Skip to main content
Erschienen in: Malaria Journal 1/2020

Open Access 01.12.2020 | Research

Rapid diagnostic tests failing to detect infections by Plasmodium falciparum encoding pfhrp2 and pfhrp3 genes in a non-endemic setting

verfasst von: Grégoire Pasquier, Vincent Azoury, Milène Sasso, Laëtitia Laroche, Emmanuelle Varlet-Marie, Sandrine Houzé, Laurence Lachaud, Patrick Bastien, Yvon Sterkers, Maude F. Leveque

Erschienen in: Malaria Journal | Ausgabe 1/2020

Abstract

Background

Rapid diagnostic tests (RDTs) detecting the histidine-rich protein 2 (PfHRP2) have a central position for the management of Plasmodium falciparum infections. Yet, variable detection of certain targeted motifs, low parasitaemia, but also deletion of pfhrp2 gene or its homologue pfhrp3, may result in false-negative RDT leading to misdiagnosis and delayed treatment. This study aimed at investigating the prevalence, and understanding the possible causes, of P. falciparum RDT-negative infections at Montpellier Academic Hospital, France.

Methods

The prevalence of falsely-negative RDT results reported before and after the introduction of a loop-mediated isothermal amplification (LAMP) assay, as part as the malaria screening strategy in January 2017, was analysed. Negative P. falciparum RDT infections were screened for pfhrp2 or pfhrp3 deletion; and exons 2 were sequenced to show a putative genetic diversity impairing PfHRP2 detection.

Results

The overall prevalence of P. falciparum negative RDTs from January 2006 to December 2018 was low (3/446). Whereas no cases were reported from 2006 to 2016 (0/373), period during which the malaria diagnostic screen was based on microscopy and RDT, prevalence increased up to 4.1% (3/73) between 2017 and 2018, when molecular detection was implemented for primary screening. Neither pfhrp2/3 deletion nor major variation in the frequency of repetitive epitopes could explain these false-negative RDT results.

Conclusion

This paper demonstrates the presence of pfhrp2 and pfhrp3 genes in three P. falciparum RDT-negative infections and reviews the possible reasons for non-detection of HRP2/3 antigens in a non-endemic setting. It highlights the emergence of falsely negative rapid diagnostic tests in a non-endemic setting and draws attention on the risk of missing malaria cases with low parasitaemia infections using the RDT plus microscopy-based strategy currently recommended by French authorities. The relevance of a novel diagnostic scheme based upon a LAMP assay is discussed.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
RDT
Rapid diagnostic test
PfHRP2/3
Histidine-rich protein 2/3
LAMP
Loop-mediated isothermal amplification
pLDH
Pan lactate dehydrogenase
SPILF
French Infectious Diseases Society
WHO
World Health Organization

Background

Malaria remains a major public health issue in tropical regions and accounts for a significant burden in non-endemic areas. Imported malaria indeed represents one of the most prevalent infectious diseases among travelers and migrants in industrialized countries, France being the most impacted European country [1]. A cross-sectional study of 43,333 French malaria cases reported an 85% rate of Plasmodium falciparum infection and a significant increase in severe cases between 1996 and 2016 [2]. Accurate diagnosis and prompt treatment are essential to prevent life-threatening complications mostly caused by P. falciparum [3]. Biological screening procedures include light microscopy, immunochromatography or molecular techniques used either individually or in combination.
Microscopic diagnosis, by examination of Giemsa-stained thin and thick blood smears, remains the standard method to identify and quantify Plasmodium parasites but may be time-consuming for initial screening, especially in non-endemic countries where samples are often negative, and relies upon highly trained personnel [4]. On the other hand, rapid diagnostic tests (RDTs) have emerged as a safe, easy to perform, alternative to microscopy [5]. Most RDTs target repetitive epitopes specific to P. falciparum which are encoded by an abundant secreted antigen, the histidine-rich protein 2 (PfHRP2). Its homologue, PfHRP3, shares significant sequence homologies and, as such, may be recognized by monoclonal antibodies raised against PfHRP2 [6]. Although diagnostic performances vary greatly between brands [7], PfHRP2-based RDTs generally display higher sensitivities and specificities for the diagnosis of P. falciparum infections than those targeting pan-Plasmodium aldolase or lactate dehydrogenase (pLDH) [8, 9]. A growing number of studies yet reported false-negative RDTs results due to partial or complete gene deletion of pfhrp2 and/or pfhrp3 (reviewed in [10]). Genetic diversity producing variations in the targeted amino-acid repeats may also affect test performances [6, 11, 12]. Alternative diagnostic approaches include molecular methods which display high sensitivity but are generally technically demanding and time consuming, thus not suitable for urgent diagnosis [13]. In this context, loop-mediated isothermal amplification (LAMP) assays have proven highly effective for rapid Plasmodium screening [1418].
Since 2017, according to the French National Authority for Health [19] and the French Infectious Diseases Society (SPILF) [20], microscopy is still the reference method for initial screening and follow-up and may be combined with RDTs targeting both pan-Plasmodium and PfHRP2 antigens. Both techniques were used at the Parasitology-Mycology Department of Montpellier Academic Hospital for all suspected malaria cases until December 2016, when a novel strategy, based upon a LAMP assay and a PfHRP2-based RDT, was introduced for primary diagnosis of malaria. This allowed detecting falsely-negative RDT results, of which the cause was investigated in this study.

