Skip to main content
Erschienen in: Clinical & Experimental Metastasis 4/2018

20.11.2017 | Research Paper

Radiation therapy-induced metastasis: radiobiology and clinical implications

verfasst von: Benjamin J. Blyth, Aidan J. Cole, Michael P. MacManus, Olga A. Martin

Erschienen in: Clinical & Experimental Metastasis | Ausgabe 4/2018

Einloggen, um Zugang zu erhalten

Abstract

Radiation therapy is an effective means of achieving local control in a wide range of primary tumours, with the reduction in the size of the tumour(s) thought to mediate the observed reductions in metastatic spread in clinical trials. However, there is evidence to suggest that the complex changes induced by radiation in the tumour environment can also present metastatic risks that may counteract the long-term efficacy of the treatment. More than 25 years ago, several largely theoretical mechanisms by which radiation exposure might increase metastatic risk were postulated. These include the direct release of tumour cells into the circulation, systemic effects of tumour and normal tissue irradiation and radiation-induced changes in tumour cell phenotype. Here, we review the data that has since emerged to either support or refute these putative mechanisms focusing on how the unique radiobiology underlying modern radiotherapy modalities might alter these risks.
Literatur
1.
Zurück zum Zitat Kaplan HS, Mury ED (1949) The effect of local roentgen irradiation on the biological behavior of a transplantable mouse carcinoma; increased frequency of pulmonary metastasis. J Natl Cancer Inst 9(5–6):407–413PubMed Kaplan HS, Mury ED (1949) The effect of local roentgen irradiation on the biological behavior of a transplantable mouse carcinoma; increased frequency of pulmonary metastasis. J Natl Cancer Inst 9(5–6):407–413PubMed
3.
Zurück zum Zitat von Essen CF (1991) Radiation enhancement of metastasis: a review. Clin Exp Metast 9(2):77–104CrossRef von Essen CF (1991) Radiation enhancement of metastasis: a review. Clin Exp Metast 9(2):77–104CrossRef
5.
Zurück zum Zitat Martin OA, Anderson RL, Narayan K, MacManus MP (2017) Does the mobilization of circulating tumour cells during cancer therapy cause metastasis?. Nat Rev Clin Oncol 14:32–44PubMedCrossRef Martin OA, Anderson RL, Narayan K, MacManus MP (2017) Does the mobilization of circulating tumour cells during cancer therapy cause metastasis?. Nat Rev Clin Oncol 14:32–44PubMedCrossRef
9.
Zurück zum Zitat Murray LJ, Thompson CM, Lilley J, Cosgrove V, Franks K, Sebag-Montefiore D, Henry AM (2015) Radiation-induced second primary cancer risks from modern external beam radiotherapy for early prostate cancer: impact of stereotactic ablative radiotherapy (SABR), volumetric modulated arc therapy (VMAT) and flattening filter free (FFF) radiotherapy. Phys Med Biol 60(3):1237–1257. https://doi.org/10.1088/0031-9155/60/3/1237 PubMedCrossRef Murray LJ, Thompson CM, Lilley J, Cosgrove V, Franks K, Sebag-Montefiore D, Henry AM (2015) Radiation-induced second primary cancer risks from modern external beam radiotherapy for early prostate cancer: impact of stereotactic ablative radiotherapy (SABR), volumetric modulated arc therapy (VMAT) and flattening filter free (FFF) radiotherapy. Phys Med Biol 60(3):1237–1257. https://​doi.​org/​10.​1088/​0031-9155/​60/​3/​1237 PubMedCrossRef
10.
Zurück zum Zitat Irazola L, Ortiz-Seidel M, Velázquez S, García-Hernández M, Terrón J, Sánchez-Nieto B, Romero-Expósito M, Roselló J, Sánchez-Doblado F (2016) EP-1613: Comparison of peripheral doses associated to SBRT, VMAT, IMRT, FFF and 3D-CRT plans for lung cancer. Radiother Oncol 119. https://doi.org/10.1016/s0167-8140(16)32864-x Irazola L, Ortiz-Seidel M, Velázquez S, García-Hernández M, Terrón J, Sánchez-Nieto B, Romero-Expósito M, Roselló J, Sánchez-Doblado F (2016) EP-1613: Comparison of peripheral doses associated to SBRT, VMAT, IMRT, FFF and 3D-CRT plans for lung cancer. Radiother Oncol 119. https://​doi.​org/​10.​1016/​s0167-8140(16)32864-x
16.
