Skip to main content
Erschienen in: Cancer and Metastasis Reviews 2/2017

13.07.2017 | NON-THEMATIC REVIEW

Radiation-induced inflammatory cascade and its reverberating crosstalks as potential cause of post-radiotherapy second malignancies

verfasst von: Sonia Gandhi, Sudhir Chandna

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 2/2017

Einloggen, um Zugang zu erhalten

Abstract

The disease-free survival following radiotherapy is often limited by the development of second/secondary cancers. This significant impediment to effective cancer treatment implicated even in the modern-day radiotherapy needs to be countered effectively. Critical analysis reveals that besides achieving effective tumor control, radiotherapy elicits certain cellular and systemic inflammatory events in tumor infiltrate, which remain relatively stable and tend to facilitate “in-field” or “out of field” oncogenesis in due course of time. Acute pro-inflammatory cytokines generated as a result of radiation-induced oxidative insult and DNA damage induce genetic instability that contributes to tumor heterogeneity and plasticity. The reverberating crosstalks between radiation-targeted tumor and its microenvironment in turn initiate inflammatory loops that feedback the immune system to manifest as systemic consequences. An “inflammatory switchover” within the tumor microenvironment is thus induced by cumulative radiation exposure, initiating pro-tumor events that can severely limit the outcome of radiotherapy. Various pro-survival tumorigenic pathways activated as a result regulate radiation-induced hypoxia, ECM remodeling, angiogenesis/vasculogenesis, and immune suppression/evasion within the tumor microenvironment. NF-κB, HIF and STAT are identified as central regulating mediators among others that orchestrate inflammatory switchover from apoptosis-mediated tumor surveillance to radiation-induced carcinogenesis. Radiation-induced interleukins stimulate recruited macrophages and endothelial cells to promote intravasation, which is further aided by release of chemokines favoring extravasation and secondary site lesions. We hence propose that delineating the inflammatory signaling network emanating from irradiation of complex tumor tissue is critical for devising suitable therapeutic strategies to prevent post-radiotherapy second cancers or metastasis.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Travis, L. B., Demark Wahnefried, W., Allan, J. M., Wood, M. E., & Ng, A. K. (2013). Aetiology, genetics and prevention of secondary neoplasms in adult cancer survivors. Nature Reviews. Clinical Oncology, 10(5), 289–301. doi:10.1038/nrclinonc.2013.41.PubMedCrossRef Travis, L. B., Demark Wahnefried, W., Allan, J. M., Wood, M. E., & Ng, A. K. (2013). Aetiology, genetics and prevention of secondary neoplasms in adult cancer survivors. Nature Reviews. Clinical Oncology, 10(5), 289–301. doi:10.​1038/​nrclinonc.​2013.​41.PubMedCrossRef
2.
Zurück zum Zitat Ringborg, U., Bergqvist, D., Brorsson, B., Cavallin-Stahl, E., Ceberg, J., Einhorn, N., et al. (2003). The Swedish Council on Technology Assessment in Health Care (SBU) systematic overview of radiotherapy for cancer including a prospective survey of radiotherapy practice in Sweden 2001—summary and conclusions. Acta Oncologica, 42(5–6), 357–365.PubMedCrossRef Ringborg, U., Bergqvist, D., Brorsson, B., Cavallin-Stahl, E., Ceberg, J., Einhorn, N., et al. (2003). The Swedish Council on Technology Assessment in Health Care (SBU) systematic overview of radiotherapy for cancer including a prospective survey of radiotherapy practice in Sweden 2001—summary and conclusions. Acta Oncologica, 42(5–6), 357–365.PubMedCrossRef
4.
Zurück zum Zitat Berrington de Gonzalez, A., Curtis, R. E., Kry, S. F., Gilbert, E., Lamart, S., Berg, C. D., et al. (2011). Proportion of second cancers attributable to radiotherapy treatment in adults: a cohort study in the US SEER cancer registries. The Lancet Oncology, 12(4), 353–360. doi:10.1016/S1470-2045(11)70061-4.PubMedCrossRef Berrington de Gonzalez, A., Curtis, R. E., Kry, S. F., Gilbert, E., Lamart, S., Berg, C. D., et al. (2011). Proportion of second cancers attributable to radiotherapy treatment in adults: a cohort study in the US SEER cancer registries. The Lancet Oncology, 12(4), 353–360. doi:10.​1016/​S1470-2045(11)70061-4.PubMedCrossRef
5.
Zurück zum Zitat Thompson, D. E., Mabuchi, K., Ron, E., Soda, M., Tokunaga, M., Ochikubo, S., et al. (1994). Cancer incidence in atomic bomb survivors. Part II: solid tumors, 1958-1987. Radiation Research, 137(2 Suppl), S17–S67.PubMedCrossRef Thompson, D. E., Mabuchi, K., Ron, E., Soda, M., Tokunaga, M., Ochikubo, S., et al. (1994). Cancer incidence in atomic bomb survivors. Part II: solid tumors, 1958-1987. Radiation Research, 137(2 Suppl), S17–S67.PubMedCrossRef
6.
Zurück zum Zitat Preston, D. L., Kusumi, S., Tomonaga, M., Izumi, S., Ron, E., Kuramoto, A., et al. (1994). Cancer incidence in atomic bomb survivors. Part III. Leukemia, lymphoma and multiple myeloma, 1950-1987. Radiation Research, 137(2 Suppl), S68–S97.PubMedCrossRef Preston, D. L., Kusumi, S., Tomonaga, M., Izumi, S., Ron, E., Kuramoto, A., et al. (1994). Cancer incidence in atomic bomb survivors. Part III. Leukemia, lymphoma and multiple myeloma, 1950-1987. Radiation Research, 137(2 Suppl), S68–S97.PubMedCrossRef
7.
Zurück zum Zitat Mullenders, L., Atkinson, M., Paretzke, H., Sabatier, L., & Bouffler, S. (2009). Assessing cancer risks of low-dose radiation. Nature Reviews. Cancer, 9(8), 596–604. doi:10.1038/nrc2677.PubMedCrossRef Mullenders, L., Atkinson, M., Paretzke, H., Sabatier, L., & Bouffler, S. (2009). Assessing cancer risks of low-dose radiation. Nature Reviews. Cancer, 9(8), 596–604. doi:10.​1038/​nrc2677.PubMedCrossRef
8.
Zurück zum Zitat Robison, L. L., Armstrong, G. T., Boice, J. D., Chow, E. J., Davies, S. M., Donaldson, S. S., et al. (2009). The Childhood Cancer Survivor Study: a National Cancer Institute-supported resource for outcome and intervention research. Journal of Clinical Oncology, 27(14), 2308–2318. doi:10.1200/JCO.2009.22.3339.PubMedPubMedCentralCrossRef Robison, L. L., Armstrong, G. T., Boice, J. D., Chow, E. J., Davies, S. M., Donaldson, S. S., et al. (2009). The Childhood Cancer Survivor Study: a National Cancer Institute-supported resource for outcome and intervention research. Journal of Clinical Oncology, 27(14), 2308–2318. doi:10.​1200/​JCO.​2009.​22.​3339.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Meadows, A. T., Friedman, D. L., Neglia, J. P., Mertens, A. C., Donaldson, S. S., Stovall, M., et al. (2009). Second neoplasms in survivors of childhood cancer: findings from the Childhood Cancer Survivor Study cohort. Journal of Clinical Oncology, 27(14), 2356–2362. doi:10.1200/JCO.2008.21.1920.PubMedPubMedCentralCrossRef Meadows, A. T., Friedman, D. L., Neglia, J. P., Mertens, A. C., Donaldson, S. S., Stovall, M., et al. (2009). Second neoplasms in survivors of childhood cancer: findings from the Childhood Cancer Survivor Study cohort. Journal of Clinical Oncology, 27(14), 2356–2362. doi:10.​1200/​JCO.​2008.​21.​1920.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Friedman, D. L., Whitton, J., Leisenring, W., Mertens, A. C., Hammond, S., Stovall, M., et al. (2010). Subsequent neoplasms in 5-year survivors of childhood cancer: the Childhood Cancer Survivor Study. Journal of the National Cancer Institute, 102(14), 1083–1095. doi:10.1093/jnci/djq238.PubMedPubMedCentralCrossRef Friedman, D. L., Whitton, J., Leisenring, W., Mertens, A. C., Hammond, S., Stovall, M., et al. (2010). Subsequent neoplasms in 5-year survivors of childhood cancer: the Childhood Cancer Survivor Study. Journal of the National Cancer Institute, 102(14), 1083–1095. doi:10.​1093/​jnci/​djq238.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Smith, G. (2014). UNSCEAR 2013 Report. Volume I: Report to the General Assembly, Annex A: levels and effects of radiation exposure due to the nuclear accident after the 2011 great east-Japan earthquake and tsunami. Journal of Radiological Protection, 34(3), 725–727. doi:10.1088/0952-4746/34/3/B01.PubMedCrossRef Smith, G. (2014). UNSCEAR 2013 Report. Volume I: Report to the General Assembly, Annex A: levels and effects of radiation exposure due to the nuclear accident after the 2011 great east-Japan earthquake and tsunami. Journal of Radiological Protection, 34(3), 725–727. doi:10.​1088/​0952-4746/​34/​3/​B01.PubMedCrossRef
13.