Methods

Study design

The aim of the study was to investigate the prevalence and possible causes of RDT-negative P. falciparum infections over 13 years, from January 2006 to December 2018, when two diagnostic schemes for malaria screening were used. The study population included all cases of P. falciparum imported malaria diagnosed at the Parasitology-Mycology Department of Montpellier Academic Hospital, France.

Malaria diagnostic strategies

Two distinct procedures for screening patients with clinical suspicion of malaria (i.e. any febrile patient with a history of travel to malaria-endemic areas), both using antigenic detection by a RDT, were applied in the laboratory (Fig. 1). From January 2006 to December 2016, initial screenings were performed by PfHRP2-based RDTs combined with microscopic examination of thin and thick blood smears (Fig. 1a). In January 2017, a LAMP assay was implemented associated with a RDT, replacing microscopy when both antigenic and molecular tests are negative (Fig. 1b). When either test was positive, thin and thick stained blood films were examined for Plasmodium identification and quantification.

Laboratory procedures

Rapid immunochromatography tests were performed according to manufacturers’ instructions. ICT Malaria Combo Cassette Test (ICT Diagnostics; product code ML02), which targets pan-aldolase and PfHRP2 antigens, was used from January 2006 to August 2009. SD Bioline Malaria Ag Pf/Pan (Standard Diagnostics, Inc.; product code 05FK60), detecting pLDH and PfHRP2 antigens, was used from September 2009 to December 2018.
Thin films were stained with May-Grünwald Giemsa and were examined using oil immersion magnification (1000×) for at least 20 min before being considered negative. Parasites density was estimated as the percentage of infected red blood cells.
Thick smears were stained with Giemsa [21]. All the spot was examined under 1000× magnification. For this study, parasite densities of false negative RDT samples, expressed as the number of parasites/µL, was assessed on thick blood smears and corresponds to the number of parasites per 200 leukocytes, based upon an estimated average of 8000 leukocytes/µL of blood.
For LAMP assays, samples were processed using the Alethia® Malaria kit (Meridian®), targeting a pan-Plasmodium mitochondrial DNA sequence, according to the manufacturer’s instructions.

Analysis of false-negative results

All samples with conflicting results (i.e. positive pan LAMP and negative RDT) were further analysed for molecular and antigenic testing at the Microbiology Laboratory of Nîmes Academic Hospital (France). Samples were retested 2 days after patient sampling by another RDT used for routine practice: the BinaxNOW RDT (Inverness Medical Innovations, 100 Inc.; product code 660-000) targeting pan aldolase and PfHRP2 antigens. For molecular screening, DNA was extracted from 200µL of whole blood using EZ1® DNA Blood 200 µL kits (QIAGEN®) on the Biorobot® EZ1 workstation, according to the manufacturer’s instructions. Two in-house qPCR methods, one distinguishing Plasmodium species by specific melting curves of the 18S rRNA [22] and one detecting the P. falciparum-specific cox1 gene [23], were used to confirm malaria infection and P. falciparum identification.

Amplification and sequencing of pfhrp2 and pfhrp3

Samples positive for P. falciparum and presenting RDT false-negative results were tested for putative pfhrp2 and/or pfhrp3 gene deletion. A P. falciparum RDT-positive sample from Gabon diagnosed in January 2019 with a parasitaemia at 0.05% was included for differential analysis of pfhrp2 and pfhrp3 sequences compared to those of RDT-falsely negative samples. Genomic sequences of pfhrp2 (PF3D7_0831800) and pfhrp3 (PF3D7_1372200) were retrieved from PlasmoDB database (http://​www.​PlasmoDB.​org). Pair of primers specific to the 5′ and 3′ ends of exon 2 of pfhrp2 (CAAAAGGACTTAATTTAAATAAGAG; AATAAATTTAATGGCGTAGGCA) (expected size: 816 bp) and pfhrp3 (AAATAAGAGATTATTACACGAAAG; TGGTGTAAGTGATGCGTAGT) (expected size: 698 bp) were used to assess gene deletion following previous recommendations [24]. Amplification of pfhrp2 and pfhrp3 was performed using PfuII polymerase (Agilent) under the following cycling conditions: 94 °C for 2 min followed by 35 cycles of 94 °C for 20 s, 54 °C for 20 s, 62 °C for 90 s and 62° for 7 min. PCR products were purified using spin columns (QIAGEN®) and sent for Sanger sequencing (Eurofins Genomic®). Nucleotide sequences were translated into corresponding amino acids and aligned against the Pf3D7 reference genome using NPS@ (Network Protein Sequence Analysis) software and ESPript 3.0 program for data assembling. Frequency of repetitive histidine and alanine motifs (i.e. AHHAHHAAD and AHHAAD) were assessed and sensitivities were predicted according to Baker’s model [11].

