen in: Abdominal Radiology 3/2018

28.06.2017

Quantitative MRI of kidneys in renal disease

verfasst von: Timothy L. Kline, Marie E. Edwards, Ishan Garg, Maria V. Irazabal, Panagiotis Korfiatis, Peter C. Harris, Bernard F. King, Vicente E. Torres, Sudhakar K. Venkatesh, Bradley J. Erickson

Erschienen in: Abdominal Radiology | Ausgabe 3/2018

Einloggen, um Zugang zu erhalten

Abstract

Purpose

To evaluate the reproducibility and utility of quantitative magnetic resonance imaging (MRI) sequences for the assessment of kidneys in young adults with normal renal function (eGFR ranged from 90 to 130 mL/min/1.73 m2) and patients with early renal disease (autosomal dominant polycystic kidney disease).

Materials and methods

This prospective case–control study was performed on ten normal young adults (18–30 years old) and ten age- and sex-matched patients with early renal parenchymal disease (autosomal dominant polycystic kidney disease). All subjects underwent a comprehensive kidney MRI protocol, including qualitative imaging: T1w, T2w, FIESTA, and quantitative imaging: 2D cine phase contrast of the renal arteries, and parenchymal diffusion weighted imaging (DWI), magnetization transfer imaging (MTI), blood oxygen level dependent (BOLD) imaging, and magnetic resonance elastography (MRE). The normal controls were imaged on two separate occasions ≥24 h apart (range 24–210 h) to assess reproducibility of the measurements.

Results

Quantitative MR imaging sequences were found to be reproducible. The mean ± SD absolute percent difference between quantitative parameters measured ≥24 h apart were: MTI-derived ratio = 4.5 ± 3.6%, DWI-derived apparent diffusion coefficient (ADC) = 6.5 ± 3.4%, BOLD-derived R2* = 7.4 ± 5.9%, and MRE-derived tissue stiffness = 7.6 ± 3.3%. Compared with controls, the ADPKD patient’s non-cystic renal parenchyma (NCRP) had statistically significant differences with regard to quantitative parenchymal measures: lower MTI percent ratios (16.3 ± 4.4 vs. 23.8 ± 1.2, p < 0.05), higher ADCs (2.46 ± 0.20 vs. 2.18 ± 0.10 × 10−3 mm2/s, p < 0.05), lower R2*s (14.9 ± 1.7 vs. 18.1 ± 1.6 s−1, p < 0.05), and lower tissue stiffness (3.2 ± 0.3 vs. 3.8 ± 0.5 kPa, p < 0.05).

