Skip to main content
Erschienen in: Brain Topography 4/2016

30.01.2016 | Original Paper

Reaction Time in a Visual 4-Choice Reaction Time Task: ERP Effects of Motor Preparation and Hemispheric Involvement

verfasst von: Ingrida Antonova, Claudia van Swam, Daniela Hubl, Thomas Dierks, Inga Griskova-Bulanova, Thomas Koenig

Erschienen in: Brain Topography | Ausgabe 4/2016

Einloggen, um Zugang zu erhalten

Abstract

Reaction time (RT), the most common measure of CNS efficiency, shows intra- and inter-individual variability. This may be accounted for by hemispheric specialization, individual neuroanatomy, and transient functional fluctuations between trials. To explore RT on these three levels, ERPs were measured in a visual 4-choice RT task with lateralized stimuli (left lateral, left middle, right middle, and right lateral) in 28 healthy right-handed subjects. We analyzed behavioral data, ERP microstates (MS), N1 and P3 components, and trial-by-trial variance. Across subjects, the N1 component was contralateral to the stimulation side. N1-MSs were stronger over the left hemisphere, and middle stimulation evoked stronger activation than lateral stimulation in both hemispheres. The P3 was larger for the right visual field stimulation. RTs were shorter for the right visual hemifield stimulation/right hand responses. Within subjects, covariance analysis of single trial ERPs with RTs showed consistent lateralized predictors of RT over the motor cortex (MC) in the 112–248 ms interval. Decreased RTs were related to negativity over the MC contralateral to the stimulation side, an effect that could be interpreted as the lateralized readiness potential (LRP), and which was strongest for right side stimulation. The covariance analysis linking individual mean RTs and individual mean ERPs showed a frontal negativity and an occipital positivity correlating with decreased RTs in the 212–232 ms interval. We concluded that a particular RT is a composite measure that depends on the appropriateness of the motor preparation to a particular response and on stimulus lateralization that selectively involves a particular hemisphere.
Literatur
Zurück zum Zitat Aglioti S, Berlucchi G, Pallini R, Rossi GF, Tassinari G (1993) Hemispheric control of unilateral and bilateral responses to lateralized light stimuli after callosotomy and in callosal agenesis. Exp Brain Res 95(1):151–165PubMedCrossRef Aglioti S, Berlucchi G, Pallini R, Rossi GF, Tassinari G (1993) Hemispheric control of unilateral and bilateral responses to lateralized light stimuli after callosotomy and in callosal agenesis. Exp Brain Res 95(1):151–165PubMedCrossRef
Zurück zum Zitat Amunts K, Jäncke L, Mohlberg H, Steinmetz H, Zilles K (2000) Interhemispheric asymmetry of the human motor cortex related to handedness and gender. Neuropsychologia 38(3):304–312PubMedCrossRef Amunts K, Jäncke L, Mohlberg H, Steinmetz H, Zilles K (2000) Interhemispheric asymmetry of the human motor cortex related to handedness and gender. Neuropsychologia 38(3):304–312PubMedCrossRef
Zurück zum Zitat Annett M, Annett J (1979) Individual differences in right and left reaction time. Br J Psychol 70(3):393–404PubMedCrossRef Annett M, Annett J (1979) Individual differences in right and left reaction time. Br J Psychol 70(3):393–404PubMedCrossRef
Zurück zum Zitat Barthelemy S, Boulinguez P (2001) Manual reaction time asymmetries in human subjects: the role of movement planning and attention. Neurosci Lett 315(1–2):41–44PubMedCrossRef Barthelemy S, Boulinguez P (2001) Manual reaction time asymmetries in human subjects: the role of movement planning and attention. Neurosci Lett 315(1–2):41–44PubMedCrossRef
Zurück zum Zitat Basso D, Vecchi T, Kabiri LA, Baschenis I, Boggiani E, Bisiacchi PS (2006) Handedness effects on interhemispheric transfer time: a TMS study. Brain Res Bull 70(3):228–232PubMedCrossRef Basso D, Vecchi T, Kabiri LA, Baschenis I, Boggiani E, Bisiacchi PS (2006) Handedness effects on interhemispheric transfer time: a TMS study. Brain Res Bull 70(3):228–232PubMedCrossRef