Results

Detection of P. falciparum cases falsely negative for RDT

A total of 446 P. falciparum positive samples were diagnosed at the Parasitology Department of the Academic Hospital of Montpellier from January 2006 to December 2018. Almost all patients originated from African countries (Fig. 2). During this period, only three samples with negative RDT results and positive detection by microscopic, LAMP and qPCR assays were detected (Table 1), yielding an overall prevalence of RDT-falsely negative P. falciparum infections of 0.67%. In-house qPCR methods were used as the reference to confirm P. falciparum infection and exclude possible co-infection with another Plasmodium species. Of note, this prevalence was null for the 373 P. falciparum infections reported from 2006 to 2016, but raised to 4.1% (over 73 P. falciparum infections) between January 2017 and December 2018, i.e. after the introduction of the novel scheme for primary diagnosis of malaria. The three patients presented fever with history of recent travelling from endemic countries: Cameroun, Ivory Coast or Gabon in June 2017, August 2018 and December 2018, respectively. Non-detection of PfHRP2 in these three samples was confirmed by two RDTs from different brands (i.e. SD Bioline and BinaxNOW). Parasite densities in RDT-negative samples were estimated on thin and thick blood smears and ranged from < 0.001 to 0.05% or ~ 5 parasites/µL to ~ 800 parasites/µL, respectively (Table 1).
Table 1
Parasitemiae of the three RDT-negative P. falciparum infections in this study
Date
Origin
RDT
LAMP
qPCR
Thin film
Thick film
06-2017
Cameroun
+
Pf
< 0.001%
~5p/µL
08-2018
Ivory Coast
+
Pf
< 0.001%
~10p/µL
12-2018
Gabon
+
Pf
0.05%
~800p/µL
RDT, rapid diagnostic test; LAMP, loop-mediated isothermal amplification; qPCR, quantitative polymerase chain reaction; Pf, Plasmodium falciparum; p, parasites

Amplification of pfhrp2 and pfhrp3 genes

In view of this increase in falsely negative RDTs, and because of the growing numbers of studies reporting strains lacking pfhrp2 and/or pfhrp3 genes (reviewed in [10]), P. falciparum isolates were tested for putative gene deletion.. Genes encoding PfHRP2 and PfHRP3 are present on chromosome 8 and 13, respectively, with two exons being interrupted by one intron (Fig. 3). Here, using primers specific to exon 2, pfhrp2 (Fig. 3a) and pfhrp3 (Fig. 3b) fragments were amplified in the positive control and the three RDT-falsely negative isolates (06/2017; 08/2018; 12/2018), with sizes ranging from 600 to 900 bp, This allowed ruling out pfhrp2/3 deletion as the cause of these falsely negative RDTs.

Sequence variations in the pfhrp2 gene

Exon 2 of pfhrp2 is the major source of repetitive motifs detected by PfHRP2-based RDTs; however, variations in the frequency of targeted repeats may influence accurate binding of specific antibodies [6]. As antigenic variants may have been the cause of these negative RDTs, amino acid sequences from exon 2 of pfhrp2 (Fig. 4a) and pfhrp3 (Fig. 4b), from the positive control and the three RDT-falsely negative samples, were aligned against the P. falciparum reference genome (Table 1, Fig. 4a). A high sequence polymorphism was found for PfHRP2. PfHRP2 contains repeated histidine and alanine motifs of which type 2 (AHHAHHAAD) and type 7 (AHHAAD) may be predictive of RDT sensitivity in low parasitaemia infections [11]. Here, according to the Baker’s model, predicting reactivity at parasites densities < 200 parasites/µL when the number of type 2 x type 7 repeats is > 43, only one isolate (08/2018) out of the three reported cases was predicted to escape detection (Table 2).
Table 2
Pfhrp2 sequences of studied samples and predictive sensitivity of the antigenic test according to Baker’s model
Pfhrp2 exon 2
Cameroun
06-2017
Ivory Coast
08-2018
Gabon
12-2018
Positive control
01-2019
Type 2 repeats
AHHAHHAAD
15
13
9
11
Type 7 repeats
AHHAAD
4
2
8
9
Baker’s score
Type 2 × 7 repeats
60
26
72
99
Detected
(Score > 43)
Yes
No
Yes
Yes