Zurück zum Zitat Hall EJ, Giaccia AJ (2012) Radiobiology for the radiologist, 7th edn. Wolters Kluwer Health, Philadelphia Hall EJ, Giaccia AJ (2012) Radiobiology for the radiologist, 7th edn. Wolters Kluwer Health, Philadelphia
22.
Zurück zum Zitat Saunders M, Dische S, Barrett A, Harvey A, Griffiths G, Palmar M (1999) Continuous, hyperfractionated, accelerated radiotherapy (CHART) versus conventional radiotherapy in non-small cell lung cancer: mature data from the randomised multicentre trial. CHART Steer Comm Radiother Oncol 52(2):137–148CrossRef Saunders M, Dische S, Barrett A, Harvey A, Griffiths G, Palmar M (1999) Continuous, hyperfractionated, accelerated radiotherapy (CHART) versus conventional radiotherapy in non-small cell lung cancer: mature data from the randomised multicentre trial. CHART Steer Comm Radiother Oncol 52(2):137–148CrossRef
23.
Zurück zum Zitat Saunders M, Dische S, Barrett A, Harvey A, Gibson D, Parmar M (1997) Continuous hyperfractionated accelerated radiotherapy (CHART) versus conventional radiotherapy in non-small-cell lung cancer: a randomised multicentre trial. CHART Steer Comm Lancet 350(9072):161–165 Saunders M, Dische S, Barrett A, Harvey A, Gibson D, Parmar M (1997) Continuous hyperfractionated accelerated radiotherapy (CHART) versus conventional radiotherapy in non-small-cell lung cancer: a randomised multicentre trial. CHART Steer Comm Lancet 350(9072):161–165
25.
Zurück zum Zitat Spratt DE, Wu AJ, Adeseye V, Din SU, Shaikh F, Woo KM, Zhang Z, Foster A, Rosenzweig KE, Gewanter R, Huang J, Rimner A (2016) Recurrence patterns and second primary lung cancers after stereotactic body radiation therapy for early-stage non–small-cell lung cancer: implications for surveillance. Clin Lung Cancer 17(3):177–18300. https://doi.org/10.1016/j.cllc.2015.09.006 PubMedCrossRef Spratt DE, Wu AJ, Adeseye V, Din SU, Shaikh F, Woo KM, Zhang Z, Foster A, Rosenzweig KE, Gewanter R, Huang J, Rimner A (2016) Recurrence patterns and second primary lung cancers after stereotactic body radiation therapy for early-stage non–small-cell lung cancer: implications for surveillance. Clin Lung Cancer 17(3):177–18300. https://​doi.​org/​10.​1016/​j.​cllc.​2015.​09.​006 PubMedCrossRef
34.
Zurück zum Zitat Hamada N, Imaoka T, Masunaga S-i, Ogata T, Okayasu R, Takahashi A, Kato TA, Kobayashi Y, Ohnishi T, Ono K, Shimada Y, Teshima T (2010) Recent advances in the biology of heavy-ion cancer therapy. J Radiat Res 51(4):365–383PubMedCrossRef Hamada N, Imaoka T, Masunaga S-i, Ogata T, Okayasu R, Takahashi A, Kato TA, Kobayashi Y, Ohnishi T, Ono K, Shimada Y, Teshima T (2010) Recent advances in the biology of heavy-ion cancer therapy. J Radiat Res 51(4):365–383PubMedCrossRef
39.
