Skip to main content
Erschienen in: Inflammation 3/2017

22.03.2017 | ORIGINAL ARTICLE

Quercetin and Ascorbic Acid Suppress Fructose-Induced NLRP3 Inflammasome Activation by Blocking Intracellular Shuttling of TXNIP in Human Macrophage Cell Lines

verfasst von: Jung-Yoon Choe, Seong-Kyu Kim

Erschienen in: Inflammation | Ausgabe 3/2017

Einloggen, um Zugang zu erhalten

Abstract

The aim of this study was to identify the role of thioredoxin-interacting protein (TXNIP) and its interaction with antioxidants in the activation of the fructose-induced NOD-like receptor protein 3 (NLRP3) inflammasome in human macrophages. The study was performed with U937 and THP-1 macrophage cell lines. Total reactive oxygen species (ROS) were measured by flow cytometry. Interleukin-1β (IL-1β), IL-18, NLRP3, TXNIP, and caspase-1 protein expression was detected using western blotting. Quantitative real-time polymerase chain reaction was used to detect IL-1β, IL-18, and caspase-1 gene expression. Intracellular shuttling of TXNIP was assessed by immunofluorescent staining with MitoTracker Red. Increased production of ROS and expression of IL-1β, IL-18, and caspase-1 genes and proteins were observed in U937 and THP-1 cells incubated with fructose and were effectively inhibited by quercetin and ascorbic acid. Intracellular shuttling of TXNIP from the nucleus into the mitochondria was detected under stimulation with fructose, which was also attenuated by antioxidants quercetin and ascorbic acid but not butylated hydroxyanisole. Treatment of macrophages with fructose promoted the association between TXNIP and NLRP3 in the cytosol, sequentially resulting in the activation of the NLRP3 inflammasome. This study revealed that intracellular TXNIP protein is a critical regulator of activation of the fructose-induced NLRP3 inflammasome, which can be effectively blocked by the antioxidants quercetin and ascorbic acid.
Literatur
1.
Zurück zum Zitat Yoshihara, E., S. Masaki, Y. Matsuo, Z. Chen, H. Tian, and J. Yodoi. 2014. Thioredoxin/Txnip: redoxisome, as a redox switch for the pathogenesis of diseases. Frontiers in Immunology 4: 514.CrossRefPubMedPubMedCentral Yoshihara, E., S. Masaki, Y. Matsuo, Z. Chen, H. Tian, and J. Yodoi. 2014. Thioredoxin/Txnip: redoxisome, as a redox switch for the pathogenesis of diseases. Frontiers in Immunology 4: 514.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Dunn, L.L., A.M. Buckle, J.P. Cooke, and M.K. Ng. 2010. The emerging role of the thioredoxin system in angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology 30: 2089–2098.CrossRefPubMedPubMedCentral Dunn, L.L., A.M. Buckle, J.P. Cooke, and M.K. Ng. 2010. The emerging role of the thioredoxin system in angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology 30: 2089–2098.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Junn, E., S.H. Han, J.Y. Im, Y. Yang, E.W. Cho, H.D. Um, D.K. Kim, K.W. Lee, P.L. Han, S.G. Rhee, and I. Choi. 2000. Vitamin D3 up-regulated protein 1 mediates oxidative stress via suppressing the thioredoxin function. Journal of Immunology 164: 6287–6295.CrossRef Junn, E., S.H. Han, J.Y. Im, Y. Yang, E.W. Cho, H.D. Um, D.K. Kim, K.W. Lee, P.L. Han, S.G. Rhee, and I. Choi. 2000. Vitamin D3 up-regulated protein 1 mediates oxidative stress via suppressing the thioredoxin function. Journal of Immunology 164: 6287–6295.CrossRef
4.
Zurück zum Zitat Byon, C.H., T. Han, J. Wu, and S.T. Hui. 2015. Txnip ablation reduces vascular smooth muscle cell inflammation and ameliorates atherosclerosis in apolipoprotein E knockout mice. Atherosclerosis 241: 313–321.CrossRefPubMedPubMedCentral Byon, C.H., T. Han, J. Wu, and S.T. Hui. 2015. Txnip ablation reduces vascular smooth muscle cell inflammation and ameliorates atherosclerosis in apolipoprotein E knockout mice. Atherosclerosis 241: 313–321.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Zhou, R., A. Tardivel, B. Thorens, I. Choi, and J. Tschopp. 2010. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nature Immunology 11: 136–140.CrossRefPubMed Zhou, R., A. Tardivel, B. Thorens, I. Choi, and J. Tschopp. 2010. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nature Immunology 11: 136–140.CrossRefPubMed