Discussion

The aim of the present study was to investigate the prevalence and understanding the possible causes of RDT-negative P. falciparum cases over a long period during which two different diagnostic schemes were used at the Montpellier Academic Hospital (January 2006 to December 2018). Using the second diagnostic scheme, three cases of P. falciparum false-negative RDTs were detected, while no case had ever been reported when RDTs were combined solely with microscopy techniques. Amplifications of pfhrp2 and pfhrp3 in parasite isolates allowed ruling out gene deletion as the cause of non-detection by RDTs. Although this study presents some limitations due to its retrospective nature, it allowed reconsidering the ability of PfHRP2-based RDTs to detect all P. falciparum infections in the laboratory and may thus be valuable for the community.
Various factors may influence the performances of PfHRP2-based RDTs. First, results may be operator-dependent and rely on good product design and manufacturing quality [25]. All falsely negative RDTs analysed in this study were performed by well-trained operators. Two distinct brands were used, both known to give a panel detection score (i.e. the percentage of malaria samples in the panel giving a positive result) of more than 90% when tested on P. falciparum parasites at 200 parasites/µL [26]. Second, the level of parasitaemia is critical. Although some studies have reported RDTs failing to detect infections with high parasitaemia, the majority of these false-negative results occurred with low parasite densities, between 100 to 500 parasites/µL (reviewed in [10]). Detection rates of both RDT brands indeed decreased at these parasitaemia levels [26], e.g. 75% for SD Bioline Malaria Ag Pf/Pan®vs 100% for parasitaemia > 500 parasites/µL [27]. Here, three cases of false-negative RDT results were reported over 13 years: two displaying parasitaemia < 200/µL and one approximately 800 parasites/µL. If one may assume that the first two RDT failures were due to low parasite densities, the case from Gabon (12/2018) presenting 800 parasites/µL is intriguing.
Since the first demonstration of P. falciparum parasites lacking pfhrp2 and pfhrp3 genes in Peru [28], other studies, including African isolates, have reported deletions causing false-negative RDT results [2934]. The World Health Organization recommends parasitological confirmation before treating patients with clinically suspected malaria [35]. In this context, parasites lacking pfhrp2 or pfhrp3 may have spread in a broader range of endemic regions, impairing clinical case management and control efforts for malaria elimination [36]. However, no deletion of pfhrp2 nor pfhrp3 genes was found in all three samples, consistent with the low prevalence of such deletions [37]. Alike previous studies reporting genetic diversity in field isolates from various geographical regions [1012, 3844] the pfhrp2 gene was found highly polymorphic. A binary logistic model used to predict RDT detection sensitivity [11] revealed only one isolate (08/2018) at risk of non-detection. Yet, no statistical correlation between the frequency of repetitive epitopes and detection rates could be found in a previous study [39]. Moreover, genetic polymorphism does not appear to affect the detection of infections above 200 parasites/µL [11]. Taken together, genetic diversity of pfhrp2 does not appear to be the cause of the increasing rate of P. falciparum negative RDT results in the laboratory. The possibility of low expression of HRP2/3 antigens cannot be ruled out in the absence of quantitative analysis at the protein level [45]. Anti-HRP2 antibodies binding to the circulating antigens may also reduce the diagnostic sensitivity of PfHRP2-based RDTs [46]. In addition, an infection with a mixture of HRP2-negative and HRP2-positive parasites (with a predominance of the first, the second being undetectable) remains a possibility.
The observed overall prevalence of falsely negative RDTs is low (0.67%), although similar to that found in France at a national scale between 2012 and 2017 (57/6118; 0.93%) (French National Reference Centre for Imported Malaria, S. Houzé, pers. commun.). It is interesting to relate the emergence of RDT false-negative results to the introduction of a novel strategy for the biological diagnosis of malaria in the laboratory. While no false-negative results had been identified over an 11-years period (2006–2016), all cases were reported between January 2017 and December 2018, i.e. after the implementation of a new malaria diagnostic scheme based upon a RDT in combination with a LAMP assay. A hypothesis to explain the emergence of falsely negative RDTs would be a reduction in quality of the tests at the stage of manufacture since 2017 but this has not been reported. One could also hypothesize that the introduction of a molecular method, more sensitive than microscopy and antigenic tests [1418], has allowed detecting low parasitaemia infections for which the ‘classical’ RDT plus microscopy-based strategy may yield negative results. However, according to the records on the ‘pre-LAMP’ period, and given that the Academic Hospital deals with most malaria cases in the area, no patient with negative laboratory tests developed symptomatic malaria, suggesting that, if any, misdiagnosed patients have cured spontaneously. The use of microscopy for cross-checking RDT-negative results requires well-trained personnel and is time consuming, hence might not be suited for ruling out a diagnosis of malaria with very low parasite densities in a non-endemic setting [47]. The French National Authority for Health recommends to repeat screening tests after 24 h to 48 h in case of negative results in a suggestive clinical context [19]. Indeed, even low parasitaemia infections may result in symptomatic malaria in non-immune individuals; and misdiagnosis may delay the initiation of the treatment and sometimes result in a dramatic outcome [10].

Conclusion

Through the analysis of P. falciparum RDT-negative results in a non-endemic setting, this study reviews the possible reasons for non-detection of HRP2/3 antigens and highlights the absence of gene deletion in P. falciparum infections diagnosed since 2006. It draws attention on the risk of missing malaria cases with low parasitaemia infections using the diagnostic strategy currently recommended by French authorities. In this context, this study may lay stepping-stones towards recommendations including molecular detection for malaria diagnosis in non-endemic countries.

Acknowledgements

We are grateful to D.E. Benet, A.R. Gomes, J.J. Rubio-Lopez, R.M. Martins for technical recommendations and scientific discussion, and to F. Michel and C. Thomas for technical assistance.
This work was carried out in accordance with the relevant guidelines and regulations; it does not include potentially identifying patients/participants’ information. The study corresponds to a non-interventional retrospective study which is, according to the “Code de la Santé Publique” (CSP Art L1121-1.1), exempt from informed consent requirement and do not require approval by an ethics committee.
Not applicable.

