Skip to main content
Erschienen in: Clinical and Experimental Medicine 1/2019

05.10.2018 | Original Article

RANKL-induced c-Src activation contributes to conventional anti-cancer drug resistance and dasatinib overcomes this resistance in RANK-expressing multiple myeloma cells

Erschienen in: Clinical and Experimental Medicine | Ausgabe 1/2019

Einloggen, um Zugang zu erhalten

Abstract

The survival and growth of multiple myeloma (MM) cells are facilitated by cell–cell interactions with bone marrow stromal cells and the bone marrow microenvironment. These interactions induce de novo drug resistance known as cell adhesion-mediated drug resistance. Our previous results recently revealed that the receptor activator of NF-κB (RANK) ligand (RANKL), which is expressed by bone marrow stromal cells, contributes to anti-cancer drug resistance through the activation of various signaling molecules and suppression of Bim expression in RANK-expressing MM cells. However, the detailed mechanisms underlying RANKL-induced drug resistance remain uncharacterized. In the present study, we investigated the mechanism of RANKL-induced drug resistance in RANK-expressing MM cell lines. We found treatment of MM cells with RANKL-induced c-Src phosphorylation and activation of the downstream signaling molecules Akt, mTOR, STAT3, JNK, and NF-κB. In addition, treatment with dasatinib, a c-Src inhibitor, overcame RANKL- and bone marrow stromal cell-induced drug resistance to adriamycin, vincristine, dexamethasone, and melphalan by suppressing c-Src, Akt, mTOR, STAT3, JNK, and NF-κB activation and enhancing expression of Bim. Overall, RANKL- and bone marrow stromal cell-induced drug resistance correlated with the activation of c-Src signaling pathways, which caused a decrease in Bim expression. Dasatinib treatment of RANK-expressing MM cells re-sensitized them to anti-cancer drugs. Therefore, inhibition of c-Src may be a new therapeutic approach for overcoming RANKL-induced drug resistance in patients with MM.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ludwig H, Milosavljevic D, Zojer N, et al. Immunoglobulin heavy/light chain ratios improve paraprotein detection and monitoring, identify residual disease and correlate with survival in multiple myeloma patients. Leukemia. 2013;27(1):213–9.CrossRefPubMed Ludwig H, Milosavljevic D, Zojer N, et al. Immunoglobulin heavy/light chain ratios improve paraprotein detection and monitoring, identify residual disease and correlate with survival in multiple myeloma patients. Leukemia. 2013;27(1):213–9.CrossRefPubMed
2.
Zurück zum Zitat Tsubaki M, Satou T, Itoh T, et al. Overexpression of MDR1 and survivin, and decreased Bim expression mediate multidrug-resistance in multiple myeloma cells. Leuk Res. 2012;36(10):1315–22.CrossRefPubMed Tsubaki M, Satou T, Itoh T, et al. Overexpression of MDR1 and survivin, and decreased Bim expression mediate multidrug-resistance in multiple myeloma cells. Leuk Res. 2012;36(10):1315–22.CrossRefPubMed
3.
Zurück zum Zitat Kumar SK, Rajkumar SV, Dispenzieri A, et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood. 2008;111(5):2516–20.CrossRefPubMedPubMedCentral Kumar SK, Rajkumar SV, Dispenzieri A, et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood. 2008;111(5):2516–20.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Mitsiades CS, Hayden PJ, Anderson KC, et al. From the bench to the bedside: emerging new treatments in multiple myeloma. Best Pract Res Clin Haematol. 2007;20(4):797–816.CrossRefPubMedPubMedCentral Mitsiades CS, Hayden PJ, Anderson KC, et al. From the bench to the bedside: emerging new treatments in multiple myeloma. Best Pract Res Clin Haematol. 2007;20(4):797–816.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Meads MB, Hazlehurst LA, Dalton WS. The bone marrow microenvironment as a tumor sanctuary and contributor to drug resistance. Clin Cancer Res. 2008;14(9):2519–26.CrossRefPubMed Meads MB, Hazlehurst LA, Dalton WS. The bone marrow microenvironment as a tumor sanctuary and contributor to drug resistance. Clin Cancer Res. 2008;14(9):2519–26.CrossRefPubMed
6.