Zurück zum Zitat Mancuso, M., Pasquali, E., Leonardi, S., Tanori, M., Rebessi, S., Di Majo, V., et al. (2008). Oncogenic bystander radiation effects in patched heterozygous mouse cerebellum. Proceedings of the National Academy of Sciences of the United States of America, 105(34), 12445–12450. doi:10.1073/pnas.0804186105.PubMedPubMedCentralCrossRef Mancuso, M., Pasquali, E., Leonardi, S., Tanori, M., Rebessi, S., Di Majo, V., et al. (2008). Oncogenic bystander radiation effects in patched heterozygous mouse cerebellum. Proceedings of the National Academy of Sciences of the United States of America, 105(34), 12445–12450. doi:10.​1073/​pnas.​0804186105.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Brenner, D. J., Little, J. B., & Sachs, R. K. (2001). The bystander effect in radiation oncogenesis: II. A quantitative model. Radiation Research, 155(3), 402–408.PubMedCrossRef Brenner, D. J., Little, J. B., & Sachs, R. K. (2001). The bystander effect in radiation oncogenesis: II. A quantitative model. Radiation Research, 155(3), 402–408.PubMedCrossRef
16.
Zurück zum Zitat Palm, A., & Johansson, K. A. (2007). A review of the impact of photon and proton external beam radiotherapy treatment modalities on the dose distribution in field and out-of-field; implications for the long-term morbidity of cancer survivors. Acta Oncologica, 46(4), 462–473. doi:10.1080/02841860701218626.PubMedCrossRef Palm, A., & Johansson, K. A. (2007). A review of the impact of photon and proton external beam radiotherapy treatment modalities on the dose distribution in field and out-of-field; implications for the long-term morbidity of cancer survivors. Acta Oncologica, 46(4), 462–473. doi:10.​1080/​0284186070121862​6.PubMedCrossRef
17.
Zurück zum Zitat Ghosh, S., Kumar, A., Tripathi, R. P., & Chandna, S. (2014). Connexin-43 regulates p38-mediated cell migration and invasion induced selectively in tumour cells by low doses of gamma-radiation in an ERK-1/2-independent manner. Carcinogenesis, 35(2), 383–395. doi:10.1093/carcin/bgt303.PubMedCrossRef Ghosh, S., Kumar, A., Tripathi, R. P., & Chandna, S. (2014). Connexin-43 regulates p38-mediated cell migration and invasion induced selectively in tumour cells by low doses of gamma-radiation in an ERK-1/2-independent manner. Carcinogenesis, 35(2), 383–395. doi:10.​1093/​carcin/​bgt303.PubMedCrossRef
20.
Zurück zum Zitat Han, E. Y., Paudel, N., Sung, J., Yoon, M., Chung, W. K., & Kim, D. W. (2016). Estimation of the risk of secondary malignancy arising from whole-breast irradiation: comparison of five radiotherapy modalities, including TomoHDA. Oncotarget, 7(16), 22960–22969. doi:10.18632/oncotarget.8392.PubMedPubMedCentralCrossRef Han, E. Y., Paudel, N., Sung, J., Yoon, M., Chung, W. K., & Kim, D. W. (2016). Estimation of the risk of secondary malignancy arising from whole-breast irradiation: comparison of five radiotherapy modalities, including TomoHDA. Oncotarget, 7(16), 22960–22969. doi:10.​18632/​oncotarget.​8392.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Hall, E. J., & Wuu, C. S. (2003). Radiation-induced second cancers: the impact of 3D-CRT and IMRT. International Journal of Radiation Oncology, Biology, Physics, 56(1), 83–88.PubMedCrossRef Hall, E. J., & Wuu, C. S. (2003). Radiation-induced second cancers: the impact of 3D-CRT and IMRT. International Journal of Radiation Oncology, Biology, Physics, 56(1), 83–88.PubMedCrossRef
23.
Zurück zum Zitat Chargari, C., Goodman, K. A., Diallo, I., Guy, J. B., Rancoule, C., Cosset, J. M., et al. (2016). Risk of second cancers in the era of modern radiation therapy: does the risk/benefit analysis overcome theoretical models? Cancer Metastasis Reviews, 35(2), 277–288. doi:10.1007/s10555-016-9616-2.PubMedCrossRef Chargari, C., Goodman, K. A., Diallo, I., Guy, J. B., Rancoule, C., Cosset, J. M., et al. (2016). Risk of second cancers in the era of modern radiation therapy: does the risk/benefit analysis overcome theoretical models? Cancer Metastasis Reviews, 35(2), 277–288. doi:10.​1007/​s10555-016-9616-2.PubMedCrossRef
24.
Zurück zum Zitat Barcellos-Hoff, M. H., Park, C., & Wright, E. G. (2005). Radiation and the microenvironment—tumorigenesis and therapy. Nature Reviews. Cancer, 5(11), 867–875. doi:10.1038/nrc1735.PubMedCrossRef Barcellos-Hoff, M. H., Park, C., & Wright, E. G. (2005). Radiation and the microenvironment—tumorigenesis and therapy. Nature Reviews. Cancer, 5(11), 867–875. doi:10.​1038/​nrc1735.PubMedCrossRef
26.
Zurück zum Zitat Golding, S. E., Rosenberg, E., Neill, S., Dent, P., Povirk, L. F., & Valerie, K. (2007). Extracellular signal-related kinase positively regulates ataxia telangiectasia mutated, homologous recombination repair, and the DNA damage response. Cancer Research, 67(3), 1046–1053. doi:10.1158/0008-5472.CAN-06-2371.PubMedCrossRef Golding, S. E., Rosenberg, E., Neill, S., Dent, P., Povirk, L. F., & Valerie, K. (2007). Extracellular signal-related kinase positively regulates ataxia telangiectasia mutated, homologous recombination repair, and the DNA damage response. Cancer Research, 67(3), 1046–1053. doi:10.​1158/​0008-5472.​CAN-06-2371.PubMedCrossRef
27.
Zurück zum Zitat Boucher, M. J., Morisset, J., Vachon, P. H., Reed, J. C., Laine, J., & Rivard, N. (2000). MEK/ERK signaling pathway regulates the expression of Bcl-2, Bcl-X(L), and Mcl-1 and promotes survival of human pancreatic cancer cells. Journal of Cellular Biochemistry, 79(3), 355–369.PubMedCrossRef Boucher, M. J., Morisset, J., Vachon, P. H., Reed, J. C., Laine, J., & Rivard, N. (2000). MEK/ERK signaling pathway regulates the expression of Bcl-2, Bcl-X(L), and Mcl-1 and promotes survival of human pancreatic cancer cells. Journal of Cellular Biochemistry, 79(3), 355–369.PubMedCrossRef
28.
Zurück zum Zitat Carapancea, M., Cosaceanu, D., Budiu, R., Kwiecinska, A., Tataranu, L., Ciubotaru, V., et al. (2007). Dual targeting of IGF-1R and PDGFR inhibits proliferation in high-grade gliomas cells and induces radiosensitivity in JNK-1 expressing cells. Journal of Neuro-Oncology, 85(3), 245–254. doi:10.1007/s11060-007-9417-0.PubMedCrossRef Carapancea, M., Cosaceanu, D., Budiu, R., Kwiecinska, A., Tataranu, L., Ciubotaru, V., et al. (2007). Dual targeting of IGF-1R and PDGFR inhibits proliferation in high-grade gliomas cells and induces radiosensitivity in JNK-1 expressing cells. Journal of Neuro-Oncology, 85(3), 245–254. doi:10.​1007/​s11060-007-9417-0.PubMedCrossRef
29.
Zurück zum Zitat Toulany, M., Kehlbach, R., Florczak, U., Sak, A., Wang, S., Chen, J., et al. (2008). Targeting of AKT1 enhances radiation toxicity of human tumor cells by inhibiting DNA-PKcs-dependent DNA double-strand break repair. Molecular Cancer Therapeutics, 7(7), 1772–1781. doi:10.1158/1535-7163.MCT-07-2200.PubMedCrossRef Toulany, M., Kehlbach, R., Florczak, U., Sak, A., Wang, S., Chen, J., et al. (2008). Targeting of AKT1 enhances radiation toxicity of human tumor cells by inhibiting DNA-PKcs-dependent DNA double-strand break repair. Molecular Cancer Therapeutics, 7(7), 1772–1781. doi:10.​1158/​1535-7163.​MCT-07-2200.PubMedCrossRef
30.
Zurück zum Zitat Lorimore, S. A., & Wright, E. G. (2003). Radiation-induced genomic instability and bystander effects: related inflammatory-type responses to radiation-induced stress and injury? A review. International Journal of Radiation Biology, 79(1), 15–25.PubMedCrossRef Lorimore, S. A., & Wright, E. G. (2003). Radiation-induced genomic instability and bystander effects: related inflammatory-type responses to radiation-induced stress and injury? A review. International Journal of Radiation Biology, 79(1), 15–25.PubMedCrossRef
31.
Zurück zum Zitat Mukherjee, D., Coates, P. J., Lorimore, S. A., & Wright, E. G. (2012). The in vivo expression of radiation-induced chromosomal instability has an inflammatory mechanism. Radiation Research, 177(1), 18–24.PubMedCrossRef Mukherjee, D., Coates, P. J., Lorimore, S. A., & Wright, E. G. (2012). The in vivo expression of radiation-induced chromosomal instability has an inflammatory mechanism. Radiation Research, 177(1), 18–24.PubMedCrossRef
35.