Competing interests

The authors declare no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Tatem AJ, Jia P, Ordanovich D, Falkner M, Huang Z, Howes R, et al. The geography of imported malaria to non-endemic countries: a meta-analysis of nationally reported statistics. Lancet Infect Dis. 2017;17:98–107.CrossRef Tatem AJ, Jia P, Ordanovich D, Falkner M, Huang Z, Howes R, et al. The geography of imported malaria to non-endemic countries: a meta-analysis of nationally reported statistics. Lancet Infect Dis. 2017;17:98–107.CrossRef
2.
Zurück zum Zitat Kendjo E, Houzé S, Mouri O, Taieb A, Gay F, Jauréguiberry S, et al. Epidemiologic trends in malaria incidence among travelers returning to Metropolitan France, 1996-2016. JAMA Netw Open. 2019;2:e191691.CrossRef Kendjo E, Houzé S, Mouri O, Taieb A, Gay F, Jauréguiberry S, et al. Epidemiologic trends in malaria incidence among travelers returning to Metropolitan France, 1996-2016. JAMA Netw Open. 2019;2:e191691.CrossRef
3.
Zurück zum Zitat Hänscheid T. Current strategies to avoid misdiagnosis of malaria. Clin Microbiol Infect. 2003;9:497–504.CrossRef Hänscheid T. Current strategies to avoid misdiagnosis of malaria. Clin Microbiol Infect. 2003;9:497–504.CrossRef
4.
Zurück zum Zitat Zimmerman PA, Howes RE. Malaria diagnosis for malaria elimination. Curr Opin Infect Dis. 2015;28:446–54.CrossRef Zimmerman PA, Howes RE. Malaria diagnosis for malaria elimination. Curr Opin Infect Dis. 2015;28:446–54.CrossRef
5.
Zurück zum Zitat Rossi IA, D’Acremont V, Prod’Hom G, Genton B. Safety of falciparum malaria diagnostic strategy based on rapid diagnostic tests in returning travellers and migrants: a retrospective study. Malar J. 2012;11:377.CrossRef Rossi IA, D’Acremont V, Prod’Hom G, Genton B. Safety of falciparum malaria diagnostic strategy based on rapid diagnostic tests in returning travellers and migrants: a retrospective study. Malar J. 2012;11:377.CrossRef
6.
Zurück zum Zitat Lee N, Baker J, Andrews KT, Gatton ML, Bell D, Cheng Q, et al. Effect of sequence variation in Plasmodium falciparum histidine- rich protein 2 on binding of specific monoclonal antibodies: implications for rapid diagnostic tests for malaria. J Clin Microbiol. 2006;44:2773–8.CrossRef Lee N, Baker J, Andrews KT, Gatton ML, Bell D, Cheng Q, et al. Effect of sequence variation in Plasmodium falciparum histidine- rich protein 2 on binding of specific monoclonal antibodies: implications for rapid diagnostic tests for malaria. J Clin Microbiol. 2006;44:2773–8.CrossRef
8.
Zurück zum Zitat Marx A, Pewsner D, Egger M, Nüesch R, Bucher HC, Genton B, et al. Meta-analysis: accuracy of rapid tests for malaria in travelers returning from endemic areas. Ann Intern Med. 2005;142:836–46.CrossRef Marx A, Pewsner D, Egger M, Nüesch R, Bucher HC, Genton B, et al. Meta-analysis: accuracy of rapid tests for malaria in travelers returning from endemic areas. Ann Intern Med. 2005;142:836–46.CrossRef
9.
Zurück zum Zitat Ochola LB, Vounatsou P, Smith T, Mabaso MLH, Newton CRJC. The reliability of diagnostic techniques in the diagnosis and management of malaria in the absence of a gold standard. Lancet Infect Dis. 2006;6:582–8.CrossRef Ochola LB, Vounatsou P, Smith T, Mabaso MLH, Newton CRJC. The reliability of diagnostic techniques in the diagnosis and management of malaria in the absence of a gold standard. Lancet Infect Dis. 2006;6:582–8.CrossRef
10.
Zurück zum Zitat Gendrot M, Fawaz R, Dormoi J, Madamet M, Pradines B. Genetic diversity and deletion of Plasmodium falciparum histidine-rich protein 2 and 3: a threat to diagnosis of P falciparum malaria. Clin Microbiol Infect. 2019;25:580–5.CrossRef Gendrot M, Fawaz R, Dormoi J, Madamet M, Pradines B. Genetic diversity and deletion of Plasmodium falciparum histidine-rich protein 2 and 3: a threat to diagnosis of P falciparum malaria. Clin Microbiol Infect. 2019;25:580–5.CrossRef
11.
Zurück zum Zitat Baker J, McCarthy J, Gatton M, Kyle DE, Belizario V, Luchavez J, et al. Genetic diversity of Plasmodium falciparum histidine-rich protein 2 (PfHRP2) and its effect on the performance of PfHRP2-based rapid diagnostic tests. J Infect Dis. 2005;192:870–7.CrossRef Baker J, McCarthy J, Gatton M, Kyle DE, Belizario V, Luchavez J, et al. Genetic diversity of Plasmodium falciparum histidine-rich protein 2 (PfHRP2) and its effect on the performance of PfHRP2-based rapid diagnostic tests. J Infect Dis. 2005;192:870–7.CrossRef
12.
Zurück zum Zitat Fontecha G, Pinto A, Escobar D, Matamoros G, Ortiz B. Genetic variability of Plasmodium falciparum histidine-rich proteins 2 and 3 in Central America. Malar J. 2019;18:31.CrossRef Fontecha G, Pinto A, Escobar D, Matamoros G, Ortiz B. Genetic variability of Plasmodium falciparum histidine-rich proteins 2 and 3 in Central America. Malar J. 2019;18:31.CrossRef
