Skip to main content
Erschienen in: Nuclear Medicine and Molecular Imaging 1/2017

18.03.2016 | Review

Radio-graphene in Theranostic Perspectives

verfasst von: Do Won Hwang

Erschienen in: Nuclear Medicine and Molecular Imaging | Ausgabe 1/2017

Einloggen, um Zugang zu erhalten

Abstract

Owing to its unique physicochemical properties such as high surface area, notable biocompatibility, robust mechanical strength, high thermal conductivity, and ease of functionalization, 2D-layered graphene has received tremendous attention as a futuristic nanomaterial and its-associated research has been rapidly evolving in a variety of fields. With the remarkable advances of graphene especially in the biomedical realm, in vivo evaluation techniques to examine in vivo behavior of graphene are largely demanded under the hope of clinical translation. Many different types of drugs such as the antisense oligomer and chemotherapeutics require optimal delivery conveyor and graphene is now recognized as a suitable candidate due to its simple and high drug loading property. Termed as ‘radio-graphene’, radioisotope-labeled graphene approach was recently harnessed in the realm of biomedicine including cancer diagnosis and therapy, contributing to the acquisition of in vivo information for targeted drug delivery. In this review, we highlight current examples for bioapplication of radiolabeled graphene with brief perspectives on future strategies in its extensive bio- or clinical applications.
Literatur
1.
Zurück zum Zitat Novoselov KS, Fal’ko VI, Colombo L, Gellert PR, Schwab MG, Kim K. A roadmap for graphene. Nature. 2012;490:192–200.CrossRefPubMed Novoselov KS, Fal’ko VI, Colombo L, Gellert PR, Schwab MG, Kim K. A roadmap for graphene. Nature. 2012;490:192–200.CrossRefPubMed
2.
Zurück zum Zitat Liu Y, Dong X, Chen P. Biological and chemical sensors based on graphene materials. Chem Soc Rev. 2012;41:2283–307.CrossRefPubMed Liu Y, Dong X, Chen P. Biological and chemical sensors based on graphene materials. Chem Soc Rev. 2012;41:2283–307.CrossRefPubMed
3.
Zurück zum Zitat Koppens FH, Mueller T, Avouris P, Ferrari AC, Vitiello MS, Polini M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat Nanotechnol. 2014;9:780–93.CrossRefPubMed Koppens FH, Mueller T, Avouris P, Ferrari AC, Vitiello MS, Polini M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat Nanotechnol. 2014;9:780–93.CrossRefPubMed
4.
Zurück zum Zitat Li J, Niu L, Zheng Z, Yan F. Photosensitive graphene transistors. Adv Mater. 2014;26:5239–73.CrossRefPubMed Li J, Niu L, Zheng Z, Yan F. Photosensitive graphene transistors. Adv Mater. 2014;26:5239–73.CrossRefPubMed
5.
Zurück zum Zitat Chung C, Kim YK, Shin D, Ryoo SR, Hong BH, Min DH. Biomedical applications of graphene and graphene oxide. Acc Chem Res. 2013;46:2211–24.CrossRefPubMed Chung C, Kim YK, Shin D, Ryoo SR, Hong BH, Min DH. Biomedical applications of graphene and graphene oxide. Acc Chem Res. 2013;46:2211–24.CrossRefPubMed
8.
Zurück zum Zitat Mao HY, Laurent S, Chen W, Akhavan O, Imani M, Ashkarran AA, et al. Graphene: promises, facts, opportunities, and challenges in nanomedicine. Chem Rev. 2013;113:3407–24.CrossRefPubMed Mao HY, Laurent S, Chen W, Akhavan O, Imani M, Ashkarran AA, et al. Graphene: promises, facts, opportunities, and challenges in nanomedicine. Chem Rev. 2013;113:3407–24.CrossRefPubMed
9.
Zurück zum Zitat Feng L, Wu L, Qu X. New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Adv Mater. 2013;25:168–86.CrossRefPubMed Feng L, Wu L, Qu X. New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Adv Mater. 2013;25:168–86.CrossRefPubMed
10.