Zurück zum Zitat Tsubaki M, Takeda T, Sakamoto K, et al. Bisphosphonates and statins inhibit expression and secretion of MIP-1α via suppression of Ras/MEK/ERK/AML-1A and Ras/PI3K/Akt/AML-1A pathways. Am J Cancer Res. 2014;5(1):168–79.PubMedPubMedCentral Tsubaki M, Takeda T, Sakamoto K, et al. Bisphosphonates and statins inhibit expression and secretion of MIP-1α via suppression of Ras/MEK/ERK/AML-1A and Ras/PI3K/Akt/AML-1A pathways. Am J Cancer Res. 2014;5(1):168–79.PubMedPubMedCentral
7.
Zurück zum Zitat Tsubaki M, Takeda T, Tomonari Y, et al. The MIP-1α autocrine loop contributes to decreased sensitivity to anticancer drugs. J Cell Physiol. 2018;233(5):4258–71.CrossRefPubMed Tsubaki M, Takeda T, Tomonari Y, et al. The MIP-1α autocrine loop contributes to decreased sensitivity to anticancer drugs. J Cell Physiol. 2018;233(5):4258–71.CrossRefPubMed
8.
Zurück zum Zitat Tsubaki M, Mashimo K, Takeda T, et al. Statins inhibited the MIP-1α expression via inhibition of Ras/ERK and Ras/Akt pathways in myeloma cells. Biomed Pharmacother. 2016;78:23–9.CrossRefPubMed Tsubaki M, Mashimo K, Takeda T, et al. Statins inhibited the MIP-1α expression via inhibition of Ras/ERK and Ras/Akt pathways in myeloma cells. Biomed Pharmacother. 2016;78:23–9.CrossRefPubMed
9.
Zurück zum Zitat Tsubaki M, Komai M, Itoh T, et al. Inhibition of the tumour necrosis factor-alpha autocrine loop enhances the sensitivity of multiple myeloma cells to anticancer drugs. Eur J Cancer. 2013;49(17):3708–17.CrossRefPubMed Tsubaki M, Komai M, Itoh T, et al. Inhibition of the tumour necrosis factor-alpha autocrine loop enhances the sensitivity of multiple myeloma cells to anticancer drugs. Eur J Cancer. 2013;49(17):3708–17.CrossRefPubMed
10.
Zurück zum Zitat Tsubaki M, Kato C, Nishinobo M, et al. Nitrogen-containing bisphosphonate, YM529/ONO-5920, inhibits macrophage inflammatory protein 1 alpha expression and secretion in mouse myeloma cells. Cancer Sci. 2008;99(1):152–8.PubMed Tsubaki M, Kato C, Nishinobo M, et al. Nitrogen-containing bisphosphonate, YM529/ONO-5920, inhibits macrophage inflammatory protein 1 alpha expression and secretion in mouse myeloma cells. Cancer Sci. 2008;99(1):152–8.PubMed
11.
Zurück zum Zitat Tsubaki M, Kato C, Manno M, et al. Macrophage inflammatory protein-1alpha (MIP-1alpha) enhances a receptor activator of nuclear factor kappaB ligand (RANKL) expression in mouse bone marrow stromal cells and osteoblasts through MAPK and PI3 K/Akt pathways. Mol Cell Biochem. 2007;304(1–2):53–60.CrossRefPubMed Tsubaki M, Kato C, Manno M, et al. Macrophage inflammatory protein-1alpha (MIP-1alpha) enhances a receptor activator of nuclear factor kappaB ligand (RANKL) expression in mouse bone marrow stromal cells and osteoblasts through MAPK and PI3 K/Akt pathways. Mol Cell Biochem. 2007;304(1–2):53–60.CrossRefPubMed
12.
Zurück zum Zitat Abdi J, Chen G, Chang H. Drug resistance in multiple myeloma: latest findings and new concepts on molecular mechanisms. Oncotarget. 2013;4(12):2186–207.CrossRefPubMedPubMedCentral Abdi J, Chen G, Chang H. Drug resistance in multiple myeloma: latest findings and new concepts on molecular mechanisms. Oncotarget. 2013;4(12):2186–207.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Tsubaki M, Takeda T, Ogawa N, et al. Overexpression of survivin via activation of ERK1/2, Akt, and NF-κB plays a central role in vincristine resistance in multiple myeloma cells. Leuk Res. 2015;39(4):445–52.CrossRefPubMed Tsubaki M, Takeda T, Ogawa N, et al. Overexpression of survivin via activation of ERK1/2, Akt, and NF-κB plays a central role in vincristine resistance in multiple myeloma cells. Leuk Res. 2015;39(4):445–52.CrossRefPubMed
14.