13.
Zurück zum Zitat Zheng Z, Cheng Z. Advances in molecular diagnosis of malaria. Adv Clin Chem. 2017;80:155–92.CrossRef Zheng Z, Cheng Z. Advances in molecular diagnosis of malaria. Adv Clin Chem. 2017;80:155–92.CrossRef
14.
Zurück zum Zitat Charpentier E, Benichou E, Pagès A, Chauvin P, Fillaux J, Alexis V, et al. Performance evaluation of different strategies based on microscopy techniques, rapid diagnostic test and molecular loop-mediated isothermal amplification assay for the diagnosis of imported malaria. Clin Microbiol Infect. 2020;26:115–21.CrossRef Charpentier E, Benichou E, Pagès A, Chauvin P, Fillaux J, Alexis V, et al. Performance evaluation of different strategies based on microscopy techniques, rapid diagnostic test and molecular loop-mediated isothermal amplification assay for the diagnosis of imported malaria. Clin Microbiol Infect. 2020;26:115–21.CrossRef
15.
Zurück zum Zitat Oriero EC, Jacobs J, Van Geertruyden J-P, Nwakanma D, D’Alessandro U. Molecular-based isothermal tests for field diagnosis of malaria and their potential contribution to malaria elimination. J Antimicrob Chemother. 2015;70:2–13.CrossRef Oriero EC, Jacobs J, Van Geertruyden J-P, Nwakanma D, D’Alessandro U. Molecular-based isothermal tests for field diagnosis of malaria and their potential contribution to malaria elimination. J Antimicrob Chemother. 2015;70:2–13.CrossRef
16.
Zurück zum Zitat Perera RS, Ding XC, Tully F, Oliver J, Bright N, Bell D, et al. Development and clinical performance of high throughput loop-mediated isothermal amplification for detection of malaria. PLoS One. 2017;12:e0171126.CrossRef Perera RS, Ding XC, Tully F, Oliver J, Bright N, Bell D, et al. Development and clinical performance of high throughput loop-mediated isothermal amplification for detection of malaria. PLoS One. 2017;12:e0171126.CrossRef
17.
Zurück zum Zitat Polley SD, González IJ, Mohamed D, Daly R, Bowers K, Watson J, et al. Clinical evaluation of a loop-mediated amplification kit for diagnosis of imported malaria. J Infect Dis. 2013;208:637–44.CrossRef Polley SD, González IJ, Mohamed D, Daly R, Bowers K, Watson J, et al. Clinical evaluation of a loop-mediated amplification kit for diagnosis of imported malaria. J Infect Dis. 2013;208:637–44.CrossRef
18.
Zurück zum Zitat Ponce C, Kaczorowski F, Perpoint T, Miailhes P, Sigal A, Javouhey E, et al. Diagnostic accuracy of loop-mediated isothermal amplification (LAMP) for screening patients with imported malaria in a non-endemic setting. Parasite. 2017;24:53.CrossRef Ponce C, Kaczorowski F, Perpoint T, Miailhes P, Sigal A, Javouhey E, et al. Diagnostic accuracy of loop-mediated isothermal amplification (LAMP) for screening patients with imported malaria in a non-endemic setting. Parasite. 2017;24:53.CrossRef
21.
Zurück zum Zitat Thellier M, Datry A, Alfa Cissé O, San C, Biligui S, Silvie O, et al. Diagnosis of malaria using thick bloodsmears: definition and evaluation of a faster protocol with improved readability. Ann Trop Med Parasitol. 2002;96:115–24.CrossRef Thellier M, Datry A, Alfa Cissé O, San C, Biligui S, Silvie O, et al. Diagnosis of malaria using thick bloodsmears: definition and evaluation of a faster protocol with improved readability. Ann Trop Med Parasitol. 2002;96:115–24.CrossRef
22.
Zurück zum Zitat Mangold KA, Manson RU, Koay ESC, Stephens L, Regner M, Thomson RB, et al. Real-time PCR for detection and identification of Plasmodium spp. J Clin Microbiol. 2005;43:2435–40.CrossRef Mangold KA, Manson RU, Koay ESC, Stephens L, Regner M, Thomson RB, et al. Real-time PCR for detection and identification of Plasmodium spp. J Clin Microbiol. 2005;43:2435–40.CrossRef
23.
Zurück zum Zitat Elsayed S, Plewes K, Church D, Chow B, Zhang K. Use of molecular beacon probes for real-time PCR detection of Plasmodium falciparum and other plasmodium species in peripheral blood specimens. J Clin Microbiol. 2006;44:622–4.CrossRef Elsayed S, Plewes K, Church D, Chow B, Zhang K. Use of molecular beacon probes for real-time PCR detection of Plasmodium falciparum and other plasmodium species in peripheral blood specimens. J Clin Microbiol. 2006;44:622–4.CrossRef
24.
Zurück zum Zitat Cheng Q, Gatton ML, Barnwell J, Chiodini P, McCarthy J, Bell D, et al. Plasmodium falciparum parasites lacking histidine-rich protein 2 and 3: a review and recommendations for accurate reporting. Malar J. 2014;13:283.CrossRef Cheng Q, Gatton ML, Barnwell J, Chiodini P, McCarthy J, Bell D, et al. Plasmodium falciparum parasites lacking histidine-rich protein 2 and 3: a review and recommendations for accurate reporting. Malar J. 2014;13:283.CrossRef
27.
