Skip to main content
Erschienen in: Pediatric Radiology 2/2017

09.11.2016 | Original Article

Radiation dose levels in pediatric chest CT: experience in 499 children evaluated with dual-source single-energy CT

verfasst von: Remy-Jardin Martine, Teresa Santangelo, Lucie Colas, Faivre Jean-Baptiste, Alain Duhamel, Antoine Deschildre, Jacques Remy

Erschienen in: Pediatric Radiology | Ausgabe 2/2017

Einloggen, um Zugang zu erhalten

Abstract

Background

The availability of dual-source technology has introduced the possibility of scanning children at lower kVp with a high-pitch mode, combining high-speed data acquisition and high temporal resolution.

Objective

To establish the radiation dose levels of dual-source, single-energy chest CT examinations in children.

Materials and methods

We retrospectively recorded the dose–length product (DLP) of 499 consecutive examinations obtained in children <50 kg, divided into five weight groups: group 1 (<10 kg, n = 129); group 2 (10–20 kg, n = 176); group 3 (20–30 kg, n = 99), group 4 (30–40 kg, n = 58) and group 5 (40–49 kg, n = 37). All CT examinations were performed with high temporal resolution (75 ms), a high-pitch mode and a weight-adapted selection of the milliamperage.

Results

CT examinations were obtained at 80 kVp with a milliamperage ranging between 40 mAs and 90 mAs, and a pitch of 2.0 (n = 162; 32.5%) or 3.0 (n = 337; 67.5%). The mean duration of data acquisition was 522.8 ± 192.0 ms (interquartile range 390 to 610; median 490). In the study population, the mean CT dose index volume (CTDIvol32) was 0.83 mGy (standard deviation [SD] 0.20 mGy; interquartile range 0.72 to 0.94; median 0.78); the mean DLP32 was 21.4 mGy.cm (SD 9.1 mGy.cm; interquartile range 15 to 25; median 19.0); and the mean size-specific dose estimate (SSDE) was 1.7 mGy (SD 0.4 mGy; interquartile range 1.5 to 1.9; median 1.7). The DLP32, CTDIvol32 and SSDE were found to be statistically significant in the five weight categories (P < 0.0001).