7.
Zurück zum Zitat Liu, Y., K. Lian, L. Zhang, R. Wang, F. Yi, C. Gao, C. Xin, D. Zhu, Y. Li, W. Yan, L. Xiong, E. Gao, H. Wang, and L. Tao. 2014. TXNIP mediates NLRP3 inflammasome activation in cardiac microvascular endothelial cells as a novel mechanism in myocardial ischemia/reperfusion injury. Basic Research in Cardiology 109: 415.CrossRefPubMed Liu, Y., K. Lian, L. Zhang, R. Wang, F. Yi, C. Gao, C. Xin, D. Zhu, Y. Li, W. Yan, L. Xiong, E. Gao, H. Wang, and L. Tao. 2014. TXNIP mediates NLRP3 inflammasome activation in cardiac microvascular endothelial cells as a novel mechanism in myocardial ischemia/reperfusion injury. Basic Research in Cardiology 109: 415.CrossRefPubMed
8.
Zurück zum Zitat Abais, J.M., M. Xia, G. Li, Y. Chen, S.M. Conley, T.W. Gehr, K.M. Boini, and P.L. Li. 2014. Nod-like receptor protein 3 (NLRP3) inflammasome activation and podocyte injury via thioredoxin-interacting protein (TXNIP) during hyperhomocysteinemia. Journal of Biological Chemistry 289: 27159–27168.CrossRefPubMedPubMedCentral Abais, J.M., M. Xia, G. Li, Y. Chen, S.M. Conley, T.W. Gehr, K.M. Boini, and P.L. Li. 2014. Nod-like receptor protein 3 (NLRP3) inflammasome activation and podocyte injury via thioredoxin-interacting protein (TXNIP) during hyperhomocysteinemia. Journal of Biological Chemistry 289: 27159–27168.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Zhou, R., A.S. Yazdi, P. Menu, and J. Tschopp. 2011. A role for mitochondria in NLRP3 inflammasome activation. Nature 469: 221–225.CrossRefPubMed Zhou, R., A.S. Yazdi, P. Menu, and J. Tschopp. 2011. A role for mitochondria in NLRP3 inflammasome activation. Nature 469: 221–225.CrossRefPubMed
10.
Zurück zum Zitat Saxena, G., J. Chen, and A. Shalev. 2010. Intracellular shuttling and mitochondrial function of thioredoxin-interacting protein. Journal of Biological Chemistry 285: 3997–4005.CrossRefPubMed Saxena, G., J. Chen, and A. Shalev. 2010. Intracellular shuttling and mitochondrial function of thioredoxin-interacting protein. Journal of Biological Chemistry 285: 3997–4005.CrossRefPubMed
11.
Zurück zum Zitat Glushakova, O., T. Kosugi, C. Roncal, W. Mu, M. Heinig, P. Cirillo, L.G. Sánchez-Lozada, R.J. Johnson, and T. Nakagawa. 2008. Fructose induces the inflammatory molecule ICAM-1 in endothelial cells. Journal of the American Society of Nephrology 19: 1712–1720.CrossRefPubMedPubMedCentral Glushakova, O., T. Kosugi, C. Roncal, W. Mu, M. Heinig, P. Cirillo, L.G. Sánchez-Lozada, R.J. Johnson, and T. Nakagawa. 2008. Fructose induces the inflammatory molecule ICAM-1 in endothelial cells. Journal of the American Society of Nephrology 19: 1712–1720.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Zhang, X., J.H. Zhang, X.Y. Chen, Q.H. Hu, M.X. Wang, R. Jin, Q.Y. Zhang, W. Wang, R. Wang, L.L. Kang, J.S. Li, M. Li, Y. Pan, J.J. Huang, and L.D. Kong. 2015. Reactive oxygen species-induced TXNIP drives fructose-mediated hepatic inflammation and lipid accumulation through NLRP3 inflammasome activation. Antioxidants and Redox Signaling 22: 848–870.CrossRefPubMedPubMedCentral Zhang, X., J.H. Zhang, X.Y. Chen, Q.H. Hu, M.X. Wang, R. Jin, Q.Y. Zhang, W. Wang, R. Wang, L.L. Kang, J.S. Li, M. Li, Y. Pan, J.J. Huang, and L.D. Kong. 2015. Reactive oxygen species-induced TXNIP drives fructose-mediated hepatic inflammation and lipid accumulation through NLRP3 inflammasome activation. Antioxidants and Redox Signaling 22: 848–870.