Conclusion

Excellent reproducibility of the quantitative measurements was obtained in all cases. Significantly different quantitative MR parenchymal measurement parameters between ADPKD patients and normal controls were obtained by MT, DWI, BOLD, and MRE indicating the potential for detecting and following renal disease at an earlier stage than the conventional qualitative imaging techniques.
Literatur
1.
Zurück zum Zitat National Center for Health Statistics, Summary Health Statistics Tables for U.S. Adults: National Health Interview Survey, 2014, Table A-4b, A-4c. National Center for Health Statistics, Summary Health Statistics Tables for U.S. Adults: National Health Interview Survey, 2014, Table A-4b, A-4c.
2.
Zurück zum Zitat National Center for Health Statistics, Deaths: Final Data for 2014, Tables 9, 10, 11. National Center for Health Statistics, Deaths: Final Data for 2014, Tables 9, 10, 11.
4.
Zurück zum Zitat Myers GL, Miller WG, Coresh J, et al. (2006) Recommendations for improving serum creatinine measurement: a report from the laboratory working group of the National Kidney Disease Education Program. Clin Chem 52:5–18CrossRefPubMed Myers GL, Miller WG, Coresh J, et al. (2006) Recommendations for improving serum creatinine measurement: a report from the laboratory working group of the National Kidney Disease Education Program. Clin Chem 52:5–18CrossRefPubMed
5.
Zurück zum Zitat Coresh J, Astor BC, McQuillan G, et al. (2002) Calibration and random variation of the serum creatinine assay as critical elements of using equations to estimate glomerular filtration rate. Am J Kidney Dis 39:920–929CrossRefPubMed Coresh J, Astor BC, McQuillan G, et al. (2002) Calibration and random variation of the serum creatinine assay as critical elements of using equations to estimate glomerular filtration rate. Am J Kidney Dis 39:920–929CrossRefPubMed
6.
Zurück zum Zitat Zhang JL, Morrell G, Rusinek H, et al. (2014) New magnetic resonance imaging methods in nephrology. Kidney Int 85:768–778CrossRefPubMed Zhang JL, Morrell G, Rusinek H, et al. (2014) New magnetic resonance imaging methods in nephrology. Kidney Int 85:768–778CrossRefPubMed
7.
Zurück zum Zitat Kajander S, Kallio T, Alanen A, Komu M, Forsstrom J (2000) Imaging end-stage kidney disease in adults. Low-field MR imaging with magnetization transfer vs. ultrasonography. Acta Radiol 41:357–360CrossRefPubMed Kajander S, Kallio T, Alanen A, Komu M, Forsstrom J (2000) Imaging end-stage kidney disease in adults. Low-field MR imaging with magnetization transfer vs. ultrasonography. Acta Radiol 41:357–360CrossRefPubMed
8.
Zurück zum Zitat Ebrahimi B, Macura SI, Knudsen BE, Grande JP, Lerman LO (2013) Fibrosis detection in renal artery stenosis mouse model using magnetization transfer MRI. Proc. SPIE 8672, Medical Imaging 2013: Biomedical Applications in Molecular, Structural, and Functional Imaging, 867205 8672:867 Ebrahimi B, Macura SI, Knudsen BE, Grande JP, Lerman LO (2013) Fibrosis detection in renal artery stenosis mouse model using magnetization transfer MRI. Proc. SPIE 8672, Medical Imaging 2013: Biomedical Applications in Molecular, Structural, and Functional Imaging, 867205 8672:867
9.
Zurück zum Zitat Kline TL, Irazabal MV, Ebrahimi B, et al. (2016) Utilizing magnetization transfer imaging to investigate tissue remodeling in a murine model of autosomal dominant polycystic kidney disease. Magn Reson Med 75:1466–1473CrossRefPubMed Kline TL, Irazabal MV, Ebrahimi B, et al. (2016) Utilizing magnetization transfer imaging to investigate tissue remodeling in a murine model of autosomal dominant polycystic kidney disease. Magn Reson Med 75:1466–1473CrossRefPubMed
10.
Zurück zum Zitat Sourbron SP, Michaely HJ, Reiser MF, Schoenberg SO (2008) MRI-measurement of perfusion and glomerular filtration in the human kidney with a separable compartment model. Investig Radiol 43:40–48CrossRef Sourbron SP, Michaely HJ, Reiser MF, Schoenberg SO (2008) MRI-measurement of perfusion and glomerular filtration in the human kidney with a separable compartment model. Investig Radiol 43:40–48CrossRef
12.
Zurück zum Zitat Pedersen M, Dissing TH, Morkenborg J, et al. (2005) Validation of quantitative BOLD MRI measurements in kidney: application to unilateral ureteral obstruction. Kidney Int 67:2305–2312CrossRefPubMed Pedersen M, Dissing TH, Morkenborg J, et al. (2005) Validation of quantitative BOLD MRI measurements in kidney: application to unilateral ureteral obstruction. Kidney Int 67:2305–2312CrossRefPubMed
13.
Zurück zum Zitat Prasad PV, Edelman RR, Epstein FH (1996) Noninvasive evaluation of intrarenal oxygenation with BOLD MRI. Circulation 94:3271–3275CrossRefPubMed Prasad PV, Edelman RR, Epstein FH (1996) Noninvasive evaluation of intrarenal oxygenation with BOLD MRI. Circulation 94:3271–3275CrossRefPubMed
14.
Zurück zum Zitat Khatir DS, Pedersen M, Jespersen B, Buus NH (2014) Reproducibility of MRI renal artery blood flow and BOLD measurements in patients with chronic kidney disease and healthy controls. J Magn Reson Imaging 40:1091–1098CrossRefPubMed Khatir DS, Pedersen M, Jespersen B, Buus NH (2014) Reproducibility of MRI renal artery blood flow and BOLD measurements in patients with chronic kidney disease and healthy controls. J Magn Reson Imaging 40:1091–1098CrossRefPubMed
15.
Zurück zum Zitat King BF, Torres VE, Brummer ME, et al. (2003) Magnetic resonance measurements of renal blood flow as a marker of disease severity in autosomal-dominant polycystic kidney disease. Kidney Int 64:2214–2221CrossRefPubMed King BF, Torres VE, Brummer ME, et al. (2003) Magnetic resonance measurements of renal blood flow as a marker of disease severity in autosomal-dominant polycystic kidney disease. Kidney Int 64:2214–2221CrossRefPubMed