Zurück zum Zitat Bestelmeyer PEG, Carey DP (2004) Processing biases towards the preferred hand: valid and invalid cueing of left-versus right-hand movements. Neuropsychologia 42(9):1162–1167PubMedCrossRef Bestelmeyer PEG, Carey DP (2004) Processing biases towards the preferred hand: valid and invalid cueing of left-versus right-hand movements. Neuropsychologia 42(9):1162–1167PubMedCrossRef
Zurück zum Zitat Bocci T, Pietrasanta M, Caleo M, Sartucci F (2014) Visual callosal connections: role in visual processing in healthy and disease. Rev Neurosci 25(1):113–127PubMedCrossRef Bocci T, Pietrasanta M, Caleo M, Sartucci F (2014) Visual callosal connections: role in visual processing in healthy and disease. Rev Neurosci 25(1):113–127PubMedCrossRef
Zurück zum Zitat Boy F, Sumner P (2014) Visibility predicts priming within but not between people: a cautionary tale for studies of cognitive individual differences. J Exp Psychol Gen 143(3):1011–1025PubMedCrossRef Boy F, Sumner P (2014) Visibility predicts priming within but not between people: a cautionary tale for studies of cognitive individual differences. J Exp Psychol Gen 143(3):1011–1025PubMedCrossRef
Zurück zum Zitat Büchel C, Raedler T, Sommer M, Sach M, Weiller C, Koch MA (2004) White matter asymmetry in the human brain: a diffusion tensor MRI study. Cereb Cortex 14(9):945–951PubMedCrossRef Büchel C, Raedler T, Sommer M, Sach M, Weiller C, Koch MA (2004) White matter asymmetry in the human brain: a diffusion tensor MRI study. Cereb Cortex 14(9):945–951PubMedCrossRef
Zurück zum Zitat Catani M, Jones DK, Donato R, Ffytche DH (2003) Occipito-temporal connections in the human brain. Brain 126(9):2093–2107PubMedCrossRef Catani M, Jones DK, Donato R, Ffytche DH (2003) Occipito-temporal connections in the human brain. Brain 126(9):2093–2107PubMedCrossRef
Zurück zum Zitat Crow TJ, Chance SA, Priddle TH, Radua J, James AC (2013) Laterality interacts with sex across schizophrenia/bipolarity continuum: an interpretation of meta-analyses of structural MRI. Psychiatry Res 210(3):1232–1244PubMedCrossRef Crow TJ, Chance SA, Priddle TH, Radua J, James AC (2013) Laterality interacts with sex across schizophrenia/bipolarity continuum: an interpretation of meta-analyses of structural MRI. Psychiatry Res 210(3):1232–1244PubMedCrossRef
Zurück zum Zitat Donchin E (1981) Presidential address, 1980. Surprise!… Surprise? Psychophysiology 18(5):493–513PubMedCrossRef Donchin E (1981) Presidential address, 1980. Surprise!… Surprise? Psychophysiology 18(5):493–513PubMedCrossRef
Zurück zum Zitat Donchin E, Coles MGH (1988) Is the P300 component a manifestation of context updating? Behav Brain Sci 11(3):357–374CrossRef Donchin E, Coles MGH (1988) Is the P300 component a manifestation of context updating? Behav Brain Sci 11(3):357–374CrossRef
Zurück zum Zitat Fink GR, Dolan RJ, Halligan PW, Marshall JC, Frith CD (1997) Space-based and object-based visual attention: shared and specific neural domains. Brain 120(11):2013–2028PubMedCrossRef Fink GR, Dolan RJ, Halligan PW, Marshall JC, Frith CD (1997) Space-based and object-based visual attention: shared and specific neural domains. Brain 120(11):2013–2028PubMedCrossRef
Zurück zum Zitat Frecska E, Symer C, White K, Piscani K, Kulcsar Z (2004) Perceptional and executive deficits of chronic schizophrenic patients in attentional and intentional tasks. Psychiatry Res 126(1):63–75PubMedCrossRef Frecska E, Symer C, White K, Piscani K, Kulcsar Z (2004) Perceptional and executive deficits of chronic schizophrenic patients in attentional and intentional tasks. Psychiatry Res 126(1):63–75PubMedCrossRef
Zurück zum Zitat Friedman D (1984) P300 and slow wave: the effects of reaction time quartile. Biol Psychol 18(1):49–71PubMedCrossRef Friedman D (1984) P300 and slow wave: the effects of reaction time quartile. Biol Psychol 18(1):49–71PubMedCrossRef