Zurück zum Zitat Kendziorra, E., Ahlborn, K., Spitzner, M., Rave-Frank, M., Emons, G., Gaedcke, J., et al. (2011). Silencing of the Wnt transcription factor TCF4 sensitizes colorectal cancer cells to (chemo-) radiotherapy. Carcinogenesis, 32(12), 1824–1831. doi:10.1093/carcin/bgr222.PubMedPubMedCentralCrossRef Kendziorra, E., Ahlborn, K., Spitzner, M., Rave-Frank, M., Emons, G., Gaedcke, J., et al. (2011). Silencing of the Wnt transcription factor TCF4 sensitizes colorectal cancer cells to (chemo-) radiotherapy. Carcinogenesis, 32(12), 1824–1831. doi:10.​1093/​carcin/​bgr222.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Koturbash, I., Rugo, R. E., Hendricks, C. A., Loree, J., Thibault, B., Kutanzi, K., et al. (2006). Irradiation induces DNA damage and modulates epigenetic effectors in distant bystander tissue in vivo. Oncogene, 25(31), 4267–4275. doi:10.1038/sj.onc.1209467.PubMedCrossRef Koturbash, I., Rugo, R. E., Hendricks, C. A., Loree, J., Thibault, B., Kutanzi, K., et al. (2006). Irradiation induces DNA damage and modulates epigenetic effectors in distant bystander tissue in vivo. Oncogene, 25(31), 4267–4275. doi:10.​1038/​sj.​onc.​1209467.PubMedCrossRef
37.
Zurück zum Zitat Wormann, S. M., Song, L., Ai, J., Diakopoulos, K. N., Kurkowski, M. U., Gorgulu, K., et al. (2016). Loss of P53 function activates JAK2-STAT3 signaling to promote pancreatic tumor growth, stroma modification, and gemcitabine resistance in mice and is associated with patient survival. Gastroenterology, 151(1), 180–193 e112. doi:10.1053/j.gastro.2016.03.010.PubMedCrossRef Wormann, S. M., Song, L., Ai, J., Diakopoulos, K. N., Kurkowski, M. U., Gorgulu, K., et al. (2016). Loss of P53 function activates JAK2-STAT3 signaling to promote pancreatic tumor growth, stroma modification, and gemcitabine resistance in mice and is associated with patient survival. Gastroenterology, 151(1), 180–193 e112. doi:10.​1053/​j.​gastro.​2016.​03.​010.PubMedCrossRef
38.
Zurück zum Zitat Zhao, W., & Robbins, M. E. (2009). Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: therapeutic implications. Current Medicinal Chemistry, 16(2), 130–143.PubMedCrossRef Zhao, W., & Robbins, M. E. (2009). Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: therapeutic implications. Current Medicinal Chemistry, 16(2), 130–143.PubMedCrossRef
39.
Zurück zum Zitat Paris, F., Fuks, Z., Kang, A., Capodieci, P., Juan, G., Ehleiter, D., et al. (2001). Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science, 293(5528), 293–297. doi:10.1126/science.1060191.PubMedCrossRef Paris, F., Fuks, Z., Kang, A., Capodieci, P., Juan, G., Ehleiter, D., et al. (2001). Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science, 293(5528), 293–297. doi:10.​1126/​science.​1060191.PubMedCrossRef
40.
Zurück zum Zitat Chargari, C., Clemenson, C., Martins, I., Perfettini, J. L., & Deutsch, E. (2013). Understanding the functions of tumor stroma in resistance to ionizing radiation: emerging targets for pharmacological modulation. Drug Resistance Updates, 16(1–2), 10–21. doi:10.1016/j.drup.2013.01.001.PubMedCrossRef Chargari, C., Clemenson, C., Martins, I., Perfettini, J. L., & Deutsch, E. (2013). Understanding the functions of tumor stroma in resistance to ionizing radiation: emerging targets for pharmacological modulation. Drug Resistance Updates, 16(1–2), 10–21. doi:10.​1016/​j.​drup.​2013.​01.​001.PubMedCrossRef
41.
Zurück zum Zitat Miyamoto, Y., Hosotani, R., Doi, R., Wada, M., Ida, J., Tsuji, S., et al. (2001). Interleukin-6 inhibits radiation induced apoptosis in pancreatic cancer cells. Anticancer Research, 21(4A), 2449–2456.PubMed Miyamoto, Y., Hosotani, R., Doi, R., Wada, M., Ida, J., Tsuji, S., et al. (2001). Interleukin-6 inhibits radiation induced apoptosis in pancreatic cancer cells. Anticancer Research, 21(4A), 2449–2456.PubMed
43.
Zurück zum Zitat Van der Meeren, A., Monti, P., Lebaron-Jacobs, L., Marquette, C., & Gourmelon, P. (2001). Characterization of the acute inflammatory response after irradiation in mice and its regulation by interleukin 4 (Il4). Radiation Research, 155(6), 858–865.PubMedCrossRef Van der Meeren, A., Monti, P., Lebaron-Jacobs, L., Marquette, C., & Gourmelon, P. (2001). Characterization of the acute inflammatory response after irradiation in mice and its regulation by interleukin 4 (Il4). Radiation Research, 155(6), 858–865.PubMedCrossRef
44.
Zurück zum Zitat Rofstad, E. K., Mathiesen, B., Henriksen, K., Kindem, K., & Galappathi, K. (2005). The tumor bed effect: increased metastatic dissemination from hypoxia-induced up-regulation of metastasis-promoting gene products. Cancer Research, 65(6), 2387–2396. doi:10.1158/0008-5472.CAN-04-3039.PubMedCrossRef Rofstad, E. K., Mathiesen, B., Henriksen, K., Kindem, K., & Galappathi, K. (2005). The tumor bed effect: increased metastatic dissemination from hypoxia-induced up-regulation of metastasis-promoting gene products. Cancer Research, 65(6), 2387–2396. doi:10.​1158/​0008-5472.​CAN-04-3039.PubMedCrossRef
45.
Zurück zum Zitat Karagiannis, G. S., Poutahidis, T., Erdman, S. E., Kirsch, R., Riddell, R. H., & Diamandis, E. P. (2012). Cancer-associated fibroblasts drive the progression of metastasis through both paracrine and mechanical pressure on cancer tissue. Molecular Cancer Research, 10(11), 1403–1418. doi:10.1158/1541-7786.MCR-12-0307.PubMedPubMedCentralCrossRef Karagiannis, G. S., Poutahidis, T., Erdman, S. E., Kirsch, R., Riddell, R. H., & Diamandis, E. P. (2012). Cancer-associated fibroblasts drive the progression of metastasis through both paracrine and mechanical pressure on cancer tissue. Molecular Cancer Research, 10(11), 1403–1418. doi:10.​1158/​1541-7786.​MCR-12-0307.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Skuli, N., Monferran, S., Delmas, C., Favre, G., Bonnet, J., Toulas, C., et al. (2009). Alphavbeta3/alphavbeta5 integrins-FAK-RhoB: a novel pathway for hypoxia regulation in glioblastoma. Cancer Research, 69(8), 3308–3316. doi:10.1158/0008-5472.CAN-08-2158.PubMedCrossRef Skuli, N., Monferran, S., Delmas, C., Favre, G., Bonnet, J., Toulas, C., et al. (2009). Alphavbeta3/alphavbeta5 integrins-FAK-RhoB: a novel pathway for hypoxia regulation in glioblastoma. Cancer Research, 69(8), 3308–3316. doi:10.​1158/​0008-5472.​CAN-08-2158.PubMedCrossRef
48.
Zurück zum Zitat Monnier, Y., Farmer, P., Bieler, G., Imaizumi, N., Sengstag, T., Alghisi, G. C., et al. (2008). CYR61 and alphaVbeta5 integrin cooperate to promote invasion and metastasis of tumors growing in preirradiated stroma. Cancer Research, 68(18), 7323–7331. doi:10.1158/0008-5472.CAN-08-0841.PubMedCrossRef Monnier, Y., Farmer, P., Bieler, G., Imaizumi, N., Sengstag, T., Alghisi, G. C., et al. (2008). CYR61 and alphaVbeta5 integrin cooperate to promote invasion and metastasis of tumors growing in preirradiated stroma. Cancer Research, 68(18), 7323–7331. doi:10.​1158/​0008-5472.​CAN-08-0841.PubMedCrossRef
49.
Zurück zum Zitat Apetoh, L., Ghiringhelli, F., Tesniere, A., Obeid, M., Ortiz, C., Criollo, A., et al. (2007). Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nature Medicine, 13(9), 1050–1059. doi:10.1038/nm1622.PubMedCrossRef Apetoh, L., Ghiringhelli, F., Tesniere, A., Obeid, M., Ortiz, C., Criollo, A., et al. (2007). Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nature Medicine, 13(9), 1050–1059. doi:10.​1038/​nm1622.PubMedCrossRef
51.
Zurück zum Zitat Calveley, V. L., Khan, M. A., Yeung, I. W., Vandyk, J., & Hill, R. P. (2005). Partial volume rat lung irradiation: temporal fluctuations of in-field and out-of-field DNA damage and inflammatory cytokines following irradiation. International Journal of Radiation Biology, 81(12), 887–899. doi:10.1080/09553000600568002.PubMedCrossRef Calveley, V. L., Khan, M. A., Yeung, I. W., Vandyk, J., & Hill, R. P. (2005). Partial volume rat lung irradiation: temporal fluctuations of in-field and out-of-field DNA damage and inflammatory cytokines following irradiation. International Journal of Radiation Biology, 81(12), 887–899. doi:10.​1080/​0955300060056800​2.PubMedCrossRef
52.
Zurück zum Zitat Ahmed, K. M., Nantajit, D., Fan, M., Murley, J. S., Grdina, D. J., & Li, J. J. (2009). Coactivation of ATM/ERK/NF-kappaB in the low-dose radiation-induced radioadaptive response in human skin keratinocytes. Free Radical Biology & Medicine, 46(11), 1543–1550. doi:10.1016/j.freeradbiomed.2009.03.012.CrossRef Ahmed, K. M., Nantajit, D., Fan, M., Murley, J. S., Grdina, D. J., & Li, J. J. (2009). Coactivation of ATM/ERK/NF-kappaB in the low-dose radiation-induced radioadaptive response in human skin keratinocytes. Free Radical Biology & Medicine, 46(11), 1543–1550. doi:10.​1016/​j.​freeradbiomed.​2009.​03.​012.CrossRef
53.