Zurück zum Zitat Tsubaki M, Komai M, Itoh T, et al. By inhibiting Src, verapamil and dasatinib overcome multidrug resistance via increased expression of Bim and decreased expressions of MDR1 and survivin in human multidrug-resistant myeloma cells. Leuk Res. 2014;38(1):121–30.CrossRefPubMed Tsubaki M, Komai M, Itoh T, et al. By inhibiting Src, verapamil and dasatinib overcome multidrug resistance via increased expression of Bim and decreased expressions of MDR1 and survivin in human multidrug-resistant myeloma cells. Leuk Res. 2014;38(1):121–30.CrossRefPubMed
15.
Zurück zum Zitat Furukawa Y, Kikuchi J. Epigenetic mechanisms of cell adhesion-mediated drug resistance in multiple myeloma. Int J Hematol. 2016;104(3):281–92.CrossRefPubMed Furukawa Y, Kikuchi J. Epigenetic mechanisms of cell adhesion-mediated drug resistance in multiple myeloma. Int J Hematol. 2016;104(3):281–92.CrossRefPubMed
16.
Zurück zum Zitat Sung B, Cho SG, Liu M, et al. Butein, a tetrahydroxychalcone, suppresses cancer-induced osteoclastogenesis through inhibition of receptor activator of nuclear factor-kappaB ligand signaling. Int J Cancer. 2011;129(9):2062–72.CrossRefPubMedPubMedCentral Sung B, Cho SG, Liu M, et al. Butein, a tetrahydroxychalcone, suppresses cancer-induced osteoclastogenesis through inhibition of receptor activator of nuclear factor-kappaB ligand signaling. Int J Cancer. 2011;129(9):2062–72.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Sampaio MS, Vettore AL, Yamamoto M, et al. Expression of eight genes of nuclear factor-kappa B pathway in multiple myeloma using bone marrow aspirates obtained at diagnosis. Histol Histopathol. 2009;24(8):991–7.PubMed Sampaio MS, Vettore AL, Yamamoto M, et al. Expression of eight genes of nuclear factor-kappa B pathway in multiple myeloma using bone marrow aspirates obtained at diagnosis. Histol Histopathol. 2009;24(8):991–7.PubMed
18.
Zurück zum Zitat Nishida S, Tsubaki M, Hoshino M, et al. Nitrogen-containing bisphosphonate, YM529/ONO-5920 (a novel minodronic acid), inhibits RANKL expression in a cultured bone marrow stromal cell line ST2. Biochem Biophys Res Commun. 2005;328(1):91–7.CrossRefPubMed Nishida S, Tsubaki M, Hoshino M, et al. Nitrogen-containing bisphosphonate, YM529/ONO-5920 (a novel minodronic acid), inhibits RANKL expression in a cultured bone marrow stromal cell line ST2. Biochem Biophys Res Commun. 2005;328(1):91–7.CrossRefPubMed
19.
Zurück zum Zitat Tsubaki M, Kato C, Isono A, et al. Macrophage inflammatory protein-1α induces osteoclast formation by activation of the MEK/ERK/c-Fos pathway and inhibition of the p38MAPK/IRF-3/IFN-β pathway. J Cell Biochem. 2010;111(6):1661–72.CrossRefPubMed Tsubaki M, Kato C, Isono A, et al. Macrophage inflammatory protein-1α induces osteoclast formation by activation of the MEK/ERK/c-Fos pathway and inhibition of the p38MAPK/IRF-3/IFN-β pathway. J Cell Biochem. 2010;111(6):1661–72.CrossRefPubMed
20.
Zurück zum Zitat Tsubaki M, Komai M, Itoh T, et al. Nitrogen-containing bisphosphonates inhibit RANKL- and M-CSF-induced osteoclast formation through the inhibition of ERK1/2 and Akt activation. J Biomed Sci. 2014;21:10.CrossRefPubMedPubMedCentral Tsubaki M, Komai M, Itoh T, et al. Nitrogen-containing bisphosphonates inhibit RANKL- and M-CSF-induced osteoclast formation through the inhibition of ERK1/2 and Akt activation. J Biomed Sci. 2014;21:10.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Tsubaki M, Satou T, Itoh T, et al. Bisphosphonate- and statin-induced enhancement of OPG expression and inhibition of CD9, M-CSF, and RANKL expressions via inhibition of the Ras/MEK/ERK pathway and activation of p38MAPK in mouse bone marrow stromal cell line ST2. Mol Cell Endocrinol. 2012;361(1–2):219–31.CrossRefPubMed Tsubaki M, Satou T, Itoh T, et al. Bisphosphonate- and statin-induced enhancement of OPG expression and inhibition of CD9, M-CSF, and RANKL expressions via inhibition of the Ras/MEK/ERK pathway and activation of p38MAPK in mouse bone marrow stromal cell line ST2. Mol Cell Endocrinol. 2012;361(1–2):219–31.CrossRefPubMed
22.