Zurück zum Zitat Ratsimbasoa A, Fanazava L, Radrianjafy R, Ramilijaona J, Rafanomezantsoa H, Ménard D. Evaluation of two new immunochromatographic assays for diagnosis of malaria. Am J Trop Med Hyg. 2008;79:670–2.CrossRef Ratsimbasoa A, Fanazava L, Radrianjafy R, Ramilijaona J, Rafanomezantsoa H, Ménard D. Evaluation of two new immunochromatographic assays for diagnosis of malaria. Am J Trop Med Hyg. 2008;79:670–2.CrossRef
28.
Zurück zum Zitat Gamboa D, Ho MF, Bendezu J, Torres K, Chiodini PL, Barnwell JW, et al. A large proportion of P. falciparum isolates in the Amazon region of Peru lack pfhrp2 and pfhrp3: implications for malaria rapid diagnostic tests. PLoS One. 2010;5:e8091.CrossRef Gamboa D, Ho MF, Bendezu J, Torres K, Chiodini PL, Barnwell JW, et al. A large proportion of P. falciparum isolates in the Amazon region of Peru lack pfhrp2 and pfhrp3: implications for malaria rapid diagnostic tests. PLoS One. 2010;5:e8091.CrossRef
29.
Zurück zum Zitat Amoah LE, Abankwa J, Oppong A. Plasmodium falciparum histidine rich protein-2 diversity and the implications for PfHRP 2: based malaria rapid diagnostic tests in Ghana. Malar J. 2016;15:101.CrossRef Amoah LE, Abankwa J, Oppong A. Plasmodium falciparum histidine rich protein-2 diversity and the implications for PfHRP 2: based malaria rapid diagnostic tests in Ghana. Malar J. 2016;15:101.CrossRef
30.
Zurück zum Zitat Koita OA, Doumbo OK, Ouattara A, Tall LK, Konaré A, Diakité M, et al. False-negative rapid diagnostic tests for malaria and deletion of the histidine-rich repeat region of the hrp2 gene. Am J Trop Med Hyg. 2012;86:194–8.CrossRef Koita OA, Doumbo OK, Ouattara A, Tall LK, Konaré A, Diakité M, et al. False-negative rapid diagnostic tests for malaria and deletion of the histidine-rich repeat region of the hrp2 gene. Am J Trop Med Hyg. 2012;86:194–8.CrossRef
31.
Zurück zum Zitat Kozycki CT, Umulisa N, Rulisa S, Mwikarago EI, Musabyimana JP, Habimana JP, et al. False-negative malaria rapid diagnostic tests in Rwanda: impact of Plasmodium falciparum isolates lacking hrp2 and declining malaria transmission. Malar J. 2017;16:123.CrossRef Kozycki CT, Umulisa N, Rulisa S, Mwikarago EI, Musabyimana JP, Habimana JP, et al. False-negative malaria rapid diagnostic tests in Rwanda: impact of Plasmodium falciparum isolates lacking hrp2 and declining malaria transmission. Malar J. 2017;16:123.CrossRef
32.
Zurück zum Zitat Parr JB, Anderson O, Juliano JJ, Meshnick SR. Streamlined, PCR-based testing for pfhrp2- and pfhrp3-negative Plasmodium falciparum. Malar J. 2018;17:137.CrossRef Parr JB, Anderson O, Juliano JJ, Meshnick SR. Streamlined, PCR-based testing for pfhrp2- and pfhrp3-negative Plasmodium falciparum. Malar J. 2018;17:137.CrossRef
33.
Zurück zum Zitat Watson OJ, Slater HC, Verity R, Parr JB, Mwandagalirwa MK, Tshefu A, et al. Modelling the drivers of the spread of Plasmodium falciparum hrp2 gene deletions in sub-Saharan Africa. eLife. 2017;6:e25008.CrossRef Watson OJ, Slater HC, Verity R, Parr JB, Mwandagalirwa MK, Tshefu A, et al. Modelling the drivers of the spread of Plasmodium falciparum hrp2 gene deletions in sub-Saharan Africa. eLife. 2017;6:e25008.CrossRef
34.
Zurück zum Zitat Berhane A, Anderson K, Mihreteab S, Gresty K, Rogier E, Mohamed S, et al. Major threat to malaria control programs by Plasmodium falciparum lacking histidine-rich protein 2, Eritrea. Emerg Infect Dis. 2018;24:462–70.CrossRef Berhane A, Anderson K, Mihreteab S, Gresty K, Rogier E, Mohamed S, et al. Major threat to malaria control programs by Plasmodium falciparum lacking histidine-rich protein 2, Eritrea. Emerg Infect Dis. 2018;24:462–70.CrossRef
36.
Zurück zum Zitat Gatton ML, Dunn J, Chaudhry A, Ciketic S, Cunningham J, Cheng Q. Implications of parasites lacking Plasmodium falciparum histidine-rich protein 2 on malaria morbidity and control when rapid diagnostic tests are used for diagnosis. J Infect Dis. 2017;215:1156–66.CrossRef Gatton ML, Dunn J, Chaudhry A, Ciketic S, Cunningham J, Cheng Q. Implications of parasites lacking Plasmodium falciparum histidine-rich protein 2 on malaria morbidity and control when rapid diagnostic tests are used for diagnosis. J Infect Dis. 2017;215:1156–66.CrossRef
38.
Zurück zum Zitat Atroosh WM, Al-Mekhlafi HM, Al-Jasari A, Sady H, Al-Delaimy AK, Nasr NA, et al. Genetic variation of pfhrp2 in Plasmodium falciparum isolates from Yemen and the performance of HRP2-based malaria rapid diagnostic test. Parasit Vectors. 2015;8:388.CrossRef Atroosh WM, Al-Mekhlafi HM, Al-Jasari A, Sady H, Al-Delaimy AK, Nasr NA, et al. Genetic variation of pfhrp2 in Plasmodium falciparum isolates from Yemen and the performance of HRP2-based malaria rapid diagnostic test. Parasit Vectors. 2015;8:388.CrossRef
39.