54.
55.
Zurück zum Zitat Takeshima, T., Chamoto, K., Wakita, D., Ohkuri, T., Togashi, Y., Shirato, H., et al. (2010). Local radiation therapy inhibits tumor growth through the generation of tumor-specific CTL: its potentiation by combination with Th1 cell therapy. Cancer Research, 70(7), 2697–2706. doi:10.1158/0008-5472.CAN-09-2982.PubMedCrossRef Takeshima, T., Chamoto, K., Wakita, D., Ohkuri, T., Togashi, Y., Shirato, H., et al. (2010). Local radiation therapy inhibits tumor growth through the generation of tumor-specific CTL: its potentiation by combination with Th1 cell therapy. Cancer Research, 70(7), 2697–2706. doi:10.​1158/​0008-5472.​CAN-09-2982.PubMedCrossRef
56.
Zurück zum Zitat Merrick, A., Errington, F., Milward, K., O'Donnell, D., Harrington, K., Bateman, A., et al. (2005). Immunosuppressive effects of radiation on human dendritic cells: reduced IL-12 production on activation and impairment of naive T-cell priming. British Journal of Cancer, 92(8), 1450–1458. doi:10.1038/sj.bjc.6602518.PubMedPubMedCentralCrossRef Merrick, A., Errington, F., Milward, K., O'Donnell, D., Harrington, K., Bateman, A., et al. (2005). Immunosuppressive effects of radiation on human dendritic cells: reduced IL-12 production on activation and impairment of naive T-cell priming. British Journal of Cancer, 92(8), 1450–1458. doi:10.​1038/​sj.​bjc.​6602518.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Lugade, A. A., Moran, J. P., Gerber, S. A., Rose, R. C., Frelinger, J. G., & Lord, E. M. (2005). Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. Journal of Immunology, 174(12), 7516–7523.CrossRef Lugade, A. A., Moran, J. P., Gerber, S. A., Rose, R. C., Frelinger, J. G., & Lord, E. M. (2005). Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. Journal of Immunology, 174(12), 7516–7523.CrossRef
60.
Zurück zum Zitat Liang, H., Deng, L., Chmura, S., Burnette, B., Liadis, N., Darga, T., et al. (2013). Radiation-induced equilibrium is a balance between tumor cell proliferation and T cell-mediated killing. Journal of Immunology, 190(11), 5874–5881. doi:10.4049/jimmunol.1202612.CrossRef Liang, H., Deng, L., Chmura, S., Burnette, B., Liadis, N., Darga, T., et al. (2013). Radiation-induced equilibrium is a balance between tumor cell proliferation and T cell-mediated killing. Journal of Immunology, 190(11), 5874–5881. doi:10.​4049/​jimmunol.​1202612.CrossRef
61.
Zurück zum Zitat Tsai, C. S., Chen, F. H., Wang, C. C., Huang, H. L., Jung, S. M., Wu, C. J., et al. (2007). Macrophages from irradiated tumors express higher levels of iNOS, arginase-I and COX-2, and promote tumor growth. International Journal of Radiation Oncology, Biology, Physics, 68(2), 499–507. doi:10.1016/j.ijrobp.2007.01.041.PubMedCrossRef Tsai, C. S., Chen, F. H., Wang, C. C., Huang, H. L., Jung, S. M., Wu, C. J., et al. (2007). Macrophages from irradiated tumors express higher levels of iNOS, arginase-I and COX-2, and promote tumor growth. International Journal of Radiation Oncology, Biology, Physics, 68(2), 499–507. doi:10.​1016/​j.​ijrobp.​2007.​01.​041.PubMedCrossRef
62.
64.
Zurück zum Zitat Zhang, L., Ye, S. B., Li, Z. L., Ma, G., Chen, S. P., He, J., et al. (2014). Increased HIF-1alpha expression in tumor cells and lymphocytes of tumor microenvironments predicts unfavorable survival in esophageal squamous cell carcinoma patients. International Journal of Clinical and Experimental Pathology, 7(7), 3887–3897.PubMedPubMedCentral Zhang, L., Ye, S. B., Li, Z. L., Ma, G., Chen, S. P., He, J., et al. (2014). Increased HIF-1alpha expression in tumor cells and lymphocytes of tumor microenvironments predicts unfavorable survival in esophageal squamous cell carcinoma patients. International Journal of Clinical and Experimental Pathology, 7(7), 3887–3897.PubMedPubMedCentral
66.
Zurück zum Zitat Milas, L., Wike, J., Hunter, N., Volpe, J., & Basic, I. (1987). Macrophage content of murine sarcomas and carcinomas: associations with tumor growth parameters and tumor radiocurability. Cancer Research, 47(4), 1069–1075.PubMed Milas, L., Wike, J., Hunter, N., Volpe, J., & Basic, I. (1987). Macrophage content of murine sarcomas and carcinomas: associations with tumor growth parameters and tumor radiocurability. Cancer Research, 47(4), 1069–1075.PubMed
67.
Zurück zum Zitat Youn, H., Son, B., Kim, W., Jun, S. Y., Lee, J. S., Lee, J. M., et al. (2015). Dissociation of MIF-rpS3 complex and sequential NF-kappaB activation is involved in IR-induced metastatic conversion of NSCLC. Journal of Cellular Biochemistry, 116(11), 2504–2516. doi:10.1002/jcb.25195.PubMedCrossRef Youn, H., Son, B., Kim, W., Jun, S. Y., Lee, J. S., Lee, J. M., et al. (2015). Dissociation of MIF-rpS3 complex and sequential NF-kappaB activation is involved in IR-induced metastatic conversion of NSCLC. Journal of Cellular Biochemistry, 116(11), 2504–2516. doi:10.​1002/​jcb.​25195.PubMedCrossRef
68.
Zurück zum Zitat Kuonen, F., Laurent, J., Secondini, C., Lorusso, G., Stehle, J. C., Rausch, T., et al. (2012). Inhibition of the Kit ligand/c-Kit axis attenuates metastasis in a mouse model mimicking local breast cancer relapse after radiotherapy. Clinical Cancer Research, 18(16), 4365–4374. doi:10.1158/1078-0432.CCR-11-3028.PubMedCrossRef Kuonen, F., Laurent, J., Secondini, C., Lorusso, G., Stehle, J. C., Rausch, T., et al. (2012). Inhibition of the Kit ligand/c-Kit axis attenuates metastasis in a mouse model mimicking local breast cancer relapse after radiotherapy. Clinical Cancer Research, 18(16), 4365–4374. doi:10.​1158/​1078-0432.​CCR-11-3028.PubMedCrossRef
69.
Zurück zum Zitat Heissig, B., Rafii, S., Akiyama, H., Ohki, Y., Sato, Y., Rafael, T., et al. (2005). Low-dose irradiation promotes tissue revascularization through VEGF release from mast cells and MMP-9-mediated progenitor cell mobilization. The Journal of Experimental Medicine, 202(6), 739–750. doi:10.1084/jem.20050959.PubMedPubMedCentralCrossRef Heissig, B., Rafii, S., Akiyama, H., Ohki, Y., Sato, Y., Rafael, T., et al. (2005). Low-dose irradiation promotes tissue revascularization through VEGF release from mast cells and MMP-9-mediated progenitor cell mobilization. The Journal of Experimental Medicine, 202(6), 739–750. doi:10.​1084/​jem.​20050959.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Stoecklein, V. M., Osuka, A., Ishikawa, S., Lederer, M. R., Wanke-Jellinek, L., & Lederer, J. A. (2015). Radiation exposure induces inflammasome pathway activation in immune cells. Journal of Immunology, 194(3), 1178–1189. doi:10.4049/jimmunol.1303051.CrossRef Stoecklein, V. M., Osuka, A., Ishikawa, S., Lederer, M. R., Wanke-Jellinek, L., & Lederer, J. A. (2015). Radiation exposure induces inflammasome pathway activation in immune cells. Journal of Immunology, 194(3), 1178–1189. doi:10.​4049/​jimmunol.​1303051.CrossRef
71.
Zurück zum Zitat Pogany, G. C., & Lewis, K. C. (1985). Enhancement of cathepsin B activity in irradiated mouse testes. Journal of Radiation Research, 26(2), 248–256.PubMedCrossRef Pogany, G. C., & Lewis, K. C. (1985). Enhancement of cathepsin B activity in irradiated mouse testes. Journal of Radiation Research, 26(2), 248–256.PubMedCrossRef
72.
Zurück zum Zitat Orlowski, G. M., Colbert, J. D., Sharma, S., Bogyo, M., Robertson, S. A., & Rock, K. L. (2015). Multiple cathepsins promote pro-IL-1beta synthesis and NLRP3-mediated IL-1beta activation. Journal of Immunology, 195(4), 1685–1697. doi:10.4049/jimmunol.1500509.CrossRef Orlowski, G. M., Colbert, J. D., Sharma, S., Bogyo, M., Robertson, S. A., & Rock, K. L. (2015). Multiple cathepsins promote pro-IL-1beta synthesis and NLRP3-mediated IL-1beta activation. Journal of Immunology, 195(4), 1685–1697. doi:10.​4049/​jimmunol.​1500509.CrossRef
73.
Zurück zum Zitat Paquette, B., Therriault, H., & Wagner, J. R. (2013). Role of interleukin-1beta in radiation-enhancement of MDA-MB-231 breast cancer cell invasion. Radiation Research, 180(3), 292–298. doi:10.1667/RR3240.1.PubMedCrossRef Paquette, B., Therriault, H., & Wagner, J. R. (2013). Role of interleukin-1beta in radiation-enhancement of MDA-MB-231 breast cancer cell invasion. Radiation Research, 180(3), 292–298. doi:10.​1667/​RR3240.​1.PubMedCrossRef
74.