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Kang, L.L., D.M. Zhang, C.H. Ma, J.H. Zhang, K.K. Jia, J.H. Liu, R. Wang, and L.D. Kong. 2016. Cinnamaldehyde and allopurinol reduce fructose-induced cardiac inflammation and fibrosis by attenuating CD36-mediated TLR4/6-IRAK4/1 signaling to suppress NLRP3 inflammasome activation. Science Reports 6: 27460.CrossRef Kang, L.L., D.M. Zhang, C.H. Ma, J.H. Zhang, K.K. Jia, J.H. Liu, R. Wang, and L.D. Kong. 2016. Cinnamaldehyde and allopurinol reduce fructose-induced cardiac inflammation and fibrosis by attenuating CD36-mediated TLR4/6-IRAK4/1 signaling to suppress NLRP3 inflammasome activation. Science Reports 6: 27460.CrossRef
14.
Zurück zum Zitat Hu, Q.H., X. Zhang, Y. Pan, Y.C. Li, and L.D. Kong. 2012. Allopurinol, quercetin and rutin ameliorate renal NLRP3 inflammasome activation and lipid accumulation in fructose-fed rats. Biochemical Pharmacology 84: 113–125.CrossRefPubMed Hu, Q.H., X. Zhang, Y. Pan, Y.C. Li, and L.D. Kong. 2012. Allopurinol, quercetin and rutin ameliorate renal NLRP3 inflammasome activation and lipid accumulation in fructose-fed rats. Biochemical Pharmacology 84: 113–125.CrossRefPubMed
15.
Zurück zum Zitat Zhang, M., S.G. Swarts, L. Yin, C. Liu, Y. Tian, Y. Cao, M. Swarts, S. Yang, S.B. Zhang, K. Zhang, S. Ju, D.J. Olek Jr., L. Schwartz, P.C. Keng, R. Howell, L. Zhang, and P. Okunieff. 2011. Antioxidant properties of quercetin. Advances in Experimental Medicine and Biology 701: 283–289.CrossRefPubMed Zhang, M., S.G. Swarts, L. Yin, C. Liu, Y. Tian, Y. Cao, M. Swarts, S. Yang, S.B. Zhang, K. Zhang, S. Ju, D.J. Olek Jr., L. Schwartz, P.C. Keng, R. Howell, L. Zhang, and P. Okunieff. 2011. Antioxidant properties of quercetin. Advances in Experimental Medicine and Biology 701: 283–289.CrossRefPubMed
16.
Zurück zum Zitat Arrigoni, O., and M.D. De Tullio. 2002. Ascorbic acid: much more than just an antioxidant. Biochimica et Biophysica Acta 1569: 1–9.CrossRefPubMed Arrigoni, O., and M.D. De Tullio. 2002. Ascorbic acid: much more than just an antioxidant. Biochimica et Biophysica Acta 1569: 1–9.CrossRefPubMed
17.
Zurück zum Zitat Festjens, N., M. Kalai, J. Smet, A. Meeus, R. Van Coster, X. Saelens, and P. Vandenabeele. 2006. Butylated hydroxyanisole is more than a reactive oxygen species scavenger. Cell Death and Differentiation 13: 166–169.CrossRefPubMed Festjens, N., M. Kalai, J. Smet, A. Meeus, R. Van Coster, X. Saelens, and P. Vandenabeele. 2006. Butylated hydroxyanisole is more than a reactive oxygen species scavenger. Cell Death and Differentiation 13: 166–169.CrossRefPubMed
18.
Zurück zum Zitat Hu, Q.H., C. Wang, J.M. Li, D.M. Zhang, and L.D. Kong. 2009. Allopurinol, rutin, and quercetin attenuate hyperuricemia and renal dysfunction in rats induced by fructose intake: renal organic ion transporter involvement. American Journal of Physiology. Renal Physiology 297: F1080–F1091.CrossRefPubMed Hu, Q.H., C. Wang, J.M. Li, D.M. Zhang, and L.D. Kong. 2009. Allopurinol, rutin, and quercetin attenuate hyperuricemia and renal dysfunction in rats induced by fructose intake: renal organic ion transporter involvement. American Journal of Physiology. Renal Physiology 297: F1080–F1091.CrossRefPubMed
19.