Zurück zum Zitat Liu J, Cui L, Losic D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 2013;9:9243–57.CrossRefPubMed Liu J, Cui L, Losic D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 2013;9:9243–57.CrossRefPubMed
11.
Zurück zum Zitat Yang K, Feng L, Liu Z. The advancing uses of nano-graphene in drug delivery. Expert Opin Drug Deliv. 2015;12:601–12.CrossRefPubMed Yang K, Feng L, Liu Z. The advancing uses of nano-graphene in drug delivery. Expert Opin Drug Deliv. 2015;12:601–12.CrossRefPubMed
12.
Zurück zum Zitat Yu D, Ruan P, Meng Z, Zhou J. The structure-dependent electric release and enhanced oxidation of drug in graphene oxide-based nanocarrier loaded with anticancer herbal drug berberine. J Pharm Sci. 2015;104:2489–500.CrossRefPubMed Yu D, Ruan P, Meng Z, Zhou J. The structure-dependent electric release and enhanced oxidation of drug in graphene oxide-based nanocarrier loaded with anticancer herbal drug berberine. J Pharm Sci. 2015;104:2489–500.CrossRefPubMed
13.
Zurück zum Zitat You P, Yang Y, Wang M, Huang X, Huang X. Graphene oxide-based nanocarriers for cancer imaging and drug delivery. Curr Pharm Des. 2015;21:3215–22.CrossRefPubMed You P, Yang Y, Wang M, Huang X, Huang X. Graphene oxide-based nanocarriers for cancer imaging and drug delivery. Curr Pharm Des. 2015;21:3215–22.CrossRefPubMed
14.
Zurück zum Zitat Dong H, Dong C, Ren T, Li Y, Shi D. Surface-engineered graphene-based nanomaterials for drug delivery. J Biomed Nanotechnol. 2014;10:2086–106.CrossRefPubMed Dong H, Dong C, Ren T, Li Y, Shi D. Surface-engineered graphene-based nanomaterials for drug delivery. J Biomed Nanotechnol. 2014;10:2086–106.CrossRefPubMed
15.
Zurück zum Zitat Xu H, Fan M, Elhissi AM, Zhang Z, Wan KW, Ahmed W, et al. PEGylated graphene oxide for tumor-targeted delivery of paclitaxel. Nanomedicine. 2015;10:1247–62.CrossRefPubMed Xu H, Fan M, Elhissi AM, Zhang Z, Wan KW, Ahmed W, et al. PEGylated graphene oxide for tumor-targeted delivery of paclitaxel. Nanomedicine. 2015;10:1247–62.CrossRefPubMed
16.
Zurück zum Zitat Orecchioni M, Cabizza R, Bianco A, Delogu LG. Graphene as cancer theranostic tool: progress and future challenges. Theranostics. 2015;5:710–23.CrossRefPubMedPubMedCentral Orecchioni M, Cabizza R, Bianco A, Delogu LG. Graphene as cancer theranostic tool: progress and future challenges. Theranostics. 2015;5:710–23.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Huang Y, Yang HY, Ai Y. DNA single-base mismatch study using graphene oxide nanosheets-based fluorometric biosensors. Anal Chem. 2015;87:9132–6.CrossRefPubMed Huang Y, Yang HY, Ai Y. DNA single-base mismatch study using graphene oxide nanosheets-based fluorometric biosensors. Anal Chem. 2015;87:9132–6.CrossRefPubMed
18.
Zurück zum Zitat Jang H, Ryoo SR, Lee MJ, Han SW, Min DH. A new helicase assay based on graphene oxide for anti-viral drug development. Mol Cells. 2013;35:269–73.CrossRefPubMedPubMedCentral Jang H, Ryoo SR, Lee MJ, Han SW, Min DH. A new helicase assay based on graphene oxide for anti-viral drug development. Mol Cells. 2013;35:269–73.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Li JL, Tang B, Yuan B, Sun L, Wang XG. A review of optical imaging and therapy using nanosized graphene and graphene oxide. Biomaterials. 2013;34:9519–34.CrossRefPubMed Li JL, Tang B, Yuan B, Sun L, Wang XG. A review of optical imaging and therapy using nanosized graphene and graphene oxide. Biomaterials. 2013;34:9519–34.CrossRefPubMed
20.