Zurück zum Zitat Liu H, Tamashiro S, Baritaki S, et al. TRAF6 activation in multiple myeloma: a potential therapeutic target. Clin Lymphoma Myeloma Leuk. 2012;12(3):155–63.CrossRefPubMedPubMedCentral Liu H, Tamashiro S, Baritaki S, et al. TRAF6 activation in multiple myeloma: a potential therapeutic target. Clin Lymphoma Myeloma Leuk. 2012;12(3):155–63.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Tsubaki M, Takeda T, Yoshizumi M, et al. RANK-RANKL interactions are involved in cell adhesion-mediated drug resistance in multiple myeloma cell lines. Tumour Biol. 2016;37(7):9099–110.CrossRefPubMed Tsubaki M, Takeda T, Yoshizumi M, et al. RANK-RANKL interactions are involved in cell adhesion-mediated drug resistance in multiple myeloma cell lines. Tumour Biol. 2016;37(7):9099–110.CrossRefPubMed
24.
Zurück zum Zitat Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423(6937):337–42.CrossRefPubMed Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423(6937):337–42.CrossRefPubMed
25.
Zurück zum Zitat Frame MC. Src in cancer: deregulation and consequences for cell behaviour. Biochim Biophys Acta. 2002;1602(2):114–30.PubMed Frame MC. Src in cancer: deregulation and consequences for cell behaviour. Biochim Biophys Acta. 2002;1602(2):114–30.PubMed
26.
Zurück zum Zitat Lin L, Yan F, Zhao D, et al. Reelin promotes the adhesion and drug resistance of multiple myeloma cells via integrin β1 signaling and STAT3. Oncotarget. 2016;7(9):9844–58.PubMedPubMedCentral Lin L, Yan F, Zhao D, et al. Reelin promotes the adhesion and drug resistance of multiple myeloma cells via integrin β1 signaling and STAT3. Oncotarget. 2016;7(9):9844–58.PubMedPubMedCentral
27.
Zurück zum Zitat Zheng Y, Yang J, Qian J, et al. PSGL-1/selectin and ICAM-1/CD18 interactions are involved in macrophage-induced drug resistance in myeloma. Leukemia. 2013;27(3):702–10.CrossRefPubMed Zheng Y, Yang J, Qian J, et al. PSGL-1/selectin and ICAM-1/CD18 interactions are involved in macrophage-induced drug resistance in myeloma. Leukemia. 2013;27(3):702–10.CrossRefPubMed
28.
Zurück zum Zitat Kanda R, Kawahara A, Watari K, et al. Erlotinib resistance in lung cancer cells mediated by integrin β1/Src/Akt-driven bypass signaling. Cancer Res. 2013;73(20):6243–53.CrossRefPubMed Kanda R, Kawahara A, Watari K, et al. Erlotinib resistance in lung cancer cells mediated by integrin β1/Src/Akt-driven bypass signaling. Cancer Res. 2013;73(20):6243–53.CrossRefPubMed
29.
Zurück zum Zitat Wu ZH, Lin C, Liu MM, et al. Src inhibition can synergize with gemcitabine and reverse resistance in triple negative Breast cancer cells via the AKT/c-Jun pathway. PLoS ONE. 2016;11(12):e0169230.CrossRefPubMedPubMedCentral Wu ZH, Lin C, Liu MM, et al. Src inhibition can synergize with gemcitabine and reverse resistance in triple negative Breast cancer cells via the AKT/c-Jun pathway. PLoS ONE. 2016;11(12):e0169230.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Nam HJ, Im SA, Oh DY, et al. Antitumor activity of saracatinib (AZD0530), a c-Src/Abl kinase inhibitor, alone or in combination with chemotherapeutic agents in gastric cancer. Mol Cancer Ther. 2013;12(1):16–26.CrossRefPubMed Nam HJ, Im SA, Oh DY, et al. Antitumor activity of saracatinib (AZD0530), a c-Src/Abl kinase inhibitor, alone or in combination with chemotherapeutic agents in gastric cancer. Mol Cancer Ther. 2013;12(1):16–26.CrossRefPubMed
31.