Zurück zum Zitat Fu S, Fedota JR, Greenwood PM, Parasuraman R (2010) Dissociation of visual C1 and P1 components as a function of attention load: an event-related potential study. Biol Psychol 85(1):171–178PubMedPubMedCentralCrossRef Fu S, Fedota JR, Greenwood PM, Parasuraman R (2010) Dissociation of visual C1 and P1 components as a function of attention load: an event-related potential study. Biol Psychol 85(1):171–178PubMedPubMedCentralCrossRef
Zurück zum Zitat Gajewski PD, Stoerig P, Falkenstein M (2008) ERP: correlates of response selection in a response conflict paradigm. Brain Res 1189:127–134PubMedCrossRef Gajewski PD, Stoerig P, Falkenstein M (2008) ERP: correlates of response selection in a response conflict paradigm. Brain Res 1189:127–134PubMedCrossRef
Zurück zum Zitat Gazzaniga M (2000) Cerebral specialization and interhemispheric communication. Brain 123(7):1293–1326PubMedCrossRef Gazzaniga M (2000) Cerebral specialization and interhemispheric communication. Brain 123(7):1293–1326PubMedCrossRef
Zurück zum Zitat Gitelman DR, Nobre AC, Parrish TB, LaBar KS, Kim YH, Meyer JR, Mesulam MM (1999) A large-scale distributed network for covert spatial attention: further anatomical delineation based on stringent behavioral and cognitive controls. Brain 122(6):1093–1106PubMedCrossRef Gitelman DR, Nobre AC, Parrish TB, LaBar KS, Kim YH, Meyer JR, Mesulam MM (1999) A large-scale distributed network for covert spatial attention: further anatomical delineation based on stringent behavioral and cognitive controls. Brain 122(6):1093–1106PubMedCrossRef
Zurück zum Zitat Hackley SA, Schankin A, Wohlschlaerger A, Wascher E (2007) Localization of temporal preparation effects via trisected reaction time. Psychophysiology 44(2):334–338PubMedCrossRef Hackley SA, Schankin A, Wohlschlaerger A, Wascher E (2007) Localization of temporal preparation effects via trisected reaction time. Psychophysiology 44(2):334–338PubMedCrossRef
Zurück zum Zitat Han S, Weaver JA, Murray SO, Kang X, Yund EW, Woods DL (2002) Hemispheric asymmetry in global/local processing: effects of stimulus position and spatial frequency. NeuroImage 17(3):1290–1299PubMedCrossRef Han S, Weaver JA, Murray SO, Kang X, Yund EW, Woods DL (2002) Hemispheric asymmetry in global/local processing: effects of stimulus position and spatial frequency. NeuroImage 17(3):1290–1299PubMedCrossRef
Zurück zum Zitat Heim S, Eulitz C, Elbert T (2003a) Altered hemispheric asymmetry of auditory N100m in adults with developmental dyslexia. NeuroReport 14(3):501–504PubMedCrossRef Heim S, Eulitz C, Elbert T (2003a) Altered hemispheric asymmetry of auditory N100m in adults with developmental dyslexia. NeuroReport 14(3):501–504PubMedCrossRef
Zurück zum Zitat Heim S, Eulitz C, Elbert T (2003b) Altered hemispheric asymmetry of auditory P100m in dyslexia. Eur J Neurosci 17(8):1715–1722PubMedCrossRef Heim S, Eulitz C, Elbert T (2003b) Altered hemispheric asymmetry of auditory P100m in dyslexia. Eur J Neurosci 17(8):1715–1722PubMedCrossRef
Zurück zum Zitat Heinze HJ, Luck SJ, Mangun GR, Hillyard SA (1990) Visual event-related potentials index focused attention within bilateral stimulus arrays. I. Evidence for early selection. Electroencephalogr Clin Neurophysiol 75(6):511–527PubMedCrossRef Heinze HJ, Luck SJ, Mangun GR, Hillyard SA (1990) Visual event-related potentials index focused attention within bilateral stimulus arrays. I. Evidence for early selection. Electroencephalogr Clin Neurophysiol 75(6):511–527PubMedCrossRef
Zurück zum Zitat Herbert MR, Harris GJ, Adrien KT, Ziegler DA, Makris N, Kennedy DN, Lange NT, Chabris CF, Bakardjiev A, Hodgson J, Takeoka M, Tager-Flusberg H, Caviness VS (2002) Abnormal asymmetry in language association cortex in autism. Ann Neurol 52(5):588–596PubMedCrossRef Herbert MR, Harris GJ, Adrien KT, Ziegler DA, Makris N, Kennedy DN, Lange NT, Chabris CF, Bakardjiev A, Hodgson J, Takeoka M, Tager-Flusberg H, Caviness VS (2002) Abnormal asymmetry in language association cortex in autism. Ann Neurol 52(5):588–596PubMedCrossRef