Conclusion

This study establishes the radiation dose levels for dual-source, single-kVp chest CT from a single center. In the five weight categories, the median values varied 15–37 mGy.cm for the DLP32, 0.78–1.25 mGy for the CTDIvol32 and 1.6–2.1 mGy for the SSDE.
Literatur
1.
Zurück zum Zitat Shrimpton PC, Hillier MC, Lewis MA et al (2006) National survey of doses from CT in the UK. Br J Radiol 79:968–980CrossRefPubMed Shrimpton PC, Hillier MC, Lewis MA et al (2006) National survey of doses from CT in the UK. Br J Radiol 79:968–980CrossRefPubMed
2.
Zurück zum Zitat Verdun FR, Gutierrez D, Vader JP et al (2008) CT radiation dose in children: a survey to establish age-based diagnostic reference levels in Switzerland. Eur Radiol 18:1980–1986CrossRefPubMed Verdun FR, Gutierrez D, Vader JP et al (2008) CT radiation dose in children: a survey to establish age-based diagnostic reference levels in Switzerland. Eur Radiol 18:1980–1986CrossRefPubMed
3.
Zurück zum Zitat Bernier M-O, Rehel J-L, Brisse HJ et al (2012) Radiation exposure from CT in early childhood: a French large-scale multicentre study. Br J Radiol 85:53–60CrossRefPubMedPubMedCentral Bernier M-O, Rehel J-L, Brisse HJ et al (2012) Radiation exposure from CT in early childhood: a French large-scale multicentre study. Br J Radiol 85:53–60CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Practice Parameters and Technical Standards- American College of Radiology. ACR-ASER-SCBT-MR-SPR Practice Parameter for the Performance of Pediatric Computed Tomography (CT)- Revised 2014 (Resolution 3). Pages 1–18 Practice Parameters and Technical Standards- American College of Radiology. ACR-ASER-SCBT-MR-SPR Practice Parameter for the Performance of Pediatric Computed Tomography (CT)- Revised 2014 (Resolution 3). Pages 1–18
6.
Zurück zum Zitat Singh S, Kalra MK, Moore MA et al (2009) Dose reduction and compliance with pediatric CT protocols adapted to patient size, clinical indication, and number of prior studies. Radiology 252:200–208CrossRefPubMed Singh S, Kalra MK, Moore MA et al (2009) Dose reduction and compliance with pediatric CT protocols adapted to patient size, clinical indication, and number of prior studies. Radiology 252:200–208CrossRefPubMed
7.
Zurück zum Zitat Nievelstein RAJ, van Dam IM, van der Molen AJ (2010) Multidetector CT in children: current concepts and dose reduction strategies. Pediatr Radiol 40:1324–1344CrossRefPubMedPubMedCentral Nievelstein RAJ, van Dam IM, van der Molen AJ (2010) Multidetector CT in children: current concepts and dose reduction strategies. Pediatr Radiol 40:1324–1344CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Lucaya J, Piqueras J, Garcia-Pena P et al (2000) Low-dose high-resolution CT of the chest in children and young adults: dose, cooperation, artifact incidence and image quality. AJR Am J Roentgenol 175:985–992CrossRefPubMed Lucaya J, Piqueras J, Garcia-Pena P et al (2000) Low-dose high-resolution CT of the chest in children and young adults: dose, cooperation, artifact incidence and image quality. AJR Am J Roentgenol 175:985–992CrossRefPubMed
9.
Zurück zum Zitat Siegel MJ, Schmidt B, Bradley O et al (2004) Radiation dose and image quality in pediatric CT: effect of technical factors and phantom size and shape. Radiology 233:515–522CrossRefPubMed Siegel MJ, Schmidt B, Bradley O et al (2004) Radiation dose and image quality in pediatric CT: effect of technical factors and phantom size and shape. Radiology 233:515–522CrossRefPubMed
10.
Zurück zum Zitat Kim JE, Newman B (2010) Evaluation of a radiation dose reduction strategy for pediatric chest CT. AJR Am J Roentgenol 194:1188–1193CrossRefPubMed Kim JE, Newman B (2010) Evaluation of a radiation dose reduction strategy for pediatric chest CT. AJR Am J Roentgenol 194:1188–1193CrossRefPubMed
11.
Zurück zum Zitat Siegel MJ, Hildebolt C, Bradley D (2013) Effects of automated kilovoltage selection technology on contrast-enhanced pediatric CT and CT angiography. Radiology 268:538–547CrossRefPubMed Siegel MJ, Hildebolt C, Bradley D (2013) Effects of automated kilovoltage selection technology on contrast-enhanced pediatric CT and CT angiography. Radiology 268:538–547CrossRefPubMed
12.
Zurück zum Zitat Schindera ST, Treier R, von Allmen G et al (2011) An education and training programme for radiological institutes: impact on the reduction of the CT radiation dose. Eur Radiol 21:2039–2045CrossRefPubMed Schindera ST, Treier R, von Allmen G et al (2011) An education and training programme for radiological institutes: impact on the reduction of the CT radiation dose. Eur Radiol 21:2039–2045CrossRefPubMed
13.
Zurück zum Zitat Vassileva J, Rehani MM, Appelgate K et al (2013) IAEA survey of pediatric computed tomography practice in 40 countries in Asia, Europe, Latin America and Africa: procedures and protocols. Eur Radiol 23:623–631CrossRefPubMed Vassileva J, Rehani MM, Appelgate K et al (2013) IAEA survey of pediatric computed tomography practice in 40 countries in Asia, Europe, Latin America and Africa: procedures and protocols. Eur Radiol 23:623–631CrossRefPubMed