Zurück zum Zitat Bouchet A, Lemasson B, Duc G, Maisin C, Bräuer-Krisch E, Siegbahn E, Renaud L, Khalil E, Rémy C, Poillot C, Bravin A, Laissue JA, Barbier EL, Serduc R (2010) Preferential effect of synchrotron microbeam radiation therapy on intracerebral 9L gliosarcoma vascular networks. Int J Radiat Oncol Biol Phys 78(5):1503–1512. https://doi.org/10.1016/j.ijrobp.2010.06.021 PubMedCrossRef Bouchet A, Lemasson B, Duc G, Maisin C, Bräuer-Krisch E, Siegbahn E, Renaud L, Khalil E, Rémy C, Poillot C, Bravin A, Laissue JA, Barbier EL, Serduc R (2010) Preferential effect of synchrotron microbeam radiation therapy on intracerebral 9L gliosarcoma vascular networks. Int J Radiat Oncol Biol Phys 78(5):1503–1512. https://​doi.​org/​10.​1016/​j.​ijrobp.​2010.​06.​021 PubMedCrossRef
50.
Zurück zum Zitat Dorsey JF, Kao GD, MacArthur KM, Ju M, Steinmetz D, Wileyto PE, Simone CB, Hahn SM (2015) Tracking viable circulating tumor cells (CTCs) in the peripheral blood of non–small cell lung cancer (NSCLC) patients undergoing definitive radiation therapy: pilot study results. Cancer 121(1):139–149. https://doi.org/10.1002/cncr.28975 PubMedCrossRef Dorsey JF, Kao GD, MacArthur KM, Ju M, Steinmetz D, Wileyto PE, Simone CB, Hahn SM (2015) Tracking viable circulating tumor cells (CTCs) in the peripheral blood of non–small cell lung cancer (NSCLC) patients undergoing definitive radiation therapy: pilot study results. Cancer 121(1):139–149. https://​doi.​org/​10.​1002/​cncr.​28975 PubMedCrossRef
51.
Zurück zum Zitat Masunaga S, Matsumoto Y, Kashino G, Hirayama R, Liu Y, Tanaka H, Sakurai Y, Suzuki M, Kinashi Y, Maruhashi A, Ono K (2010) Significance of manipulating tumour hypoxia and radiation dose rate in terms of local tumour response and lung metastatic potential, referring to the response of quiescent cell populations. Br J Radiol 83(993):776–784. https://doi.org/10.1259/bjr/57015642 PubMedPubMedCentralCrossRef Masunaga S, Matsumoto Y, Kashino G, Hirayama R, Liu Y, Tanaka H, Sakurai Y, Suzuki M, Kinashi Y, Maruhashi A, Ono K (2010) Significance of manipulating tumour hypoxia and radiation dose rate in terms of local tumour response and lung metastatic potential, referring to the response of quiescent cell populations. Br J Radiol 83(993):776–784. https://​doi.​org/​10.​1259/​bjr/​57015642 PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Revesz L (1958) Effect of lethally damaged tumor cells upon the development of admixed viable cells. J Natl Cancer Inst 20(6):1157–1186PubMedCrossRef Revesz L (1958) Effect of lethally damaged tumor cells upon the development of admixed viable cells. J Natl Cancer Inst 20(6):1157–1186PubMedCrossRef
63.
Zurück zum Zitat Fisher B, Anderson S, Bryant J, Margolese RG, Deutsch M, Fisher ER, Jeong JH, Wolmark N (2002) Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med 347(16):1233–1241. https://doi.org/10.1056/NEJMoa022152 PubMedCrossRef Fisher B, Anderson S, Bryant J, Margolese RG, Deutsch M, Fisher ER, Jeong JH, Wolmark N (2002) Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med 347(16):1233–1241. https://​doi.​org/​10.​1056/​NEJMoa022152 PubMedCrossRef
67.
Zurück zum Zitat Camphausen K, Moses MA, Beecken WD, Khan MK, Folkman J, O’Reilly MS (2001) Radiation therapy to a primary tumor accelerates metastatic growth in mice. Cancer Res 61(5):2207–2211PubMed Camphausen K, Moses MA, Beecken WD, Khan MK, Folkman J, O’Reilly MS (2001) Radiation therapy to a primary tumor accelerates metastatic growth in mice. Cancer Res 61(5):2207–2211PubMed
69.