Zurück zum Zitat Herbert MR, Ziegler DA, Deutsch K, O’Brien LM, Kennedy DN, Filipek PA, Bakardjiev AI, Hodgson J, Takeoka M, Makris N, Caviness VS Jr (2005) Brain asymmetries in autism and developmental language disorder: a nested whole-brain analysis. Brain 128(Pt 1):213–226PubMed Herbert MR, Ziegler DA, Deutsch K, O’Brien LM, Kennedy DN, Filipek PA, Bakardjiev AI, Hodgson J, Takeoka M, Makris N, Caviness VS Jr (2005) Brain asymmetries in autism and developmental language disorder: a nested whole-brain analysis. Brain 128(Pt 1):213–226PubMed
Zurück zum Zitat Hillyard SA, Anllo-Vento L (1998) Event-related brain potentials in the study of visual selective attention. Proc Natl Acad Sci USA 95(3):781–787PubMedPubMedCentralCrossRef Hillyard SA, Anllo-Vento L (1998) Event-related brain potentials in the study of visual selective attention. Proc Natl Acad Sci USA 95(3):781–787PubMedPubMedCentralCrossRef
Zurück zum Zitat Hillyard SA, Kutas M (1983) Electrophysiology of cognitive processing. Annu Rev Psychol 34:33–61PubMedCrossRef Hillyard SA, Kutas M (1983) Electrophysiology of cognitive processing. Annu Rev Psychol 34:33–61PubMedCrossRef
Zurück zum Zitat Iacoboni M, Zaidel E (1995) Channels of the corpus callosum: evidence from simple reaction times to lateralized flashes in the normal and the split brain. Brain 118(Pt 3):779–788PubMedCrossRef Iacoboni M, Zaidel E (1995) Channels of the corpus callosum: evidence from simple reaction times to lateralized flashes in the normal and the split brain. Brain 118(Pt 3):779–788PubMedCrossRef
Zurück zum Zitat Iacoboni M, Fried I, Zaidel E (1994) Callosal transmission time before and after partial commissurotomy. NeuroReport 5(18):2521–2524PubMedCrossRef Iacoboni M, Fried I, Zaidel E (1994) Callosal transmission time before and after partial commissurotomy. NeuroReport 5(18):2521–2524PubMedCrossRef
Zurück zum Zitat Ipata A, Girelli M, Miniussi C, Marzi CA (1997) Interhemispheric transfer of visual information in humans: the role of different callosal channels. Arch Ital Biol 135(2):169–182PubMed Ipata A, Girelli M, Miniussi C, Marzi CA (1997) Interhemispheric transfer of visual information in humans: the role of different callosal channels. Arch Ital Biol 135(2):169–182PubMed
Zurück zum Zitat Jenner AR, Rosen GD, Galaburda AM (1999) Neuronal asymmetries in primary visual cortex of dyslexic and nondyslexic brains. Ann Neurol 46(2):189–196PubMedCrossRef Jenner AR, Rosen GD, Galaburda AM (1999) Neuronal asymmetries in primary visual cortex of dyslexic and nondyslexic brains. Ann Neurol 46(2):189–196PubMedCrossRef
Zurück zum Zitat Johannes S, Münte TF, Heinze HJ, Mangun GR (1995) Luminance and spatial attention effects on early visual processing. Brain Res Cogn Brain Res 2(3):189–205PubMedCrossRef Johannes S, Münte TF, Heinze HJ, Mangun GR (1995) Luminance and spatial attention effects on early visual processing. Brain Res Cogn Brain Res 2(3):189–205PubMedCrossRef
Zurück zum Zitat Kalyanshetti SB, Vastrad BC (2013) Effect of handedness on visual, auditory and cutaneous reaction times in normal subjects. Al Ameen J Med Sci 6(3):278–280 Kalyanshetti SB, Vastrad BC (2013) Effect of handedness on visual, auditory and cutaneous reaction times in normal subjects. Al Ameen J Med Sci 6(3):278–280
Zurück zum Zitat Kelly SP, O’Connell RG (2013) Internal and external influences on the rate of sensory evidence accumulation in the human brain. J Neurosci 33(50):19434–19441PubMedCrossRef Kelly SP, O’Connell RG (2013) Internal and external influences on the rate of sensory evidence accumulation in the human brain. J Neurosci 33(50):19434–19441PubMedCrossRef