Zurück zum Zitat Kim SH, Lee JE, Sharker SM, Jeong JH, In I, Park SY. In vitro and in vivo tumor targeted photothermal cancer therapy using functionalized graphene nanoparticles. Biomacromolecules. 2015;16:3519–29.CrossRefPubMed Kim SH, Lee JE, Sharker SM, Jeong JH, In I, Park SY. In vitro and in vivo tumor targeted photothermal cancer therapy using functionalized graphene nanoparticles. Biomacromolecules. 2015;16:3519–29.CrossRefPubMed
21.
Zurück zum Zitat Goenka S, Sant V, Sant S. Graphene-based nanomaterials for drug delivery and tissue engineering. J Control Release. 2014;173:75–88.CrossRefPubMed Goenka S, Sant V, Sant S. Graphene-based nanomaterials for drug delivery and tissue engineering. J Control Release. 2014;173:75–88.CrossRefPubMed
22.
Zurück zum Zitat Chen L, Zhong X, Yi X, Huang M, Ning P, Liu T, et al. Radionuclide (131)I labeled reduced graphene oxide for nuclear imaging guided combined radio- and photothermal therapy of cancer. Biomaterials. 2015;66:21–8.CrossRefPubMed Chen L, Zhong X, Yi X, Huang M, Ning P, Liu T, et al. Radionuclide (131)I labeled reduced graphene oxide for nuclear imaging guided combined radio- and photothermal therapy of cancer. Biomaterials. 2015;66:21–8.CrossRefPubMed
23.
Zurück zum Zitat Yang K, Feng L, Hong H, Cai W, Liu Z. Preparation and functionalization of graphene nanocomposites for biomedical applications. Nat Protoc. 2013;8:2392–403.CrossRefPubMed Yang K, Feng L, Hong H, Cai W, Liu Z. Preparation and functionalization of graphene nanocomposites for biomedical applications. Nat Protoc. 2013;8:2392–403.CrossRefPubMed
24.
Zurück zum Zitat Prim D, Rebeaud F, Cosandey V, Marti R, Passeraub P, Pfeifer ME. ADIBO-based “click” chemistry for diagnostic peptide micro-array fabrication: physicochemical and assay characteristics. Molecules. 2013;18:9833–49.CrossRefPubMed Prim D, Rebeaud F, Cosandey V, Marti R, Passeraub P, Pfeifer ME. ADIBO-based “click” chemistry for diagnostic peptide micro-array fabrication: physicochemical and assay characteristics. Molecules. 2013;18:9833–49.CrossRefPubMed
25.
Zurück zum Zitat Yang K, Wan J, Zhang S, Zhang Y, Lee ST, Liu Z. In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano. 2011;5:516–22.CrossRefPubMed Yang K, Wan J, Zhang S, Zhang Y, Lee ST, Liu Z. In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano. 2011;5:516–22.CrossRefPubMed
26.
Zurück zum Zitat Hong H, Zhang Y, Engle JW, Nayak TR, Theuer CP, Nickles RJ, et al. In vivo targeting and positron emission tomography imaging of tumor vasculature with (66)Ga-labeled nano-graphene. Biomaterials. 2012;33:4147–56.CrossRefPubMedPubMedCentral Hong H, Zhang Y, Engle JW, Nayak TR, Theuer CP, Nickles RJ, et al. In vivo targeting and positron emission tomography imaging of tumor vasculature with (66)Ga-labeled nano-graphene. Biomaterials. 2012;33:4147–56.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Hong H, Yang K, Zhang Y, Engle JW, Feng L, Yang Y, et al. In vivo targeting and imaging of tumor vasculature with radiolabeled, antibody-conjugated nanographene. ACS Nano. 2012;6:2361–70.CrossRefPubMedPubMedCentral Hong H, Yang K, Zhang Y, Engle JW, Feng L, Yang Y, et al. In vivo targeting and imaging of tumor vasculature with radiolabeled, antibody-conjugated nanographene. ACS Nano. 2012;6:2361–70.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Ramenda T, Kniess T, Bergmann R, Steinbach J, Wuest F. Radiolabelling of proteins with fluorine-18 via click chemistry. Chem Commun (Camb). 2009;28:7521–3.CrossRef Ramenda T, Kniess T, Bergmann R, Steinbach J, Wuest F. Radiolabelling of proteins with fluorine-18 via click chemistry. Chem Commun (Camb). 2009;28:7521–3.CrossRef
30.