Zurück zum Zitat Liu, Y. G., Chen, J. K., Zhang, Z. T., Ma, X. J., Chen, Y. C., Du, X. M., et al. (2017). NLRP3 inflammasome activation mediates radiation-induced pyroptosis in bone marrow-derived macrophages. Cell Death & Disease, 8(2), e2579. doi:10.1038/cddis.2016.460.CrossRef Liu, Y. G., Chen, J. K., Zhang, Z. T., Ma, X. J., Chen, Y. C., Du, X. M., et al. (2017). NLRP3 inflammasome activation mediates radiation-induced pyroptosis in bone marrow-derived macrophages. Cell Death & Disease, 8(2), e2579. doi:10.​1038/​cddis.​2016.​460.CrossRef
75.
Zurück zum Zitat Vaupel, P., & Multhoff, G. (2016). Adenosine can thwart antitumor immune responses elicited by radiotherapy: therapeutic strategies alleviating protumor ADO activities. Strahlentherapie und Onkologie, 192(5), 279–287. doi:10.1007/s00066-016-0948-1.PubMedCrossRef Vaupel, P., & Multhoff, G. (2016). Adenosine can thwart antitumor immune responses elicited by radiotherapy: therapeutic strategies alleviating protumor ADO activities. Strahlentherapie und Onkologie, 192(5), 279–287. doi:10.​1007/​s00066-016-0948-1.PubMedCrossRef
76.
Zurück zum Zitat Perez-Aso, M., Mediero, A., Low, Y. C., Levine, J., & Cronstein, B. N. (2015). Adenosine A2A receptor plays an important role in radiation-induced dermal injury. The FASEB Journal. doi:10.1096/fj.15-280388. Perez-Aso, M., Mediero, A., Low, Y. C., Levine, J., & Cronstein, B. N. (2015). Adenosine A2A receptor plays an important role in radiation-induced dermal injury. The FASEB Journal. doi:10.​1096/​fj.​15-280388.
77.
Zurück zum Zitat Ferrante, C. J., Pinhal-Enfield, G., Elson, G., Cronstein, B. N., Hasko, G., Outram, S., et al. (2013). The adenosine-dependent angiogenic switch of macrophages to an M2-like phenotype is independent of interleukin-4 receptor alpha (IL-4Ralpha) signaling. Inflammation, 36(4), 921–931. doi:10.1007/s10753-013-9621-3.PubMedPubMedCentralCrossRef Ferrante, C. J., Pinhal-Enfield, G., Elson, G., Cronstein, B. N., Hasko, G., Outram, S., et al. (2013). The adenosine-dependent angiogenic switch of macrophages to an M2-like phenotype is independent of interleukin-4 receptor alpha (IL-4Ralpha) signaling. Inflammation, 36(4), 921–931. doi:10.​1007/​s10753-013-9621-3.PubMedPubMedCentralCrossRef
79.
80.
Zurück zum Zitat Ouyang, Y., Li, H., Bu, J., Li, X., Chen, Z., & Xiao, T. (2016). Hypoxia-inducible factor-1 expression predicts osteosarcoma patients’ survival: a meta-analysis. The International Journal of Biological Markers, 31(3), e229–e234. doi:10.5301/jbm.5000216.PubMedCrossRef Ouyang, Y., Li, H., Bu, J., Li, X., Chen, Z., & Xiao, T. (2016). Hypoxia-inducible factor-1 expression predicts osteosarcoma patients’ survival: a meta-analysis. The International Journal of Biological Markers, 31(3), e229–e234. doi:10.​5301/​jbm.​5000216.PubMedCrossRef
82.
Zurück zum Zitat Lo, J. F., Yu, C. C., Chiou, S. H., Huang, C. Y., Jan, C. I., Lin, S. C., et al. (2011). The epithelial-mesenchymal transition mediator S100A4 maintains cancer-initiating cells in head and neck cancers. Cancer Research, 71(5), 1912–1923. doi:10.1158/0008-5472.CAN-10-2350.PubMedCrossRef Lo, J. F., Yu, C. C., Chiou, S. H., Huang, C. Y., Jan, C. I., Lin, S. C., et al. (2011). The epithelial-mesenchymal transition mediator S100A4 maintains cancer-initiating cells in head and neck cancers. Cancer Research, 71(5), 1912–1923. doi:10.​1158/​0008-5472.​CAN-10-2350.PubMedCrossRef
83.
Zurück zum Zitat Lonardo, E., Hermann, P. C., Mueller, M. T., Huber, S., Balic, A., Miranda-Lorenzo, I., et al. (2011). Nodal/Activin signaling drives self-renewal and tumorigenicity of pancreatic cancer stem cells and provides a target for combined drug therapy. Cell Stem Cell, 9(5), 433–446. doi:10.1016/j.stem.2011.10.001.PubMedCrossRef Lonardo, E., Hermann, P. C., Mueller, M. T., Huber, S., Balic, A., Miranda-Lorenzo, I., et al. (2011). Nodal/Activin signaling drives self-renewal and tumorigenicity of pancreatic cancer stem cells and provides a target for combined drug therapy. Cell Stem Cell, 9(5), 433–446. doi:10.​1016/​j.​stem.​2011.​10.​001.PubMedCrossRef
84.
Zurück zum Zitat Harada, H., Itasaka, S., Kizaka-Kondoh, S., Shibuya, K., Morinibu, A., Shinomiya, K., et al. (2009). The Akt/mTOR pathway assures the synthesis of HIF-1alpha protein in a glucose- and reoxygenation-dependent manner in irradiated tumors. The Journal of Biological Chemistry, 284(8), 5332–5342. doi:10.1074/jbc.M806653200.PubMedCrossRef Harada, H., Itasaka, S., Kizaka-Kondoh, S., Shibuya, K., Morinibu, A., Shinomiya, K., et al. (2009). The Akt/mTOR pathway assures the synthesis of HIF-1alpha protein in a glucose- and reoxygenation-dependent manner in irradiated tumors. The Journal of Biological Chemistry, 284(8), 5332–5342. doi:10.​1074/​jbc.​M806653200.PubMedCrossRef
85.
Zurück zum Zitat Zhu, Y., Zhao, T., Itasaka, S., Zeng, L., Yeom, C. J., Hirota, K., et al. (2013). Involvement of decreased hypoxia-inducible factor 1 activity and resultant G1-S cell cycle transition in radioresistance of perinecrotic tumor cells. Oncogene, 32(16), 2058–2068. doi:10.1038/onc.2012.223.PubMedCrossRef Zhu, Y., Zhao, T., Itasaka, S., Zeng, L., Yeom, C. J., Hirota, K., et al. (2013). Involvement of decreased hypoxia-inducible factor 1 activity and resultant G1-S cell cycle transition in radioresistance of perinecrotic tumor cells. Oncogene, 32(16), 2058–2068. doi:10.​1038/​onc.​2012.​223.PubMedCrossRef
86.
Zurück zum Zitat Liu, Y., Song, X., Wang, X., Wei, L., Liu, X., Yuan, S., et al. (2010). Effect of chronic intermittent hypoxia on biological behavior and hypoxia-associated gene expression in lung cancer cells. Journal of Cellular Biochemistry, 111(3), 554–563. doi:10.1002/jcb.22739.PubMedCrossRef Liu, Y., Song, X., Wang, X., Wei, L., Liu, X., Yuan, S., et al. (2010). Effect of chronic intermittent hypoxia on biological behavior and hypoxia-associated gene expression in lung cancer cells. Journal of Cellular Biochemistry, 111(3), 554–563. doi:10.​1002/​jcb.​22739.PubMedCrossRef
88.
Zurück zum Zitat Bussink, J., Kaanders, J. H., Rijken, P. F., Raleigh, J. A., & Van der Kogel, A. J. (2000). Changes in blood perfusion and hypoxia after irradiation of a human squamous cell carcinoma xenograft tumor line. Radiation Research, 153(4), 398–404.PubMedCrossRef Bussink, J., Kaanders, J. H., Rijken, P. F., Raleigh, J. A., & Van der Kogel, A. J. (2000). Changes in blood perfusion and hypoxia after irradiation of a human squamous cell carcinoma xenograft tumor line. Radiation Research, 153(4), 398–404.PubMedCrossRef
89.
Zurück zum Zitat Kioi, M., Vogel, H., Schultz, G., Hoffman, R. M., Harsh, G. R., & Brown, J. M. (2010). Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. The Journal of Clinical Investigation, 120(3), 694–705. doi:10.1172/JCI40283.PubMedPubMedCentralCrossRef Kioi, M., Vogel, H., Schultz, G., Hoffman, R. M., Harsh, G. R., & Brown, J. M. (2010). Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. The Journal of Clinical Investigation, 120(3), 694–705. doi:10.​1172/​JCI40283.PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Moeller, B. J., Cao, Y., Li, C. Y., & Dewhirst, M. W. (2004). Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell, 5(5), 429–441.PubMedCrossRef Moeller, B. J., Cao, Y., Li, C. Y., & Dewhirst, M. W. (2004). Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell, 5(5), 429–441.PubMedCrossRef
91.