Zurück zum Zitat Mittal, M., M.R. Siddiqui, K. Tran, S.P. Reddy, and A.B. Malik. 2014. Reactive oxygen species in inflammation and tissue injury. Antioxidants and Redox Signaling 20: 1126–1167.CrossRefPubMedPubMedCentral Mittal, M., M.R. Siddiqui, K. Tran, S.P. Reddy, and A.B. Malik. 2014. Reactive oxygen species in inflammation and tissue injury. Antioxidants and Redox Signaling 20: 1126–1167.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Wang, W., C. Wang, X.Q. Ding, Y. Pan, T.T. Gu, M.X. Wang, Y.L. Liu, F.M. Wang, S.J. Wang, and L.D. Kong. 2013. Quercetin and allopurinol reduce liver thioredoxin-interacting protein to alleviate inflammation and lipid accumulation in diabetic rats. British Journal of Pharmacology 169: 1352–1371.CrossRefPubMedPubMedCentral Wang, W., C. Wang, X.Q. Ding, Y. Pan, T.T. Gu, M.X. Wang, Y.L. Liu, F.M. Wang, S.J. Wang, and L.D. Kong. 2013. Quercetin and allopurinol reduce liver thioredoxin-interacting protein to alleviate inflammation and lipid accumulation in diabetic rats. British Journal of Pharmacology 169: 1352–1371.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Schulze, P.C., J. Yoshioka, T. Takahashi, Z. He, G.L. King, and R.T. Lee. 2004. Hyperglycemia promotes oxidative stress through inhibition of thioredoxin function by thioredoxin-interacting protein. Journal of Biological Chemistry 279: 30369–30374.CrossRefPubMed Schulze, P.C., J. Yoshioka, T. Takahashi, Z. He, G.L. King, and R.T. Lee. 2004. Hyperglycemia promotes oxidative stress through inhibition of thioredoxin function by thioredoxin-interacting protein. Journal of Biological Chemistry 279: 30369–30374.CrossRefPubMed
22.
Zurück zum Zitat Ives, A., J. Nomura, F. Martinon, T. Roger, D. LeRoy, J.N. Miner, G. Simon, N. Busso, and A. So. 2015. Xanthine oxidoreductase regulates macrophage IL1β secretion upon NLRP3 inflammasome activation. Nature Communications 6: 6555.CrossRefPubMedPubMedCentral Ives, A., J. Nomura, F. Martinon, T. Roger, D. LeRoy, J.N. Miner, G. Simon, N. Busso, and A. So. 2015. Xanthine oxidoreductase regulates macrophage IL1β secretion upon NLRP3 inflammasome activation. Nature Communications 6: 6555.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Kim, G.N., and H.D. Jang. 2009. Protective mechanism of quercetin and rutin using glutathione metabolism on HO-induced oxidative stress in HepG2 cells. Annals of the New York Academy of Sciences 1171: 530–537.CrossRefPubMed Kim, G.N., and H.D. Jang. 2009. Protective mechanism of quercetin and rutin using glutathione metabolism on HO-induced oxidative stress in HepG2 cells. Annals of the New York Academy of Sciences 1171: 530–537.CrossRefPubMed
24.
Zurück zum Zitat Kim, S.K., J.Y. Choe, and K.Y. Park. 2016. Enhanced p62 is responsible for mitochondrial pathway-dependent apoptosis and interleukin-1β production at the early phase by monosodium urate crystals in murine macrophage. Inflammation 39: 1603–1616.CrossRefPubMed Kim, S.K., J.Y. Choe, and K.Y. Park. 2016. Enhanced p62 is responsible for mitochondrial pathway-dependent apoptosis and interleukin-1β production at the early phase by monosodium urate crystals in murine macrophage. Inflammation 39: 1603–1616.CrossRefPubMed
25.
Zurück zum Zitat Devi, T.S., I. Lee, M. Hüttemann, A. Kumar, K.D. Nantwi, and L.P. Singh. 2012. TXNIP links innate host defense mechanisms to oxidative stress and inflammation in retinal Muller glia under chronic hyperglycemia: implications for diabetic retinopathy. Experimental Diabetes Research 2012: 438238.CrossRefPubMedPubMedCentral Devi, T.S., I. Lee, M. Hüttemann, A. Kumar, K.D. Nantwi, and L.P. Singh. 2012. TXNIP links innate host defense mechanisms to oxidative stress and inflammation in retinal Muller glia under chronic hyperglycemia: implications for diabetic retinopathy. Experimental Diabetes Research 2012: 438238.CrossRefPubMedPubMedCentral
Metadaten
Titel
Quercetin and Ascorbic Acid Suppress Fructose-Induced NLRP3 Inflammasome Activation by Blocking Intracellular Shuttling of TXNIP in Human Macrophage Cell Lines
verfasst von
Jung-Yoon Choe
Seong-Kyu Kim
Publikationsdatum
22.03.2017
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 3/2017
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-017-0542-4

Weitere Artikel der Ausgabe 3/2017

Inflammation 3/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.