14.
Zurück zum Zitat Lell MM, May M, Deak P et al (2011) High-pitch spiral computed tomography. Effect on image quality and radiation dose in pediatric chest computed tomography. Investig Radiol 46:116–123CrossRef Lell MM, May M, Deak P et al (2011) High-pitch spiral computed tomography. Effect on image quality and radiation dose in pediatric chest computed tomography. Investig Radiol 46:116–123CrossRef
16.
Zurück zum Zitat Brenner DJ (2008) Effective dose: a flawed concept that could and should be replaced. Br J Radiol 81:521–523CrossRefPubMed Brenner DJ (2008) Effective dose: a flawed concept that could and should be replaced. Br J Radiol 81:521–523CrossRefPubMed
17.
Zurück zum Zitat Martin CJ (2007) Effective dose: how should it be applied to medical exposures? Br J Radiol 80:639–647CrossRefPubMed Martin CJ (2007) Effective dose: how should it be applied to medical exposures? Br J Radiol 80:639–647CrossRefPubMed
18.
Zurück zum Zitat McCollough CH, Christner JA, Kofler JM (2010) How effective is effective dose as a predictor of radiation risk? AJR Am J Roentgenol 194:890–896CrossRefPubMed McCollough CH, Christner JA, Kofler JM (2010) How effective is effective dose as a predictor of radiation risk? AJR Am J Roentgenol 194:890–896CrossRefPubMed
19.
Zurück zum Zitat Westra SJ, Li X, Gulati K et al (2014) Entrance skin dosimetry and size-specific dose estimate from pediatric chest CTA. J Cardiovasc Comput Tomogr 8:97–107CrossRefPubMed Westra SJ, Li X, Gulati K et al (2014) Entrance skin dosimetry and size-specific dose estimate from pediatric chest CTA. J Cardiovasc Comput Tomogr 8:97–107CrossRefPubMed
20.
Zurück zum Zitat Brisse HJ, Robilliard M, Savignoni A et al (2009) Assessment of organ absorbed doses and estimation of effective doses from pediatric anthropomorphic phantom measurements for multi-detector row CT with and without automatic exposure control. Health Phys 97:303–314CrossRefPubMed Brisse HJ, Robilliard M, Savignoni A et al (2009) Assessment of organ absorbed doses and estimation of effective doses from pediatric anthropomorphic phantom measurements for multi-detector row CT with and without automatic exposure control. Health Phys 97:303–314CrossRefPubMed
22.
Zurück zum Zitat Kritsaneepaiboon S, Trinavarat P, Vistutaratna P (2012) Survey of pediatric MDCT radiation dose from university hospitals in Thailand: a preliminary for national dose survey. Acta Radiol 53:820–826CrossRefPubMed Kritsaneepaiboon S, Trinavarat P, Vistutaratna P (2012) Survey of pediatric MDCT radiation dose from university hospitals in Thailand: a preliminary for national dose survey. Acta Radiol 53:820–826CrossRefPubMed
23.
Zurück zum Zitat Granata C, Origgi D, Palorini F et al (2015) Radiation dose from multidetector CT studies in children: results from the first Italian nationwide survey. Pediatr Radiol 45:695–705CrossRefPubMed Granata C, Origgi D, Palorini F et al (2015) Radiation dose from multidetector CT studies in children: results from the first Italian nationwide survey. Pediatr Radiol 45:695–705CrossRefPubMed
24.
Zurück zum Zitat Takei Y, Miyazaki O, Matsubara K et al (2016) Nationwide survey of radiation exposure during pediatric computed tomography examinations and proposal of age-based diagnostic reference levels for Japan. Pediatr Radiol 46:280–285CrossRefPubMed Takei Y, Miyazaki O, Matsubara K et al (2016) Nationwide survey of radiation exposure during pediatric computed tomography examinations and proposal of age-based diagnostic reference levels for Japan. Pediatr Radiol 46:280–285CrossRefPubMed
25.
Zurück zum Zitat Jackson D, Atkin K, Bettenay F (2015) Paediatric CT dose: a multicentre audit of subspecialty practice in Australia and New Zealand. Eur Radiol 25:3109–3122CrossRefPubMed Jackson D, Atkin K, Bettenay F (2015) Paediatric CT dose: a multicentre audit of subspecialty practice in Australia and New Zealand. Eur Radiol 25:3109–3122CrossRefPubMed
26.
Zurück zum Zitat Kroft LJM, Roelofs JJH, Geleijns J (2010) Scan time and patient dose for thoracic imaging in neonates and small children using axial volumetric 320-detector row CT compared to helical 64-, 32-, and 16-detector row CT acquisitions. Pediatr Radiol 40:294–300CrossRefPubMed Kroft LJM, Roelofs JJH, Geleijns J (2010) Scan time and patient dose for thoracic imaging in neonates and small children using axial volumetric 320-detector row CT compared to helical 64-, 32-, and 16-detector row CT acquisitions. Pediatr Radiol 40:294–300CrossRefPubMed
27.