Zurück zum Zitat Rius, J., Guma, M., Schachtrup, C., Akassoglou, K., Zinkernagel, A. S., Nizet, V., et al. (2008). NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature, 453(7196), 807–811. doi:10.1038/nature06905.PubMedPubMedCentralCrossRef Rius, J., Guma, M., Schachtrup, C., Akassoglou, K., Zinkernagel, A. S., Nizet, V., et al. (2008). NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature, 453(7196), 807–811. doi:10.​1038/​nature06905.PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Ji, F., Wang, Y., Qiu, L., Li, S., Zhu, J., Liang, Z., et al. (2013). Hypoxia inducible factor 1alpha-mediated LOX expression correlates with migration and invasion in epithelial ovarian cancer. International Journal of Oncology, 42(5), 1578–1588. doi:10.3892/ijo.2013.1878.PubMedPubMedCentral Ji, F., Wang, Y., Qiu, L., Li, S., Zhu, J., Liang, Z., et al. (2013). Hypoxia inducible factor 1alpha-mediated LOX expression correlates with migration and invasion in epithelial ovarian cancer. International Journal of Oncology, 42(5), 1578–1588. doi:10.​3892/​ijo.​2013.​1878.PubMedPubMedCentral
93.
Zurück zum Zitat Chang, C. C., Lin, B. R., Chen, S. T., Hsieh, T. H., Li, Y. J., & Kuo, M. Y. (2011). HDAC2 promotes cell migration/invasion abilities through HIF-1alpha stabilization in human oral squamous cell carcinoma. Journal of Oral Pathology & Medicine, 40(7), 567–575. doi:10.1111/j.1600-0714.2011.01009.x.CrossRef Chang, C. C., Lin, B. R., Chen, S. T., Hsieh, T. H., Li, Y. J., & Kuo, M. Y. (2011). HDAC2 promotes cell migration/invasion abilities through HIF-1alpha stabilization in human oral squamous cell carcinoma. Journal of Oral Pathology & Medicine, 40(7), 567–575. doi:10.​1111/​j.​1600-0714.​2011.​01009.​x.CrossRef
94.
95.
96.
Zurück zum Zitat Bertout, J. A., Majmundar, A. J., Gordan, J. D., Lam, J. C., Ditsworth, D., Keith, B., et al. (2009). HIF2alpha inhibition promotes p53 pathway activity, tumor cell death, and radiation responses. Proceedings of the National Academy of Sciences of the United States of America, 106(34), 14391–14396. doi:10.1073/pnas.0907357106.PubMedPubMedCentralCrossRef Bertout, J. A., Majmundar, A. J., Gordan, J. D., Lam, J. C., Ditsworth, D., Keith, B., et al. (2009). HIF2alpha inhibition promotes p53 pathway activity, tumor cell death, and radiation responses. Proceedings of the National Academy of Sciences of the United States of America, 106(34), 14391–14396. doi:10.​1073/​pnas.​0907357106.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Kaliski, A., Maggiorella, L., Cengel, K. A., Mathe, D., Rouffiac, V., Opolon, P., et al. (2005). Angiogenesis and tumor growth inhibition by a matrix metalloproteinase inhibitor targeting radiation-induced invasion. Molecular Cancer Therapeutics, 4(11), 1717–1728. doi:10.1158/1535-7163.MCT-05-0179.PubMedCrossRef Kaliski, A., Maggiorella, L., Cengel, K. A., Mathe, D., Rouffiac, V., Opolon, P., et al. (2005). Angiogenesis and tumor growth inhibition by a matrix metalloproteinase inhibitor targeting radiation-induced invasion. Molecular Cancer Therapeutics, 4(11), 1717–1728. doi:10.​1158/​1535-7163.​MCT-05-0179.PubMedCrossRef
99.
Zurück zum Zitat Abdollahi, A., Griggs, D. W., Zieher, H., Roth, A., Lipson, K. E., Saffrich, R., et al. (2005). Inhibition of alpha (v)beta3 integrin survival signaling enhances antiangiogenic and antitumor effects of radiotherapy. Clinical Cancer Research, 11(17), 6270–6279. doi:10.1158/1078-0432.CCR-04-1223.PubMedCrossRef Abdollahi, A., Griggs, D. W., Zieher, H., Roth, A., Lipson, K. E., Saffrich, R., et al. (2005). Inhibition of alpha (v)beta3 integrin survival signaling enhances antiangiogenic and antitumor effects of radiotherapy. Clinical Cancer Research, 11(17), 6270–6279. doi:10.​1158/​1078-0432.​CCR-04-1223.PubMedCrossRef
100.
Zurück zum Zitat Scharpfenecker, M., Kruse, J. J., Sprong, D., Russell, N. S., Ten Dijke, P., & Stewart, F. A. (2009). Ionizing radiation shifts the PAI-1/ID-1 balance and activates notch signaling in endothelial cells. International Journal of Radiation Oncology, Biology, Physics, 73(2), 506–513. doi:10.1016/j.ijrobp.2008.09.052.PubMedCrossRef Scharpfenecker, M., Kruse, J. J., Sprong, D., Russell, N. S., Ten Dijke, P., & Stewart, F. A. (2009). Ionizing radiation shifts the PAI-1/ID-1 balance and activates notch signaling in endothelial cells. International Journal of Radiation Oncology, Biology, Physics, 73(2), 506–513. doi:10.​1016/​j.​ijrobp.​2008.​09.​052.PubMedCrossRef
102.
Zurück zum Zitat Annabi, B., Lee, Y. T., Martel, C., Pilorget, A., Bahary, J. P., & Beliveau, R. (2003). Radiation induced-tubulogenesis in endothelial cells is antagonized by the antiangiogenic properties of green tea polyphenol (−) epigallocatechin-3-gallate. Cancer Biology & Therapy, 2(6), 642–649.CrossRef Annabi, B., Lee, Y. T., Martel, C., Pilorget, A., Bahary, J. P., & Beliveau, R. (2003). Radiation induced-tubulogenesis in endothelial cells is antagonized by the antiangiogenic properties of green tea polyphenol (−) epigallocatechin-3-gallate. Cancer Biology & Therapy, 2(6), 642–649.CrossRef
103.
Zurück zum Zitat Winkler, F., Kozin, S. V., Tong, R. T., Chae, S. S., Booth, M. F., Garkavtsev, I., et al. (2004). Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell, 6(6), 553–563. doi:10.1016/j.ccr.2004.10.011.PubMed Winkler, F., Kozin, S. V., Tong, R. T., Chae, S. S., Booth, M. F., Garkavtsev, I., et al. (2004). Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell, 6(6), 553–563. doi:10.​1016/​j.​ccr.​2004.​10.​011.PubMed
104.
Zurück zum Zitat Biswas, S., Guix, M., Rinehart, C., Dugger, T. C., Chytil, A., Moses, H. L., et al. (2007). Inhibition of TGF-beta with neutralizing antibodies prevents radiation-induced acceleration of metastatic cancer progression. The Journal of Clinical Investigation, 117(5), 1305–1313. doi:10.1172/JCI30740.PubMedPubMedCentralCrossRef Biswas, S., Guix, M., Rinehart, C., Dugger, T. C., Chytil, A., Moses, H. L., et al. (2007). Inhibition of TGF-beta with neutralizing antibodies prevents radiation-induced acceleration of metastatic cancer progression. The Journal of Clinical Investigation, 117(5), 1305–1313. doi:10.​1172/​JCI30740.PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Guo, Q., Guo, P., Mao, Q., Lan, J., Lin, Y., Jiang, J., et al. (2013). ID1 affects the efficacy of radiotherapy in glioblastoma through inhibition of DNA repair pathways. Medical Oncology, 30(1), 325. doi:10.1007/s12032-012-0325-6.PubMedCrossRef Guo, Q., Guo, P., Mao, Q., Lan, J., Lin, Y., Jiang, J., et al. (2013). ID1 affects the efficacy of radiotherapy in glioblastoma through inhibition of DNA repair pathways. Medical Oncology, 30(1), 325. doi:10.​1007/​s12032-012-0325-6.PubMedCrossRef
107.
Zurück zum Zitat Segreto, H. R., Ferreira, A. T., Kimura, E. T., Franco, M., Egami, M. I., Silva, M. R., et al. (2002). Amifostine does not prevent activation of TGFbeta1 but induces smad 7 activation in megakaryocytes irradiated in vivo. American Journal of Hematology, 71(3), 143–151. doi:10.1002/ajh.10201.PubMedCrossRef Segreto, H. R., Ferreira, A. T., Kimura, E. T., Franco, M., Egami, M. I., Silva, M. R., et al. (2002). Amifostine does not prevent activation of TGFbeta1 but induces smad 7 activation in megakaryocytes irradiated in vivo. American Journal of Hematology, 71(3), 143–151. doi:10.​1002/​ajh.​10201.PubMedCrossRef
109.
Zurück zum Zitat Tsai, J. H., Makonnen, S., Feldman, M., Sehgal, C. M., Maity, A., & Lee, W. M. (2005). Ionizing radiation inhibits tumor neovascularization by inducing ineffective angiogenesis. Cancer Biology & Therapy, 4(12), 1395–1400.CrossRef Tsai, J. H., Makonnen, S., Feldman, M., Sehgal, C. M., Maity, A., & Lee, W. M. (2005). Ionizing radiation inhibits tumor neovascularization by inducing ineffective angiogenesis. Cancer Biology & Therapy, 4(12), 1395–1400.CrossRef
110.
Zurück zum Zitat Lerman, O. Z., Greives, M. R., Singh, S. P., Thanik, V. D., Chang, C. C., Seiser, N., et al. (2010). Low-dose radiation augments vasculogenesis signaling through HIF-1-dependent and -independent SDF-1 induction. Blood, 116(18), 3669–3676. doi:10.1182/blood-2009-03-213629.PubMedCrossRef Lerman, O. Z., Greives, M. R., Singh, S. P., Thanik, V. D., Chang, C. C., Seiser, N., et al. (2010). Low-dose radiation augments vasculogenesis signaling through HIF-1-dependent and -independent SDF-1 induction. Blood, 116(18), 3669–3676. doi:10.​1182/​blood-2009-03-213629.PubMedCrossRef
111.