Zurück zum Zitat Kim YH, Gitelman DR, Nobre AC, Parrish TB, LaBar KS, Mesulam MM (1999) The large-scale neural network for spatial attention displays multifunctional overlap but differential asymmetry. NeuroImage 9(3):269–277PubMedCrossRef Kim YH, Gitelman DR, Nobre AC, Parrish TB, LaBar KS, Mesulam MM (1999) The large-scale neural network for spatial attention displays multifunctional overlap but differential asymmetry. NeuroImage 9(3):269–277PubMedCrossRef
Zurück zum Zitat Koenig T, Melie-García L (2010) A method to determine the presence of averaged event-related fields using randomization tests. Brain Topogr 23(3):233–242PubMedCrossRef Koenig T, Melie-García L (2010) A method to determine the presence of averaged event-related fields using randomization tests. Brain Topogr 23(3):233–242PubMedCrossRef
Zurück zum Zitat Koenig T, Melie-García L, Stein M, Strik W, Lehmann C (2008) Establishing correlations of scalp field maps with other experimental variables using covariance analysis and resampling methods. Clin Neurophysiol 119(6):1262–1270PubMedCrossRef Koenig T, Melie-García L, Stein M, Strik W, Lehmann C (2008) Establishing correlations of scalp field maps with other experimental variables using covariance analysis and resampling methods. Clin Neurophysiol 119(6):1262–1270PubMedCrossRef
Zurück zum Zitat Koenig T, Stein M, Grieder M, Kottlow M (2014) A tutorial on data-driven methods for statistically assessing ERP topographies. Brain Topogr 27(1):72–83PubMedCrossRef Koenig T, Stein M, Grieder M, Kottlow M (2014) A tutorial on data-driven methods for statistically assessing ERP topographies. Brain Topogr 27(1):72–83PubMedCrossRef
Zurück zum Zitat Kolev V, Falkenstein M, Yordanova J (2006) Motor-response generation as a source of aging-related behavioral slowing in choice-reaction task. Neurobiol Aging 27:1719–1730PubMedCrossRef Kolev V, Falkenstein M, Yordanova J (2006) Motor-response generation as a source of aging-related behavioral slowing in choice-reaction task. Neurobiol Aging 27:1719–1730PubMedCrossRef
Zurück zum Zitat Konrad A, Vucurevic G, Musso F, Stoeter P, Winterer G (2009) Correlation of brain white matter diffusion anisotropy and mean diffusivity with reaction time in an oddball task. Neuropsychobiology 60(2):55–66PubMedCrossRef Konrad A, Vucurevic G, Musso F, Stoeter P, Winterer G (2009) Correlation of brain white matter diffusion anisotropy and mean diffusivity with reaction time in an oddball task. Neuropsychobiology 60(2):55–66PubMedCrossRef
Zurück zum Zitat Leuthold H (2011) The Simon effect in cognitive electrophysiology: a short review. Acta Psychol (Amst) 136(2):203–211CrossRef Leuthold H (2011) The Simon effect in cognitive electrophysiology: a short review. Acta Psychol (Amst) 136(2):203–211CrossRef
Zurück zum Zitat Lo YC, Soong WT, Gau SSF, Wu YY, Lai MC, Yeh FC, Chiang WY, Kuo LW, Jaw FS, Tseng WY (2011) The loss of asymmetry and reduced interhemispheric connectivity in adolescents with autism: a study using diffusion spectrum imaging tractography. Psychiatry Res 192(1):60–66PubMedCrossRef Lo YC, Soong WT, Gau SSF, Wu YY, Lai MC, Yeh FC, Chiang WY, Kuo LW, Jaw FS, Tseng WY (2011) The loss of asymmetry and reduced interhemispheric connectivity in adolescents with autism: a study using diffusion spectrum imaging tractography. Psychiatry Res 192(1):60–66PubMedCrossRef
Zurück zum Zitat Løberg EM, Hugdahl K, Green MF (1999) Hemispheric asymmetry in schizophrenia: a “Dual deficits” model. Biol Psychiatry 45(1):76–81PubMedCrossRef Løberg EM, Hugdahl K, Green MF (1999) Hemispheric asymmetry in schizophrenia: a “Dual deficits” model. Biol Psychiatry 45(1):76–81PubMedCrossRef
Zurück zum Zitat Luck SJ, Heinze HJ, Mangun GR, Hillyard SA (1990) Visual event-related potentials index focused attention within bilateral stimulus arrays. II. Functional dissociation of P1 and N1 components. Electroencephalogr Clin Neurophysiol 75(6):528–542PubMedCrossRef Luck SJ, Heinze HJ, Mangun GR, Hillyard SA (1990) Visual event-related potentials index focused attention within bilateral stimulus arrays. II. Functional dissociation of P1 and N1 components. Electroencephalogr Clin Neurophysiol 75(6):528–542PubMedCrossRef