Zurück zum Zitat Ferreira PA, Ruela-de-Sousa RR, Queiroz KC, et al. Knocking down low molecular weight protein tyrosine phosphatase (LMW-PTP) reverts chemoresistance through inactivation of Src and Bcr-Abl proteins. PLoS ONE. 2012;7(9):e44312.CrossRefPubMedPubMedCentral Ferreira PA, Ruela-de-Sousa RR, Queiroz KC, et al. Knocking down low molecular weight protein tyrosine phosphatase (LMW-PTP) reverts chemoresistance through inactivation of Src and Bcr-Abl proteins. PLoS ONE. 2012;7(9):e44312.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Coluccia AM, Cirulli T, Neri P, et al. Validation of PDGFRbeta and c-Src tyrosine kinases as tumor/vessel targets in patients with multiple myeloma: preclinical efficacy of the novel, orally available inhibitor dasatinib. Blood. 2008;112(4):1346–56.CrossRefPubMed Coluccia AM, Cirulli T, Neri P, et al. Validation of PDGFRbeta and c-Src tyrosine kinases as tumor/vessel targets in patients with multiple myeloma: preclinical efficacy of the novel, orally available inhibitor dasatinib. Blood. 2008;112(4):1346–56.CrossRefPubMed
33.
Zurück zum Zitat de Queiroz Crusoe E, Maiso P, Fernandez-Lazaro D, et al. Transcriptomic rationale for the synergy observed with dasatinib + bortezomib + dexamethasone in multiple myeloma. Ann Hematol. 2012;91(2):257–69.CrossRef de Queiroz Crusoe E, Maiso P, Fernandez-Lazaro D, et al. Transcriptomic rationale for the synergy observed with dasatinib + bortezomib + dexamethasone in multiple myeloma. Ann Hematol. 2012;91(2):257–69.CrossRef
34.
Zurück zum Zitat Ishikawa H, Tsuyama N, Abroun S, et al. Requirements of src family kinase activity associated with CD45 for myeloma cell proliferation by interleukin-6. Blood. 2002;99(6):2172–8.CrossRefPubMed Ishikawa H, Tsuyama N, Abroun S, et al. Requirements of src family kinase activity associated with CD45 for myeloma cell proliferation by interleukin-6. Blood. 2002;99(6):2172–8.CrossRefPubMed
35.
Zurück zum Zitat Ishikawa H, Tsuyama N, Abroun S, et al. Interleukin-6, CD45 and the src-kinases in myeloma cell proliferation. Leuk Lymphoma. 2003;44(9):1477–81.CrossRefPubMed Ishikawa H, Tsuyama N, Abroun S, et al. Interleukin-6, CD45 and the src-kinases in myeloma cell proliferation. Leuk Lymphoma. 2003;44(9):1477–81.CrossRefPubMed
36.
Zurück zum Zitat Wildes TM, Procknow E, Gao F, et al. Dasatinib in relapsed or plateau-phase multiple myeloma. Leuk Lymphoma. 2009;50(1):137–40.CrossRefPubMed Wildes TM, Procknow E, Gao F, et al. Dasatinib in relapsed or plateau-phase multiple myeloma. Leuk Lymphoma. 2009;50(1):137–40.CrossRefPubMed
37.
38.
Zurück zum Zitat Aplenc R, Blaney SM, Strauss LC, et al. Pediatric phase I trial and pharmacokinetic study of dasatinib: a report from the children’s oncology group phase I consortium. J Clin Oncol. 2011;29(7):839–44.CrossRefPubMedPubMedCentral Aplenc R, Blaney SM, Strauss LC, et al. Pediatric phase I trial and pharmacokinetic study of dasatinib: a report from the children’s oncology group phase I consortium. J Clin Oncol. 2011;29(7):839–44.CrossRefPubMedPubMedCentral
Metadaten
Titel
RANKL-induced c-Src activation contributes to conventional anti-cancer drug resistance and dasatinib overcomes this resistance in RANK-expressing multiple myeloma cells
Publikationsdatum
05.10.2018
Erschienen in
Clinical and Experimental Medicine / Ausgabe 1/2019
Print ISSN: 1591-8890
Elektronische ISSN: 1591-9528
DOI
https://doi.org/10.1007/s10238-018-0531-4

Weitere Artikel der Ausgabe 1/2019

Clinical and Experimental Medicine 1/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.