Zurück zum Zitat Baker J, Ho M-F, Pelecanos A, Gatton M, Chen N, Abdullah S, et al. Global sequence variation in the histidine-rich proteins 2 and 3 of Plasmodium falciparum: implications for the performance of malaria rapid diagnostic tests. Malar J. 2010;9:129.CrossRef Baker J, Ho M-F, Pelecanos A, Gatton M, Chen N, Abdullah S, et al. Global sequence variation in the histidine-rich proteins 2 and 3 of Plasmodium falciparum: implications for the performance of malaria rapid diagnostic tests. Malar J. 2010;9:129.CrossRef
40.
Zurück zum Zitat Deme AB, Park DJ, Bei AK, Sarr O, Badiane AS, Gueye PEHO, et al. Analysis of pfhrp2 genetic diversity in Senegal and implications for use of rapid diagnostic tests. Malar J. 2014;13:34.CrossRef Deme AB, Park DJ, Bei AK, Sarr O, Badiane AS, Gueye PEHO, et al. Analysis of pfhrp2 genetic diversity in Senegal and implications for use of rapid diagnostic tests. Malar J. 2014;13:34.CrossRef
41.
Zurück zum Zitat Kumar Bharti P, Singh Chandel H, Krishna S, Nema S, Ahmad A, Udhayakumar V, et al. Sequence variation in Plasmodium falciparum histidine rich proteins 2 and 3 in Indian isolates: implications for malaria rapid diagnostic test performance. Sci Rep. 2017;7:1308.CrossRef Kumar Bharti P, Singh Chandel H, Krishna S, Nema S, Ahmad A, Udhayakumar V, et al. Sequence variation in Plasmodium falciparum histidine rich proteins 2 and 3 in Indian isolates: implications for malaria rapid diagnostic test performance. Sci Rep. 2017;7:1308.CrossRef
42.
Zurück zum Zitat Mariette N, Barnadas C, Bouchier C, Tichit M, Ménard D. Country-wide assessment of the genetic polymorphism in Plasmodium falciparum and Plasmodium vivax antigens detected with rapid diagnostic tests for malaria. Malar J. 2008;7:219.CrossRef Mariette N, Barnadas C, Bouchier C, Tichit M, Ménard D. Country-wide assessment of the genetic polymorphism in Plasmodium falciparum and Plasmodium vivax antigens detected with rapid diagnostic tests for malaria. Malar J. 2008;7:219.CrossRef
43.
Zurück zum Zitat Nderu D, Kimani F, Thiong’o K, Akinyi M, Karanja E, Meyer CG, et al. PfHRP2-PfHRP3 diversity among Kenyan isolates and comparative evaluation of PfHRP2/pLDH malaria RDT with microscopy and nested PCR methodologies. Parasitol Int. 2018;67:793–9.CrossRef Nderu D, Kimani F, Thiong’o K, Akinyi M, Karanja E, Meyer CG, et al. PfHRP2-PfHRP3 diversity among Kenyan isolates and comparative evaluation of PfHRP2/pLDH malaria RDT with microscopy and nested PCR methodologies. Parasitol Int. 2018;67:793–9.CrossRef
44.
Zurück zum Zitat Wurtz N, Fall B, Bui K, Pascual A, Fall M, Camara C, et al. Pfhrp2 and pfhrp3 polymorphisms in Plasmodium falciparum isolates from Dakar, Senegal: impact on rapid malaria diagnostic tests. Malar J. 2013;12:34.CrossRef Wurtz N, Fall B, Bui K, Pascual A, Fall M, Camara C, et al. Pfhrp2 and pfhrp3 polymorphisms in Plasmodium falciparum isolates from Dakar, Senegal: impact on rapid malaria diagnostic tests. Malar J. 2013;12:34.CrossRef
45.
Zurück zum Zitat Baker J, Gatton ML, Peters J, Ho M-F, McCarthy JS, Cheng Q. Transcription and expression of Plasmodium falciparum histidine-rich proteins in different stages and strains: implications for rapid diagnostic tests. PLoS One. 2011;6:e22593.CrossRef Baker J, Gatton ML, Peters J, Ho M-F, McCarthy JS, Cheng Q. Transcription and expression of Plasmodium falciparum histidine-rich proteins in different stages and strains: implications for rapid diagnostic tests. PLoS One. 2011;6:e22593.CrossRef
46.
Zurück zum Zitat Ho M-F, Baker J, Lee N, Luchavez J, Ariey F, Nhem S, et al. Circulating antibodies against Plasmodium falciparum histidine-rich proteins 2 interfere with antigen detection by rapid diagnostic tests. Malar J. 2014;13:480.CrossRef Ho M-F, Baker J, Lee N, Luchavez J, Ariey F, Nhem S, et al. Circulating antibodies against Plasmodium falciparum histidine-rich proteins 2 interfere with antigen detection by rapid diagnostic tests. Malar J. 2014;13:480.CrossRef
47.
Zurück zum Zitat Hartmeyer GN, Hoegh SV, Skov MN, Kemp M. Use of loop-mediated isothermal amplification in a resource-saving strategy for primary malaria screening in a non-endemic setting. Am J Trop Med Hyg. 2019;100:566–71.CrossRef Hartmeyer GN, Hoegh SV, Skov MN, Kemp M. Use of loop-mediated isothermal amplification in a resource-saving strategy for primary malaria screening in a non-endemic setting. Am J Trop Med Hyg. 2019;100:566–71.CrossRef
Metadaten
Titel
Rapid diagnostic tests failing to detect infections by Plasmodium falciparum encoding pfhrp2 and pfhrp3 genes in a non-endemic setting
verfasst von
Grégoire Pasquier
Vincent Azoury
Milène Sasso
Laëtitia Laroche
Emmanuelle Varlet-Marie
Sandrine Houzé
Laurence Lachaud
Patrick Bastien
Yvon Sterkers
Maude F. Leveque
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
Malaria Journal / Ausgabe 1/2020
Elektronische ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-020-03251-3

Weitere Artikel der Ausgabe 1/2020

Malaria Journal 1/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.