Zurück zum Zitat Madden DJ, Whiting WL, Huettel SA, White LE, MacFall JR, Provenzale JM (2004) Diffusion tensor imaging of adult age differences in cerebral white matter: relation to response time. NeuroImage 21(3):1174–1181PubMedCrossRef Madden DJ, Whiting WL, Huettel SA, White LE, MacFall JR, Provenzale JM (2004) Diffusion tensor imaging of adult age differences in cerebral white matter: relation to response time. NeuroImage 21(3):1174–1181PubMedCrossRef
Zurück zum Zitat Madsen KS, Baaré WFC, Skimminge A, Vestergaard M, Siebner HR, Jernigan TL (2011) Brain microstructural correlates of visuospatial choice reaction time in children. NeuroImage 58(4):1090–1100PubMedCrossRef Madsen KS, Baaré WFC, Skimminge A, Vestergaard M, Siebner HR, Jernigan TL (2011) Brain microstructural correlates of visuospatial choice reaction time in children. NeuroImage 58(4):1090–1100PubMedCrossRef
Zurück zum Zitat Mangun GR, Hillyard SA (1991) Modulations of sensory-evoked brain potentials indicate changes in perceptual processing during visual-spatial priming. J Exp Psychol Hum Percept Perform 17(4):1057–1074PubMedCrossRef Mangun GR, Hillyard SA (1991) Modulations of sensory-evoked brain potentials indicate changes in perceptual processing during visual-spatial priming. J Exp Psychol Hum Percept Perform 17(4):1057–1074PubMedCrossRef
Zurück zum Zitat Marzi CA (1999) The Poffenberger paradigm: a first, simple, behavioral tool to study interhemispheric transmission in humans. Brain Res Bull 50(5–6):421–422PubMedCrossRef Marzi CA (1999) The Poffenberger paradigm: a first, simple, behavioral tool to study interhemispheric transmission in humans. Brain Res Bull 50(5–6):421–422PubMedCrossRef
Zurück zum Zitat Marzi CA, Bisiacchi P, Nicoletti R (1991) Is interhemispheric transfer of visuomotor information asymmetric?: evidence from a meta-analysis. Neuropsychologia 29(12):1163–1177PubMedCrossRef Marzi CA, Bisiacchi P, Nicoletti R (1991) Is interhemispheric transfer of visuomotor information asymmetric?: evidence from a meta-analysis. Neuropsychologia 29(12):1163–1177PubMedCrossRef
Zurück zum Zitat Masaki H, Wild-Wall N, Sangals J, Sommer W (2004) The functional locus of the lateralized readiness potential. Psychophysiology 41(2):220–230PubMedCrossRef Masaki H, Wild-Wall N, Sangals J, Sommer W (2004) The functional locus of the lateralized readiness potential. Psychophysiology 41(2):220–230PubMedCrossRef
Zurück zum Zitat Mooshagian E, Iacoboni M, Zaidel E (2008) The role of task history in simple reaction time to lateralized light flashes. Neuropsychologia 46(2):659–664PubMedCrossRef Mooshagian E, Iacoboni M, Zaidel E (2008) The role of task history in simple reaction time to lateralized light flashes. Neuropsychologia 46(2):659–664PubMedCrossRef
Zurück zum Zitat Mooshagian E, Iacoboni M, Zaidel E (2009) Spatial attention and interhemispheric visuomotor integration in the absence of the corpus callosum. Neuropsychologia 47(3):933–937PubMedCrossRef Mooshagian E, Iacoboni M, Zaidel E (2009) Spatial attention and interhemispheric visuomotor integration in the absence of the corpus callosum. Neuropsychologia 47(3):933–937PubMedCrossRef
Zurück zum Zitat Murray MM, Foxe JJ, Higgins BA, Javitt DC, Schroeder CE (2001) Visuo-spatial neural response interactions in early cortical processing during a simple reaction time task: a high-density electrical mapping study. Neuropsychologia 39(8):828–844PubMedCrossRef Murray MM, Foxe JJ, Higgins BA, Javitt DC, Schroeder CE (2001) Visuo-spatial neural response interactions in early cortical processing during a simple reaction time task: a high-density electrical mapping study. Neuropsychologia 39(8):828–844PubMedCrossRef