Zurück zum Zitat Biswas S, Guix M, Rinehart C, Dugger TC, Chytil A, Moses HL, Freeman ML, Arteaga CL (2007) Inhibition of TGF-β with neutralizing antibodies prevents radiation-induced acceleration of metastatic cancer progression. J Clin Investig 117(5):1305–1313. https://doi.org/10.1172/jci30740 PubMedCrossRef Biswas S, Guix M, Rinehart C, Dugger TC, Chytil A, Moses HL, Freeman ML, Arteaga CL (2007) Inhibition of TGF-β with neutralizing antibodies prevents radiation-induced acceleration of metastatic cancer progression. J Clin Investig 117(5):1305–1313. https://​doi.​org/​10.​1172/​jci30740 PubMedCrossRef
79.
Zurück zum Zitat Rofstad EK, Mathiesen B, Galappathi K (2004) Increased metastatic dissemination in human melanoma xenografts after subcurative radiation treatment: radiation-induced increase in fraction of hypoxic cells and hypoxia-induced up-regulation of urokinase-type plasminogen activator receptor. Cancer Res 64(1):13–18PubMedCrossRef Rofstad EK, Mathiesen B, Galappathi K (2004) Increased metastatic dissemination in human melanoma xenografts after subcurative radiation treatment: radiation-induced increase in fraction of hypoxic cells and hypoxia-induced up-regulation of urokinase-type plasminogen activator receptor. Cancer Res 64(1):13–18PubMedCrossRef
82.
Zurück zum Zitat Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, Zhu Z, Hicklin D, Wu Y, Port JL, Altorki N, Port ER, Ruggero D, Shmelkov SV, Jensen KK, Rafii S, Lyden D (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438(7069):820–827. https://doi.org/10.1038/nature04186 PubMedPubMedCentralCrossRef Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, Zhu Z, Hicklin D, Wu Y, Port JL, Altorki N, Port ER, Ruggero D, Shmelkov SV, Jensen KK, Rafii S, Lyden D (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438(7069):820–827. https://​doi.​org/​10.​1038/​nature04186 PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Takahashi Y, Teshima T, Kawaguchi N, Hamada Y, Mori S, Madachi A, Ikeda S, Mizuno H, Ogata T, Nojima K, Furusawa Y, Matsuura N (2003) Heavy ion irradiation inhibits in vitro angiogenesis even at sublethal dose. Cancer Res 63(14):4253–4257PubMed Takahashi Y, Teshima T, Kawaguchi N, Hamada Y, Mori S, Madachi A, Ikeda S, Mizuno H, Ogata T, Nojima K, Furusawa Y, Matsuura N (2003) Heavy ion irradiation inhibits in vitro angiogenesis even at sublethal dose. Cancer Res 63(14):4253–4257PubMed
95.
96.
Zurück zum Zitat Kamlah F, Hänze J, Arenz A, Seay U, Hasan D, Juricko J, Bischoff B, Gottschald OR, Fournier C, Taucher-Scholz G, Scholz M, Seeger W, Engenhart-Cabillic R, Rose F (2011) Comparison of the effects of carbon ion and photon irradiation on the angiogenic response in human lung adenocarcinoma cells. Int J Radiat Oncol Biol Phys 80(5):1541–1549. https://doi.org/10.1016/j.ijrobp.2011.03.033 PubMedCrossRef Kamlah F, Hänze J, Arenz A, Seay U, Hasan D, Juricko J, Bischoff B, Gottschald OR, Fournier C, Taucher-Scholz G, Scholz M, Seeger W, Engenhart-Cabillic R, Rose F (2011) Comparison of the effects of carbon ion and photon irradiation on the angiogenic response in human lung adenocarcinoma cells. Int J Radiat Oncol Biol Phys 80(5):1541–1549. https://​doi.​org/​10.​1016/​j.​ijrobp.​2011.​03.​033 PubMedCrossRef
98.