Zurück zum Zitat Kaidi, A., Qualtrough, D., Williams, A. C., & Paraskeva, C. (2006). Direct transcriptional up-regulation of cyclooxygenase-2 by hypoxia-inducible factor (HIF)-1 promotes colorectal tumor cell survival and enhances HIF-1 transcriptional activity during hypoxia. Cancer Research, 66(13), 6683–6691. doi:10.1158/0008-5472.CAN-06-0425.PubMedCrossRef Kaidi, A., Qualtrough, D., Williams, A. C., & Paraskeva, C. (2006). Direct transcriptional up-regulation of cyclooxygenase-2 by hypoxia-inducible factor (HIF)-1 promotes colorectal tumor cell survival and enhances HIF-1 transcriptional activity during hypoxia. Cancer Research, 66(13), 6683–6691. doi:10.​1158/​0008-5472.​CAN-06-0425.PubMedCrossRef
112.
Zurück zum Zitat Milas, L., Kishi, K., Hunter, N., Mason, K., Masferrer, J. L., & Tofilon, P. J. (1999). Enhancement of tumor response to gamma-radiation by an inhibitor of cyclooxygenase-2 enzyme. Journal of the National Cancer Institute, 91(17), 1501–1504.PubMedCrossRef Milas, L., Kishi, K., Hunter, N., Mason, K., Masferrer, J. L., & Tofilon, P. J. (1999). Enhancement of tumor response to gamma-radiation by an inhibitor of cyclooxygenase-2 enzyme. Journal of the National Cancer Institute, 91(17), 1501–1504.PubMedCrossRef
113.
115.
Zurück zum Zitat Barshishat-Kupper, M., Mungunsukh, O., Tipton, A. J., McCart, E. A., Panganiban, R. A., Davis, T. A., et al. (2011). Captopril modulates hypoxia-inducible factors and erythropoietin responses in a murine model of total body irradiation. Experimental Hematology, 39(3), 293–304. doi:10.1016/j.exphem.2010.12.002.PubMedCrossRef Barshishat-Kupper, M., Mungunsukh, O., Tipton, A. J., McCart, E. A., Panganiban, R. A., Davis, T. A., et al. (2011). Captopril modulates hypoxia-inducible factors and erythropoietin responses in a murine model of total body irradiation. Experimental Hematology, 39(3), 293–304. doi:10.​1016/​j.​exphem.​2010.​12.​002.PubMedCrossRef
119.
Zurück zum Zitat Maleki Vareki, S., Rytelewski, M., Figueredo, R., Chen, D., Ferguson, P. J., Vincent, M., et al. (2014). Indoleamine 2,3-dioxygenase mediates immune-independent human tumor cell resistance to olaparib, gamma radiation, and cisplatin. Oncotarget, 5(9), 2778–2791. doi:10.18632/oncotarget.1916.PubMedCrossRef Maleki Vareki, S., Rytelewski, M., Figueredo, R., Chen, D., Ferguson, P. J., Vincent, M., et al. (2014). Indoleamine 2,3-dioxygenase mediates immune-independent human tumor cell resistance to olaparib, gamma radiation, and cisplatin. Oncotarget, 5(9), 2778–2791. doi:10.​18632/​oncotarget.​1916.PubMedCrossRef
120.
122.
Zurück zum Zitat Tsukamoto, H., Shibata, K., Kajiyama, H., Terauchi, M., Nawa, A., & Kikkawa, F. (2007). Irradiation-induced epithelial-mesenchymal transition (EMT) related to invasive potential in endometrial carcinoma cells. Gynecologic Oncology, 107(3), 500–504. doi:10.1016/j.ygyno.2007.08.058.PubMedCrossRef Tsukamoto, H., Shibata, K., Kajiyama, H., Terauchi, M., Nawa, A., & Kikkawa, F. (2007). Irradiation-induced epithelial-mesenchymal transition (EMT) related to invasive potential in endometrial carcinoma cells. Gynecologic Oncology, 107(3), 500–504. doi:10.​1016/​j.​ygyno.​2007.​08.​058.PubMedCrossRef
123.
Zurück zum Zitat Eke, I., Deuse, Y., Hehlgans, S., Gurtner, K., Krause, M., Baumann, M., et al. (2012). Beta(1)integrin/FAK/cortactin signaling is essential for human head and neck cancer resistance to radiotherapy. The Journal of Clinical Investigation, 122(4), 1529–1540. doi:10.1172/JCI61350.PubMedPubMedCentralCrossRef Eke, I., Deuse, Y., Hehlgans, S., Gurtner, K., Krause, M., Baumann, M., et al. (2012). Beta(1)integrin/FAK/cortactin signaling is essential for human head and neck cancer resistance to radiotherapy. The Journal of Clinical Investigation, 122(4), 1529–1540. doi:10.​1172/​JCI61350.PubMedPubMedCentralCrossRef
124.
Zurück zum Zitat Jia, S., Jia, Y., Weeks, H. P., Ruge, F., Feng, X., Ma, R., et al. (2014). Down-regulation of WAVE2, WASP family verprolin-homologous protein 2, in gastric cancer indicates lymph node metastasis and cell migration. Anticancer Research, 34(5), 2185–2194.PubMed Jia, S., Jia, Y., Weeks, H. P., Ruge, F., Feng, X., Ma, R., et al. (2014). Down-regulation of WAVE2, WASP family verprolin-homologous protein 2, in gastric cancer indicates lymph node metastasis and cell migration. Anticancer Research, 34(5), 2185–2194.PubMed
125.
Zurück zum Zitat Trog, D., Yeghiazaryan, K., Fountoulakis, M., Friedlein, A., Moenkemann, H., Haertel, N., et al. (2006). Pro-invasive gene regulating effect of irradiation and combined temozolomide-radiation treatment on surviving human malignant glioma cells. European Journal of Pharmacology, 542(1–3), 8–15. doi:10.1016/j.ejphar.2006.05.026.PubMedCrossRef Trog, D., Yeghiazaryan, K., Fountoulakis, M., Friedlein, A., Moenkemann, H., Haertel, N., et al. (2006). Pro-invasive gene regulating effect of irradiation and combined temozolomide-radiation treatment on surviving human malignant glioma cells. European Journal of Pharmacology, 542(1–3), 8–15. doi:10.​1016/​j.​ejphar.​2006.​05.​026.PubMedCrossRef
126.
Zurück zum Zitat Qian, L. W., Mizumoto, K., Urashima, T., Nagai, E., Maehara, N., Sato, N., et al. (2002). Radiation-induced increase in invasive potential of human pancreatic cancer cells and its blockade by a matrix metalloproteinase inhibitor, CGS27023. Clinical Cancer Research, 8(4), 1223–1227.PubMed Qian, L. W., Mizumoto, K., Urashima, T., Nagai, E., Maehara, N., Sato, N., et al. (2002). Radiation-induced increase in invasive potential of human pancreatic cancer cells and its blockade by a matrix metalloproteinase inhibitor, CGS27023. Clinical Cancer Research, 8(4), 1223–1227.PubMed
127.
Zurück zum Zitat Speake, W. J., Dean, R. A., Kumar, A., Morris, T. M., Scholefield, J. H., & Watson, S. A. (2005). Radiation induced MMP expression from rectal cancer is short lived but contributes to in vitro invasion. European Journal of Surgical Oncology, 31(8), 869–874. doi:10.1016/j.ejso.2005.05.016.PubMedCrossRef Speake, W. J., Dean, R. A., Kumar, A., Morris, T. M., Scholefield, J. H., & Watson, S. A. (2005). Radiation induced MMP expression from rectal cancer is short lived but contributes to in vitro invasion. European Journal of Surgical Oncology, 31(8), 869–874. doi:10.​1016/​j.​ejso.​2005.​05.​016.PubMedCrossRef
128.
Zurück zum Zitat Gogineni, V. R., Kargiotis, O., Klopfenstein, J. D., Gujrati, M., Dinh, D. H., & Rao, J. S. (2009). RNAi-mediated downregulation of radiation-induced MMP-9 leads to apoptosis via activation of ERK and Akt in IOMM-Lee cells. International Journal of Oncology, 34(1), 209–218.PubMedPubMedCentral Gogineni, V. R., Kargiotis, O., Klopfenstein, J. D., Gujrati, M., Dinh, D. H., & Rao, J. S. (2009). RNAi-mediated downregulation of radiation-induced MMP-9 leads to apoptosis via activation of ERK and Akt in IOMM-Lee cells. International Journal of Oncology, 34(1), 209–218.PubMedPubMedCentral
129.
Zurück zum Zitat Dancea, H. C., Shareef, M. M., & Ahmed, M. M. (2009). Role of radiation-induced TGF-beta signaling in cancer therapy. Molecular and Cellular Pharmacology, 1(1), 44–56.PubMedPubMedCentralCrossRef Dancea, H. C., Shareef, M. M., & Ahmed, M. M. (2009). Role of radiation-induced TGF-beta signaling in cancer therapy. Molecular and Cellular Pharmacology, 1(1), 44–56.PubMedPubMedCentralCrossRef
130.
Zurück zum Zitat Flechsig, P., Dadrich, M., Bickelhaupt, S., Jenne, J., Hauser, K., Timke, C., et al. (2012). LY2109761 attenuates radiation-induced pulmonary murine fibrosis via reversal of TGF-beta and BMP-associated proinflammatory and proangiogenic signals. Clinical Cancer Research, 18(13), 3616–3627. doi:10.1158/1078-0432.CCR-11-2855.PubMedCrossRef Flechsig, P., Dadrich, M., Bickelhaupt, S., Jenne, J., Hauser, K., Timke, C., et al. (2012). LY2109761 attenuates radiation-induced pulmonary murine fibrosis via reversal of TGF-beta and BMP-associated proinflammatory and proangiogenic signals. Clinical Cancer Research, 18(13), 3616–3627. doi:10.​1158/​1078-0432.​CCR-11-2855.PubMedCrossRef
131.