Zurück zum Zitat Murray MM, Brunet D, Michel CM (2008) Topographic ERP analyses: a step-by-step tutorial review. Brain Topogr 20(4):249–264PubMedCrossRef Murray MM, Brunet D, Michel CM (2008) Topographic ERP analyses: a step-by-step tutorial review. Brain Topogr 20(4):249–264PubMedCrossRef
Zurück zum Zitat Nobre AC, Sebestyen GN, Gitelman DR, Mesulam MM, Frackowiak RSJ, Frith CD (1997) Functional localization of the system for visuospatial attention using positron emission tomography. Brain 120(Pt 3):515–533PubMedCrossRef Nobre AC, Sebestyen GN, Gitelman DR, Mesulam MM, Frackowiak RSJ, Frith CD (1997) Functional localization of the system for visuospatial attention using positron emission tomography. Brain 120(Pt 3):515–533PubMedCrossRef
Zurück zum Zitat Nobre AC, Sebestyen GN, Miniussi C (2000) The dynamics of shifting visuospatial attention revealed by event-related potentials. Neuropsychologia 38(7):964–974PubMedCrossRef Nobre AC, Sebestyen GN, Miniussi C (2000) The dynamics of shifting visuospatial attention revealed by event-related potentials. Neuropsychologia 38(7):964–974PubMedCrossRef
Zurück zum Zitat O’Connell RG, Dockree PM, Kelly SP (2012) A supramodal accumulation-to-bound signal that determines perceptual decisions in humans. Nat Neurosci 15(12):1729–1735PubMedCrossRef O’Connell RG, Dockree PM, Kelly SP (2012) A supramodal accumulation-to-bound signal that determines perceptual decisions in humans. Nat Neurosci 15(12):1729–1735PubMedCrossRef
Zurück zum Zitat Oldfield RC (1971) The assessment and analysis of handedness: the Edinburg inventory. Neuropsychologia 9(1):97–113PubMedCrossRef Oldfield RC (1971) The assessment and analysis of handedness: the Edinburg inventory. Neuropsychologia 9(1):97–113PubMedCrossRef
Zurück zum Zitat Penhune VB, Zatorre RJ, MacDonald JD, Evans AC (1996) Interhemispheric anatomical differences in Human primary auditory cortex: probabilistic mapping and volume measurement from magnetic resonance scans. Cereb Cortex 6(5):661–672PubMedCrossRef Penhune VB, Zatorre RJ, MacDonald JD, Evans AC (1996) Interhemispheric anatomical differences in Human primary auditory cortex: probabilistic mapping and volume measurement from magnetic resonance scans. Cereb Cortex 6(5):661–672PubMedCrossRef
Zurück zum Zitat Poffenberger AT (1912) Reaction time to retinal stimulation with special reference to the time lost in conduction through nervous centers. Arch Psychol 23:1–73 Poffenberger AT (1912) Reaction time to retinal stimulation with special reference to the time lost in conduction through nervous centers. Arch Psychol 23:1–73
Zurück zum Zitat Praamstra P (2006) Prior information of stimulus location: effects on ERP measures of visual selection and response selection. Brain Res 1072(1):153–160PubMedCrossRef Praamstra P (2006) Prior information of stimulus location: effects on ERP measures of visual selection and response selection. Brain Res 1072(1):153–160PubMedCrossRef
Zurück zum Zitat Praamstra P, Oostenveld R (2003) Attention and movement-related motor cortex activation: a high density EEG study of spatial stimulus–response compatibility. Brain Res Cogn Brain Res 16(3):309–322PubMedCrossRef Praamstra P, Oostenveld R (2003) Attention and movement-related motor cortex activation: a high density EEG study of spatial stimulus–response compatibility. Brain Res Cogn Brain Res 16(3):309–322PubMedCrossRef
Zurück zum Zitat Roth WT, Ford JM, Kopell BS (1978) Long-latency evoked potentials and reaction time. Psychophysiology 15(1):17–23PubMedCrossRef Roth WT, Ford JM, Kopell BS (1978) Long-latency evoked potentials and reaction time. Psychophysiology 15(1):17–23PubMedCrossRef
Zurück zum Zitat Sack AT, Camprodon JA, Pascual-Leone A, Goebel R (2005) The dynamics of interhemispheric compensatory processes in mental imagery. Science 308(5722):702–704PubMedCrossRef Sack AT, Camprodon JA, Pascual-Leone A, Goebel R (2005) The dynamics of interhemispheric compensatory processes in mental imagery. Science 308(5722):702–704PubMedCrossRef