Zurück zum Zitat Nahain AA, Lee JE, Jeong JH, Park SY. Photoresponsive fluorescent reduced graphene oxide by spiropyran conjugated hyaluronic acid for in vivo imaging and target delivery. Biomacromolecules. 2013;14:4082–90.CrossRefPubMed Nahain AA, Lee JE, Jeong JH, Park SY. Photoresponsive fluorescent reduced graphene oxide by spiropyran conjugated hyaluronic acid for in vivo imaging and target delivery. Biomacromolecules. 2013;14:4082–90.CrossRefPubMed
31.
Zurück zum Zitat Shi S, Yang K, Hong H, Chen F, Valdovinos HF, Goel S, et al. VEGFR targeting leads to significantly enhanced tumor uptake of nanographene oxide in vivo. Biomaterials. 2015;39:39–46.CrossRefPubMed Shi S, Yang K, Hong H, Chen F, Valdovinos HF, Goel S, et al. VEGFR targeting leads to significantly enhanced tumor uptake of nanographene oxide in vivo. Biomaterials. 2015;39:39–46.CrossRefPubMed
32.
Zurück zum Zitat Li Y, Wu Q, Zhao Y, Bai Y, Chen P, Xia T, et al. Response of microRNAs to in vitro treatment with graphene oxide. ACS Nano. 2014;8:2100–10.CrossRefPubMed Li Y, Wu Q, Zhao Y, Bai Y, Chen P, Xia T, et al. Response of microRNAs to in vitro treatment with graphene oxide. ACS Nano. 2014;8:2100–10.CrossRefPubMed
33.
Zurück zum Zitat Zhang Y, Petibone D, Xu Y, Mahmood M, Karmakar A, Casciano D, et al. Toxicity and efficacy of carbon nanotubes and graphene: the utility of carbon-based nanoparticles in nanomedicine. Drug Metab Rev. 2014;46:232–46.CrossRefPubMed Zhang Y, Petibone D, Xu Y, Mahmood M, Karmakar A, Casciano D, et al. Toxicity and efficacy of carbon nanotubes and graphene: the utility of carbon-based nanoparticles in nanomedicine. Drug Metab Rev. 2014;46:232–46.CrossRefPubMed
34.
Zurück zum Zitat Zhu Y, Sun Y, Chen Y, Liu W, Jiang J, Guan W, et al. In vivo molecular MRI imaging of prostate cancer by targeting PSMA with polypeptide-labeled superparamagnetic iron oxide nanoparticles. Int J Mol Sci. 2015;16:9573–87.CrossRefPubMedPubMedCentral Zhu Y, Sun Y, Chen Y, Liu W, Jiang J, Guan W, et al. In vivo molecular MRI imaging of prostate cancer by targeting PSMA with polypeptide-labeled superparamagnetic iron oxide nanoparticles. Int J Mol Sci. 2015;16:9573–87.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Wang K, Ruan J, Song H, Zhang J, Wo Y, Guo S, et al. Biocompatibility of graphene oxide. Nanoscale Res Lett. 2011;6:1–8. Wang K, Ruan J, Song H, Zhang J, Wo Y, Guo S, et al. Biocompatibility of graphene oxide. Nanoscale Res Lett. 2011;6:1–8.
36.
Zurück zum Zitat Lu FM, Yuan Z. PET/SPECT molecular imaging in clinical neuroscience: recent advances in the investigation of CNS diseases. Quant Imaging Med Surg. 2015;5:433–47.PubMedPubMedCentral Lu FM, Yuan Z. PET/SPECT molecular imaging in clinical neuroscience: recent advances in the investigation of CNS diseases. Quant Imaging Med Surg. 2015;5:433–47.PubMedPubMedCentral
37.