132.
Zurück zum Zitat Kwak, S. Y., Yang, J. S., Kim, B. Y., Bae, I. H., & Han, Y. H. (2014). Ionizing radiation-inducible miR-494 promotes glioma cell invasion through EGFR stabilization by targeting p190B rhoGAP. Biochimica et Biophysica Acta, 1843(3), 508–516. doi:10.1016/j.bbamcr.2013.11.021.PubMedCrossRef Kwak, S. Y., Yang, J. S., Kim, B. Y., Bae, I. H., & Han, Y. H. (2014). Ionizing radiation-inducible miR-494 promotes glioma cell invasion through EGFR stabilization by targeting p190B rhoGAP. Biochimica et Biophysica Acta, 1843(3), 508–516. doi:10.​1016/​j.​bbamcr.​2013.​11.​021.PubMedCrossRef
134.
Zurück zum Zitat Chen, F. H., Fu, S. Y., Yang, Y. C., Wang, C. C., Chiang, C. S., & Hong, J. H. (2013). Combination of vessel-targeting agents and fractionated radiation therapy: the role of the SDF-1/CXCR4 pathway. International Journal of Radiation Oncology, Biology, Physics, 86(4), 777–784. doi:10.1016/j.ijrobp.2013.02.036.PubMedCrossRef Chen, F. H., Fu, S. Y., Yang, Y. C., Wang, C. C., Chiang, C. S., & Hong, J. H. (2013). Combination of vessel-targeting agents and fractionated radiation therapy: the role of the SDF-1/CXCR4 pathway. International Journal of Radiation Oncology, Biology, Physics, 86(4), 777–784. doi:10.​1016/​j.​ijrobp.​2013.​02.​036.PubMedCrossRef
136.
Zurück zum Zitat Ding, N. H., Li, J. J., & Sun, L. Q. (2013). Molecular mechanisms and treatment of radiation-induced lung fibrosis. Current Drug Targets, 14(11), 1347–1356.PubMedPubMedCentralCrossRef Ding, N. H., Li, J. J., & Sun, L. Q. (2013). Molecular mechanisms and treatment of radiation-induced lung fibrosis. Current Drug Targets, 14(11), 1347–1356.PubMedPubMedCentralCrossRef
138.
Zurück zum Zitat Zhou, Y., Xia, L., He, Z. S., Ouyang, W., Z, H., & Xie, C. H. (2010). Modulation of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in RAW264.7 cells by irradiation. Molecular Medicine Reports, 3(5), 809–813. doi:10.3892/mmr.2010.326.PubMed Zhou, Y., Xia, L., He, Z. S., Ouyang, W., Z, H., & Xie, C. H. (2010). Modulation of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in RAW264.7 cells by irradiation. Molecular Medicine Reports, 3(5), 809–813. doi:10.​3892/​mmr.​2010.​326.PubMed
139.
Zurück zum Zitat Qian, L. W., Mizumoto, K., Inadome, N., Nagai, E., Sato, N., Matsumoto, K., et al. (2003). Radiation stimulates HGF receptor/c-Met expression that leads to amplifying cellular response to HGF stimulation via upregulated receptor tyrosine phosphorylation and MAP kinase activity in pancreatic cancer cells. International Journal of Cancer, 104(5), 542–549. doi:10.1002/ijc.10997.PubMedCrossRef Qian, L. W., Mizumoto, K., Inadome, N., Nagai, E., Sato, N., Matsumoto, K., et al. (2003). Radiation stimulates HGF receptor/c-Met expression that leads to amplifying cellular response to HGF stimulation via upregulated receptor tyrosine phosphorylation and MAP kinase activity in pancreatic cancer cells. International Journal of Cancer, 104(5), 542–549. doi:10.​1002/​ijc.​10997.PubMedCrossRef
140.
Zurück zum Zitat Verheij, M., Dewit, L., & van Mourik, J. A. (1997). Radiation-induced von Willebrand factor release. Blood, 90(5), 2109–2110.PubMed Verheij, M., Dewit, L., & van Mourik, J. A. (1997). Radiation-induced von Willebrand factor release. Blood, 90(5), 2109–2110.PubMed
141.
Zurück zum Zitat Odell Jr., T. T., Jackson, C. W., & Friday, T. J. (1971). Effects of radiation on the thrombocytopoietic system of mice. Radiation Research, 48(1), 107–115.PubMedCrossRef Odell Jr., T. T., Jackson, C. W., & Friday, T. J. (1971). Effects of radiation on the thrombocytopoietic system of mice. Radiation Research, 48(1), 107–115.PubMedCrossRef
145.
Zurück zum Zitat Grebhardt, S., Veltkamp, C., Strobel, P., & Mayer, D. (2012). Hypoxia and HIF-1 increase S100A8 and S100A9 expression in prostate cancer. International Journal of Cancer, 131(12), 2785–2794. doi:10.1002/ijc.27591.PubMedCrossRef Grebhardt, S., Veltkamp, C., Strobel, P., & Mayer, D. (2012). Hypoxia and HIF-1 increase S100A8 and S100A9 expression in prostate cancer. International Journal of Cancer, 131(12), 2785–2794. doi:10.​1002/​ijc.​27591.PubMedCrossRef
146.
Zurück zum Zitat Ahn, G. O., Tseng, D., Liao, C. H., Dorie, M. J., Czechowicz, A., & Brown, J. M. (2010). Inhibition of Mac-1 (CD11b/CD18) enhances tumor response to radiation by reducing myeloid cell recruitment. Proceedings of the National Academy of Sciences of the United States of America, 107(18), 8363–8368. doi:10.1073/pnas.0911378107.PubMedPubMedCentralCrossRef Ahn, G. O., Tseng, D., Liao, C. H., Dorie, M. J., Czechowicz, A., & Brown, J. M. (2010). Inhibition of Mac-1 (CD11b/CD18) enhances tumor response to radiation by reducing myeloid cell recruitment. Proceedings of the National Academy of Sciences of the United States of America, 107(18), 8363–8368. doi:10.​1073/​pnas.​0911378107.PubMedPubMedCentralCrossRef
148.
151.
Zurück zum Zitat Cummings, R. J., Gerber, S. A., Judge, J. L., Ryan, J. L., Pentland, A. P., & Lord, E. M. (2012). Exposure to ionizing radiation induces the migration of cutaneous dendritic cells by a CCR7-dependent mechanism. Journal of Immunology, 189(9), 4247–4257. doi:10.4049/jimmunol.1201371.CrossRef Cummings, R. J., Gerber, S. A., Judge, J. L., Ryan, J. L., Pentland, A. P., & Lord, E. M. (2012). Exposure to ionizing radiation induces the migration of cutaneous dendritic cells by a CCR7-dependent mechanism. Journal of Immunology, 189(9), 4247–4257. doi:10.​4049/​jimmunol.​1201371.CrossRef
153.
Zurück zum Zitat Hallahan, D., Kuchibhotla, J., & Wyble, C. (1996). Cell adhesion molecules mediate radiation-induced leukocyte adhesion to the vascular endothelium. Cancer Research, 56(22), 5150–5155.PubMed Hallahan, D., Kuchibhotla, J., & Wyble, C. (1996). Cell adhesion molecules mediate radiation-induced leukocyte adhesion to the vascular endothelium. Cancer Research, 56(22), 5150–5155.PubMed
154.
Zurück zum Zitat Zhang, H., Wong, C. C., Wei, H., Gilkes, D. M., Korangath, P., Chaturvedi, P., et al. (2012). HIF-1-dependent expression of angiopoietin-like 4 and L1CAM mediates vascular metastasis of hypoxic breast cancer cells to the lungs. Oncogene, 31(14), 1757–1770. doi:10.1038/onc.2011.365.PubMedCrossRef Zhang, H., Wong, C. C., Wei, H., Gilkes, D. M., Korangath, P., Chaturvedi, P., et al. (2012). HIF-1-dependent expression of angiopoietin-like 4 and L1CAM mediates vascular metastasis of hypoxic breast cancer cells to the lungs. Oncogene, 31(14), 1757–1770. doi:10.​1038/​onc.​2011.​365.PubMedCrossRef
155.
Zurück zum Zitat Liang, H., Deng, L., Burnette, B., Weichselbaum, R. R., & Fu, Y. X. (2013). Radiation-induced tumor dormancy reflects an equilibrium between the proliferation and T lymphocyte-mediated death of malignant cells. Oncoimmunology, 2(9), e25668. doi:10.4161/onci.25668.PubMedPubMedCentralCrossRef Liang, H., Deng, L., Burnette, B., Weichselbaum, R. R., & Fu, Y. X. (2013). Radiation-induced tumor dormancy reflects an equilibrium between the proliferation and T lymphocyte-mediated death of malignant cells. Oncoimmunology, 2(9), e25668. doi:10.​4161/​onci.​25668.PubMedPubMedCentralCrossRef
Metadaten
Titel
Radiation-induced inflammatory cascade and its reverberating crosstalks as potential cause of post-radiotherapy second malignancies
verfasst von
Sonia Gandhi
Sudhir Chandna
Publikationsdatum
13.07.2017
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 2/2017
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-017-9669-x

Weitere Artikel der Ausgabe 2/2017

Cancer and Metastasis Reviews 2/2017 Zur Ausgabe

ReviewPaper

Preface

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.