16.
Zurück zum Zitat Torres VE, King BF, Chapman AB, et al. (2007) Magnetic resonance measurements of renal blood flow and disease progression in autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol 2:112–120CrossRefPubMed Torres VE, King BF, Chapman AB, et al. (2007) Magnetic resonance measurements of renal blood flow and disease progression in autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol 2:112–120CrossRefPubMed
17.
Zurück zum Zitat Karger N, Biederer J, Lusse S, et al. (2000) Quantitation of renal perfusion using arterial spin labeling with FAIR-UFLARE. Magn Reson Imaging 18:641–647CrossRefPubMed Karger N, Biederer J, Lusse S, et al. (2000) Quantitation of renal perfusion using arterial spin labeling with FAIR-UFLARE. Magn Reson Imaging 18:641–647CrossRefPubMed
18.
Zurück zum Zitat Martirosian P, Boss A, Schraml C, et al. (2010) Magnetic resonance perfusion imaging without contrast media. Eur J Nucl Med Mol I 37:S52–S64CrossRef Martirosian P, Boss A, Schraml C, et al. (2010) Magnetic resonance perfusion imaging without contrast media. Eur J Nucl Med Mol I 37:S52–S64CrossRef
19.
Zurück zum Zitat Warner L, Yin M, Glaser KJ, et al. (2011) Noninvasive In vivo assessment of renal tissue elasticity during graded renal ischemia using MR elastography. Investig Radiol 46:509–514CrossRef Warner L, Yin M, Glaser KJ, et al. (2011) Noninvasive In vivo assessment of renal tissue elasticity during graded renal ischemia using MR elastography. Investig Radiol 46:509–514CrossRef
20.
Zurück zum Zitat Maril N, Margalit R, Mispelter J, Degani H (2004) Functional sodium magnetic resonance imaging of the intact rat kidney. Kidney Int 65:927–935CrossRefPubMed Maril N, Margalit R, Mispelter J, Degani H (2004) Functional sodium magnetic resonance imaging of the intact rat kidney. Kidney Int 65:927–935CrossRefPubMed
21.
Zurück zum Zitat Thoeny HC, De Keyzer F, Oyen RH, Peeters RR (2005) Diffusion-weighted MR imaging of kidneys in healthy volunteers and patients with parenchymal diseases: initial experience. Radiology 235:911–917CrossRefPubMed Thoeny HC, De Keyzer F, Oyen RH, Peeters RR (2005) Diffusion-weighted MR imaging of kidneys in healthy volunteers and patients with parenchymal diseases: initial experience. Radiology 235:911–917CrossRefPubMed
22.
Zurück zum Zitat Chandarana H, Lee VS, Hecht E, Taouli B, Sigmund EE (2011) Comparison of biexponential and monoexponential model of diffusion weighted imaging in evaluation of renal lesions: preliminary experience. Investig Radiol 46:285–291CrossRef Chandarana H, Lee VS, Hecht E, Taouli B, Sigmund EE (2011) Comparison of biexponential and monoexponential model of diffusion weighted imaging in evaluation of renal lesions: preliminary experience. Investig Radiol 46:285–291CrossRef
23.
Zurück zum Zitat Wang F, Kopylov D, Zu Z, et al. (2015) Mapping murine diabetic kidney disease using chemical exchange saturation transfer MRI. Magn Reson Med 76(5):1531–1541CrossRefPubMedPubMedCentral Wang F, Kopylov D, Zu Z, et al. (2015) Mapping murine diabetic kidney disease using chemical exchange saturation transfer MRI. Magn Reson Med 76(5):1531–1541CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Kline TL, Edwards ME, Korfiatis P, et al. (2016) Semiautomated segmentation of polycystic kidneys in T2-weighted MR images. Am J Roentgenol 207:605–613CrossRef Kline TL, Edwards ME, Korfiatis P, et al. (2016) Semiautomated segmentation of polycystic kidneys in T2-weighted MR images. Am J Roentgenol 207:605–613CrossRef
25.
Zurück zum Zitat Altman DG, Bland JM (1983) Measurement in medicine—the analysis of method comparison studies. Statistician 32:307–317CrossRef Altman DG, Bland JM (1983) Measurement in medicine—the analysis of method comparison studies. Statistician 32:307–317CrossRef
26.
Zurück zum Zitat Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310CrossRefPubMed Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310CrossRefPubMed
27.
Zurück zum Zitat Sesso HD, Stampfer MJ, Rosner B, et al. (2000) Systolic and diastolic blood pressure, pulse pressure, and mean arterial pressure as predictors of cardiovascular disease risk in men. Hypertension 36:801–807CrossRefPubMed Sesso HD, Stampfer MJ, Rosner B, et al. (2000) Systolic and diastolic blood pressure, pulse pressure, and mean arterial pressure as predictors of cardiovascular disease risk in men. Hypertension 36:801–807CrossRefPubMed
28.
Zurück zum Zitat Spiering W, Kroon AA, Fuss-Lejeune MM, Daemen MJ, de Leeuw PW (2000) Angiotensin II sensitivity is associated with the angiotensin II type 1 receptor A(1166)C polymorphism in essential hypertensives on a high sodium diet. Hypertension 36:411–416CrossRefPubMed Spiering W, Kroon AA, Fuss-Lejeune MM, Daemen MJ, de Leeuw PW (2000) Angiotensin II sensitivity is associated with the angiotensin II type 1 receptor A(1166)C polymorphism in essential hypertensives on a high sodium diet. Hypertension 36:411–416CrossRefPubMed
Metadaten
Titel
Quantitative MRI of kidneys in renal disease
verfasst von
Timothy L. Kline
Marie E. Edwards
Ishan Garg
Maria V. Irazabal
Panagiotis Korfiatis
Peter C. Harris
Bernard F. King
Vicente E. Torres
Sudhakar K. Venkatesh
Bradley J. Erickson
Publikationsdatum
28.06.2017
Verlag
Springer US
Erschienen in
Abdominal Radiology / Ausgabe 3/2018
Print ISSN: 2366-004X
Elektronische ISSN: 2366-0058
DOI
https://doi.org/10.1007/s00261-017-1236-y

Weitere Artikel der Ausgabe 3/2018

Abdominal Radiology 3/2018 Zur Ausgabe

Classics in Abdominal Imaging

The hooked proximal celiac artery

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.