Zurück zum Zitat Bitounis D, Ali-Boucetta H, Hong BH, Min DH, Kostarelos K. Prospects and challenges of graphene in biomedical applications. Adv Mater. 2013;25:2258–68.CrossRefPubMed Bitounis D, Ali-Boucetta H, Hong BH, Min DH, Kostarelos K. Prospects and challenges of graphene in biomedical applications. Adv Mater. 2013;25:2258–68.CrossRefPubMed
38.
Zurück zum Zitat Wang Y, Li Z, Wang J, Li J, Lin Y. Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol. 2011;29:205–12.CrossRefPubMed Wang Y, Li Z, Wang J, Li J, Lin Y. Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol. 2011;29:205–12.CrossRefPubMed
39.
Zurück zum Zitat Jasim DA, Menard-Moyon C, Begin D, Bianco A, Kostarelos K. Tissue distribution and urinary excretion of intravenously administered chemically functionalized graphene oxide sheets. Chem Sci. 2015;6:3952–64.CrossRef Jasim DA, Menard-Moyon C, Begin D, Bianco A, Kostarelos K. Tissue distribution and urinary excretion of intravenously administered chemically functionalized graphene oxide sheets. Chem Sci. 2015;6:3952–64.CrossRef
40.
Zurück zum Zitat Fazaeli Y, Akhavan O, Rahighi R, Aboudzadeh MR, Karimi E, Afarideh H. In vivo SPECT imaging of tumors by 198,199Au-labeled graphene oxide nanostructures. Mater Sci Eng C Mater Biol Appl. 2014;45:196–204.CrossRefPubMed Fazaeli Y, Akhavan O, Rahighi R, Aboudzadeh MR, Karimi E, Afarideh H. In vivo SPECT imaging of tumors by 198,199Au-labeled graphene oxide nanostructures. Mater Sci Eng C Mater Biol Appl. 2014;45:196–204.CrossRefPubMed
41.
Zurück zum Zitat Shi S, Yang K, Hong H, Valdovinos HF, Nayak TR, Zhang Y, et al. Tumor vasculature targeting and imaging in living mice with reduced graphene oxide. Biomaterials. 2013;34:3002–9.CrossRefPubMedPubMedCentral Shi S, Yang K, Hong H, Valdovinos HF, Nayak TR, Zhang Y, et al. Tumor vasculature targeting and imaging in living mice with reduced graphene oxide. Biomaterials. 2013;34:3002–9.CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Jung HS, Kong WH, Sung DK, Lee MY, Beack SE, do Keum H, et al. Nanographene oxide-hyaluronic acid conjugate for photothermal ablation therapy of skin cancer. ACS Nano. 2014;8:260–8.CrossRef Jung HS, Kong WH, Sung DK, Lee MY, Beack SE, do Keum H, et al. Nanographene oxide-hyaluronic acid conjugate for photothermal ablation therapy of skin cancer. ACS Nano. 2014;8:260–8.CrossRef
43.
Zurück zum Zitat Miao W, Shim G, Kim G, Lee S, Lee HJ, Kim YB, et al. Image-guided synergistic photothermal therapy using photoresponsive imaging agent-loaded graphene-based nanosheets. J Control Release. 2015;211:28–36.CrossRefPubMed Miao W, Shim G, Kim G, Lee S, Lee HJ, Kim YB, et al. Image-guided synergistic photothermal therapy using photoresponsive imaging agent-loaded graphene-based nanosheets. J Control Release. 2015;211:28–36.CrossRefPubMed
44.
Zurück zum Zitat Zhang H, Wu H, Wang J, Yang Y, Wu D, Zhang Y, et al. Graphene oxide-BaGdF5 nanocomposites for multi-modal imaging and photothermal therapy. Biomaterials. 2015;42:66–77.CrossRefPubMed Zhang H, Wu H, Wang J, Yang Y, Wu D, Zhang Y, et al. Graphene oxide-BaGdF5 nanocomposites for multi-modal imaging and photothermal therapy. Biomaterials. 2015;42:66–77.CrossRefPubMed
45.