Zurück zum Zitat Park C-M, Park M-J, Kwak H-J, Lee H-C, Kim M-S, Lee S-H, Park I-C, Rhee C, Hong S-I (2006) Ionizing radiation enhances matrix metalloproteinase-2 secretion and invasion of glioma cells through Src/epidermal growth factor receptor–mediated p38/Akt and phosphatidylinositol 3-kinase/Akt signaling pathways. Can Res 66(17):8511–8519. https://doi.org/10.1158/0008-5472.can-05-4340 CrossRef Park C-M, Park M-J, Kwak H-J, Lee H-C, Kim M-S, Lee S-H, Park I-C, Rhee C, Hong S-I (2006) Ionizing radiation enhances matrix metalloproteinase-2 secretion and invasion of glioma cells through Src/epidermal growth factor receptor–mediated p38/Akt and phosphatidylinositol 3-kinase/Akt signaling pathways. Can Res 66(17):8511–8519. https://​doi.​org/​10.​1158/​0008-5472.​can-05-4340 CrossRef
99.
Zurück zum Zitat Huguenin P, Beer KT, Allal A, Rufibach K, Friedli C, Davis JB, Pestalozzi B, Schmid S, Thoni A, Ozsahin M, Bernier J, Topfer M, Kann R, Meier UR, Thum P, Bieri S, Notter M, Lombriser N, Glanzmann C (2004) Concomitant cisplatin significantly improves locoregional control in advanced head and neck cancers treated with hyperfractionated radiotherapy. J Clin Oncol 22(23):4665–4673. https://doi.org/10.1200/JCO.2004.12.193 PubMedCrossRef Huguenin P, Beer KT, Allal A, Rufibach K, Friedli C, Davis JB, Pestalozzi B, Schmid S, Thoni A, Ozsahin M, Bernier J, Topfer M, Kann R, Meier UR, Thum P, Bieri S, Notter M, Lombriser N, Glanzmann C (2004) Concomitant cisplatin significantly improves locoregional control in advanced head and neck cancers treated with hyperfractionated radiotherapy. J Clin Oncol 22(23):4665–4673. https://​doi.​org/​10.​1200/​JCO.​2004.​12.​193 PubMedCrossRef
101.
102.
Zurück zum Zitat Wild-Bode C, Weller M, Rimner A, Dichgans J, Wick W (2001) Sublethal irradiation promotes migration and invasiveness of glioma cells: implications for radiotherapy of human glioblastoma. Cancer Res 61(6):2744–2750PubMed Wild-Bode C, Weller M, Rimner A, Dichgans J, Wick W (2001) Sublethal irradiation promotes migration and invasiveness of glioma cells: implications for radiotherapy of human glioblastoma. Cancer Res 61(6):2744–2750PubMed
103.
Zurück zum Zitat Qian L-W, Mizumoto K, Urashima T, Nagai E, Maehara N, Sato N, Nakajima M, Tanaka M (2002) Radiation-induced increase in invasive potential of human pancreatic cancer cells and its blockade by a matrix metalloproteinase inhibitor, CGS27023. Clin Cancer Res 8(4):1223–1227PubMed Qian L-W, Mizumoto K, Urashima T, Nagai E, Maehara N, Sato N, Nakajima M, Tanaka M (2002) Radiation-induced increase in invasive potential of human pancreatic cancer cells and its blockade by a matrix metalloproteinase inhibitor, CGS27023. Clin Cancer Res 8(4):1223–1227PubMed
105.
Zurück zum Zitat Ogata T, Teshima T, Kagawa K, Hishikawa Y, Takahashi Y, Kawaguchi A, Suzumoto Y, Nojima K, Furusawa Y, Matsuura N (2005) Particle irradiation suppresses metastatic potential of cancer cells. Cancer Res 65(1):113–120PubMed Ogata T, Teshima T, Kagawa K, Hishikawa Y, Takahashi Y, Kawaguchi A, Suzumoto Y, Nojima K, Furusawa Y, Matsuura N (2005) Particle irradiation suppresses metastatic potential of cancer cells. Cancer Res 65(1):113–120PubMed
111.