Zurück zum Zitat Goo HW (2011) Individualized volume CT dose index determined by cross-sectional area and mean density of the body to achieve uniform image noise of contrast-enhanced pediatric chest CT obtained at variable kV levels and with combined tube current modulation. Pediatr Radiol 41:839–847CrossRefPubMed Goo HW (2011) Individualized volume CT dose index determined by cross-sectional area and mean density of the body to achieve uniform image noise of contrast-enhanced pediatric chest CT obtained at variable kV levels and with combined tube current modulation. Pediatr Radiol 41:839–847CrossRefPubMed
28.
Zurück zum Zitat Niemann T, Henry S, Duhamel A et al (2014) Is pediatric chest CT achievable at 70 kVp? A feasibility study in 129 children. Pediatr Radiol 44:1347–1357CrossRefPubMed Niemann T, Henry S, Duhamel A et al (2014) Is pediatric chest CT achievable at 70 kVp? A feasibility study in 129 children. Pediatr Radiol 44:1347–1357CrossRefPubMed
29.
Zurück zum Zitat Shi JW, Xu DF, Dai HZ et al (2016) Evaluation of chest CT scan in low-weight children with ultralow tube voltage (70 kVp) combined with the Flash scan technique. Br J Radiol 89:201501184 Shi JW, Xu DF, Dai HZ et al (2016) Evaluation of chest CT scan in low-weight children with ultralow tube voltage (70 kVp) combined with the Flash scan technique. Br J Radiol 89:201501184
30.
Zurück zum Zitat Haggerty JE, Smith EA, Kunisaki SM et al (2015) CT imaging of congenital lung lesions: effect of iterative reconstruction on diagnostic performance and radiation dose. Pediatr Radiol 45:989–997CrossRefPubMed Haggerty JE, Smith EA, Kunisaki SM et al (2015) CT imaging of congenital lung lesions: effect of iterative reconstruction on diagnostic performance and radiation dose. Pediatr Radiol 45:989–997CrossRefPubMed
31.
Zurück zum Zitat Yoon H, Kim MJ, Yoon CS et al (2015) Radiation dose and image quality in pediatric chest CT: effects of iterative reconstruction in normal weight and overweight children. Pediatr Radiol 45:337–344CrossRefPubMed Yoon H, Kim MJ, Yoon CS et al (2015) Radiation dose and image quality in pediatric chest CT: effects of iterative reconstruction in normal weight and overweight children. Pediatr Radiol 45:337–344CrossRefPubMed
32.
Zurück zum Zitat Rompel O, Glöckler M, Janka R et al (2016) Third-generation dual-source 70-kVp chest CT angiography with advanced iterative reconstruction in young children: image quality and radiation dose reduction. Pediatr Radiol 46:462–472CrossRefPubMed Rompel O, Glöckler M, Janka R et al (2016) Third-generation dual-source 70-kVp chest CT angiography with advanced iterative reconstruction in young children: image quality and radiation dose reduction. Pediatr Radiol 46:462–472CrossRefPubMed
33.
Zurück zum Zitat Braun FM, Johnson TRC, Sommer et al (2015) Chest CT using spectral filtration: radiation dose, image quality and spectrum of clinical utility. Eur Radiol 25:1598–1606CrossRefPubMed Braun FM, Johnson TRC, Sommer et al (2015) Chest CT using spectral filtration: radiation dose, image quality and spectrum of clinical utility. Eur Radiol 25:1598–1606CrossRefPubMed
34.
Zurück zum Zitat Papadakis AE, Perisinakis K, Oikonimou I et al (2011) Automatic exposure control in pediatric and adult computed tomography examinations. Investig Radiol 46:654–662CrossRef Papadakis AE, Perisinakis K, Oikonimou I et al (2011) Automatic exposure control in pediatric and adult computed tomography examinations. Investig Radiol 46:654–662CrossRef
35.
Zurück zum Zitat Goo HW, Suh DS (2006) Tube current reduction in pediatric non-ECG-gated heart CT by combined tube current modulation. Pediatr Radiol 36:344–351CrossRefPubMed Goo HW, Suh DS (2006) Tube current reduction in pediatric non-ECG-gated heart CT by combined tube current modulation. Pediatr Radiol 36:344–351CrossRefPubMed
36.
Zurück zum Zitat Boos J, Kröpil P, Klee D et al (2014) Evaluation of the impact of organ-specific dose reduction on image quality in pediatric chest computed tomography. Pediatr Radiol 44:1065–1069CrossRefPubMed Boos J, Kröpil P, Klee D et al (2014) Evaluation of the impact of organ-specific dose reduction on image quality in pediatric chest computed tomography. Pediatr Radiol 44:1065–1069CrossRefPubMed
37.
Zurück zum Zitat Larson DB, Johnson LW, Schnell BM et al (2011) Rising use of CT in child visits to the emergency department in the United States, 1995–2008. Radiology 259:793–801CrossRefPubMed Larson DB, Johnson LW, Schnell BM et al (2011) Rising use of CT in child visits to the emergency department in the United States, 1995–2008. Radiology 259:793–801CrossRefPubMed
Metadaten
Titel
Radiation dose levels in pediatric chest CT: experience in 499 children evaluated with dual-source single-energy CT
verfasst von
Remy-Jardin Martine
Teresa Santangelo
Lucie Colas
Faivre Jean-Baptiste
Alain Duhamel
Antoine Deschildre
Jacques Remy
Publikationsdatum
09.11.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Pediatric Radiology / Ausgabe 2/2017
Print ISSN: 0301-0449
Elektronische ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-016-3731-7

Weitere Artikel der Ausgabe 2/2017

Pediatric Radiology 2/2017 Zur Ausgabe

Hermes

Hermes

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.