Zurück zum Zitat Song J, Yang X, Jacobson O, Lin L, Huang P, Niu G, et al. Sequential drug release and enhanced photothermal and photoacoustic effect of hybrid reduced graphene oxide-loaded ultrasmall gold nanorod vesicles for cancer therapy. ACS Nano. 2015;9:9199–209.CrossRefPubMedPubMedCentral Song J, Yang X, Jacobson O, Lin L, Huang P, Niu G, et al. Sequential drug release and enhanced photothermal and photoacoustic effect of hybrid reduced graphene oxide-loaded ultrasmall gold nanorod vesicles for cancer therapy. ACS Nano. 2015;9:9199–209.CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Tran TH, Nguyen HT, Pham TT, Choi JY, Choi HG, Yong CS, et al. Development of a graphene oxide nanocarrier for dual-drug chemo-phototherapy to overcome drug resistance in cancer. ACS Appl Mater Interfaces. 2015;7:28647–55.CrossRefPubMed Tran TH, Nguyen HT, Pham TT, Choi JY, Choi HG, Yong CS, et al. Development of a graphene oxide nanocarrier for dual-drug chemo-phototherapy to overcome drug resistance in cancer. ACS Appl Mater Interfaces. 2015;7:28647–55.CrossRefPubMed
47.
Zurück zum Zitat Zhou L, Zhou L, Wei S, Ge X, Zhou J, Jiang H, et al. Combination of chemotherapy and photodynamic therapy using graphene oxide as drug delivery system. J Photochem Photobiol B. 2014;5(135):7–16.CrossRef Zhou L, Zhou L, Wei S, Ge X, Zhou J, Jiang H, et al. Combination of chemotherapy and photodynamic therapy using graphene oxide as drug delivery system. J Photochem Photobiol B. 2014;5(135):7–16.CrossRef
48.
Zurück zum Zitat Kim YK, Na HK, Kim S, Jang H, Chang SJ, Min DH. One-pot synthesis of multifunctional Au@graphene oxide nanocolloid core@shell nanoparticles for Raman bioimaging, photothermal, and photodynamic therapy. Small. 2015;11:2527–35.CrossRefPubMed Kim YK, Na HK, Kim S, Jang H, Chang SJ, Min DH. One-pot synthesis of multifunctional Au@graphene oxide nanocolloid core@shell nanoparticles for Raman bioimaging, photothermal, and photodynamic therapy. Small. 2015;11:2527–35.CrossRefPubMed
49.
Zurück zum Zitat Wu C, He Q, Zhu A, Li D, Xu M, Yang H, et al. Synergistic anticancer activity of photo- and chemoresponsive nanoformulation based on polylysine-functionalized graphene. ACS Appl Mater Interfaces. 2014;6:21615–23.CrossRefPubMed Wu C, He Q, Zhu A, Li D, Xu M, Yang H, et al. Synergistic anticancer activity of photo- and chemoresponsive nanoformulation based on polylysine-functionalized graphene. ACS Appl Mater Interfaces. 2014;6:21615–23.CrossRefPubMed
50.
Zurück zum Zitat Lewis B, Chalhoub E, Chalouhy C, Sartor O. Radium-223 in bone-metastatic prostate cancer: current data and future prospects. Oncology (Williston Park). 2015;29:483–8. Lewis B, Chalhoub E, Chalouhy C, Sartor O. Radium-223 in bone-metastatic prostate cancer: current data and future prospects. Oncology (Williston Park). 2015;29:483–8.
51.
Zurück zum Zitat Scheinberg DA, McDevitt MR. Actinium-225 in targeted alpha-particle therapeutic applications. Curr Radiopharm. 2011;4:306–20.CrossRefPubMed Scheinberg DA, McDevitt MR. Actinium-225 in targeted alpha-particle therapeutic applications. Curr Radiopharm. 2011;4:306–20.CrossRefPubMed
Metadaten
Titel
Radio-graphene in Theranostic Perspectives
verfasst von
Do Won Hwang
Publikationsdatum
18.03.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Nuclear Medicine and Molecular Imaging / Ausgabe 1/2017
Print ISSN: 1869-3474
Elektronische ISSN: 1869-3482
DOI
https://doi.org/10.1007/s13139-016-0410-4

Weitere Artikel der Ausgabe 1/2017

Nuclear Medicine and Molecular Imaging 1/2017 Zur Ausgabe