Zurück zum Zitat Zheng Q, Liu Y, Zhou HJ, Du YT, Zhang BP, Zhang J, Miao GY, Liu B, Zhang H (2015) X-ray radiation promotes the metastatic potential of tongue squamous cell carcinoma cells via modulation of biomechanical and cytoskeletal properties. Human Exp Toxicol 34(9):894–903. https://doi.org/10.1177/0960327114561664 CrossRef Zheng Q, Liu Y, Zhou HJ, Du YT, Zhang BP, Zhang J, Miao GY, Liu B, Zhang H (2015) X-ray radiation promotes the metastatic potential of tongue squamous cell carcinoma cells via modulation of biomechanical and cytoskeletal properties. Human Exp Toxicol 34(9):894–903. https://​doi.​org/​10.​1177/​0960327114561664​ CrossRef
117.
Zurück zum Zitat Gomez-Casal R, Bhattacharya C, Ganesh N, Bailey L, Basse P, Gibson M, Epperly M, Levina V (2013) Non-small cell lung cancer cells survived ionizing radiation treatment display cancer stem cell and epithelial-mesenchymal transition phenotypes. Mol Cancer 12(1):1–13. https://doi.org/10.1186/1476-4598-12-94 CrossRef Gomez-Casal R, Bhattacharya C, Ganesh N, Bailey L, Basse P, Gibson M, Epperly M, Levina V (2013) Non-small cell lung cancer cells survived ionizing radiation treatment display cancer stem cell and epithelial-mesenchymal transition phenotypes. Mol Cancer 12(1):1–13. https://​doi.​org/​10.​1186/​1476-4598-12-94 CrossRef
132.
136.
Zurück zum Zitat Das A, McDonald D, Lowe S, Bredlau A-L, Vanek K, Patel SJ, Cheshier S, Eskandari R (2016) Immunological low-dose radiation modulates the pediatric medulloblastoma antigens and enhances antibody-dependent cellular cytotoxicity. Child’s Nerv Syst 33(3):429–436. https://doi.org/10.1007/s00381-016-3305-x CrossRef Das A, McDonald D, Lowe S, Bredlau A-L, Vanek K, Patel SJ, Cheshier S, Eskandari R (2016) Immunological low-dose radiation modulates the pediatric medulloblastoma antigens and enhances antibody-dependent cellular cytotoxicity. Child’s Nerv Syst 33(3):429–436. https://​doi.​org/​10.​1007/​s00381-016-3305-x CrossRef
140.
Zurück zum Zitat Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, Yokoi T, Chiappori A, Lee KH, de Wit M, Cho BC, Bourhaba M, Quantin X, Tokito T, Mekhail T, Planchard D, Kim YC, Karapetis CS, Hiret S, Ostoros G, Kubota K, Gray JE, Paz-Ares L, de Castro Carpeno J, Wadsworth C, Melillo G, Jiang H, Huang Y, Dennis PA, Ozguroglu M, Investigators P (2017) Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N Engl J Med. https://doi.org/10.1056/NEJMoa1709937 PubMedCrossRef Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, Yokoi T, Chiappori A, Lee KH, de Wit M, Cho BC, Bourhaba M, Quantin X, Tokito T, Mekhail T, Planchard D, Kim YC, Karapetis CS, Hiret S, Ostoros G, Kubota K, Gray JE, Paz-Ares L, de Castro Carpeno J, Wadsworth C, Melillo G, Jiang H, Huang Y, Dennis PA, Ozguroglu M, Investigators P (2017) Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N Engl J Med. https://​doi.​org/​10.​1056/​NEJMoa1709937 PubMedCrossRef
Metadaten
Titel
Radiation therapy-induced metastasis: radiobiology and clinical implications
verfasst von
Benjamin J. Blyth
Aidan J. Cole
Michael P. MacManus
Olga A. Martin
Publikationsdatum
20.11.2017
Verlag
Springer Netherlands
Erschienen in
Clinical & Experimental Metastasis / Ausgabe 4/2018
Print ISSN: 0262-0898
Elektronische ISSN: 1573-7276
DOI
https://doi.org/10.1007/s10585-017-9867-5

Weitere Artikel der Ausgabe 4/2018

Clinical & Experimental Metastasis 4/2018 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.