Zurück zum Zitat Saron CD, Davidson RJ (1989) Visual evoked potential measures of interhemispheric transfer time in humans. Behav Neurosci 103(5):1115–1138PubMedCrossRef Saron CD, Davidson RJ (1989) Visual evoked potential measures of interhemispheric transfer time in humans. Behav Neurosci 103(5):1115–1138PubMedCrossRef
Zurück zum Zitat Saville CWN, Dean RO, Daley D, Intriligator J, Boehm S, Feige B, Klein C (2011) Electrocortical correlates of intra-subject variability in reaction time: average and single-trial analyses. Biol Psychol 87(1):74–83PubMedCrossRef Saville CWN, Dean RO, Daley D, Intriligator J, Boehm S, Feige B, Klein C (2011) Electrocortical correlates of intra-subject variability in reaction time: average and single-trial analyses. Biol Psychol 87(1):74–83PubMedCrossRef
Zurück zum Zitat Schluter ND, Rushworth MFS, Passingham RE, Mills KR (1998) Temporary interference in human lateral premotor cortex suggests dominance for the selection of movements: a study using transcranial magnetic stimulation. Brain 121(Pt 5):785–799PubMedCrossRef Schluter ND, Rushworth MFS, Passingham RE, Mills KR (1998) Temporary interference in human lateral premotor cortex suggests dominance for the selection of movements: a study using transcranial magnetic stimulation. Brain 121(Pt 5):785–799PubMedCrossRef
Zurück zum Zitat Sharma T, Lancaster E, Sigmundsson T, Lewis S, Takei N, Gurling H, Barta P, Pearlson G, Murray R (1999) Lack of normal pattern of cerebral asymmetry in familial schizophrenic patients and their relatives: the Maudsley Family Study. Schizophr Res 40(2):111–120PubMedCrossRef Sharma T, Lancaster E, Sigmundsson T, Lewis S, Takei N, Gurling H, Barta P, Pearlson G, Murray R (1999) Lack of normal pattern of cerebral asymmetry in familial schizophrenic patients and their relatives: the Maudsley Family Study. Schizophr Res 40(2):111–120PubMedCrossRef
Zurück zum Zitat Sheremata SL, Bettencourt KC, Somers DC (2010) Hemispheric asymmetry in visuotopic posterior parietal cortex emerges with visual short-term memory load. J Neurosci 30(38):12581–12588PubMedPubMedCentralCrossRef Sheremata SL, Bettencourt KC, Somers DC (2010) Hemispheric asymmetry in visuotopic posterior parietal cortex emerges with visual short-term memory load. J Neurosci 30(38):12581–12588PubMedPubMedCentralCrossRef
Zurück zum Zitat Spironelli C, Penolazzi B, Angrilli A (2008) Dysfunctional hemispheric asymmetry of theta and beta EEG activity during linguistic tasks in developmental dyslexia. Biol Psychol 77(2):123–131PubMedCrossRef Spironelli C, Penolazzi B, Angrilli A (2008) Dysfunctional hemispheric asymmetry of theta and beta EEG activity during linguistic tasks in developmental dyslexia. Biol Psychol 77(2):123–131PubMedCrossRef
Zurück zum Zitat Steel C, Hemsley DR, Pickering AD (2002) Distractor cueing effects on choice reaction time and their relationship with schizotypal personality. Br J Clin Psychol 41(Pt 2):143–156PubMedCrossRef Steel C, Hemsley DR, Pickering AD (2002) Distractor cueing effects on choice reaction time and their relationship with schizotypal personality. Br J Clin Psychol 41(Pt 2):143–156PubMedCrossRef
Zurück zum Zitat Stephan KE, Marshall JC, Friston KJ, Rowe JB, Ritzl A, Zilles K, Fink GR (2003) Lateralized cognitive processes and lateralized task control in the human brain. Science 301(5631):384–386PubMedCrossRef Stephan KE, Marshall JC, Friston KJ, Rowe JB, Ritzl A, Zilles K, Fink GR (2003) Lateralized cognitive processes and lateralized task control in the human brain. Science 301(5631):384–386PubMedCrossRef
Zurück zum Zitat Sternberg S (1969) The discovery of processing stages: extension of Donders’ method. Acta Psychol 30:276–315CrossRef Sternberg S (1969) The discovery of processing stages: extension of Donders’ method. Acta Psychol 30:276–315CrossRef
Zurück zum Zitat Störmer V, McDonald JJ, Hillyard SA (2009) Cross-modal cueing of attention alters appearance and early cortical processing of visual stimuli. Proc Natl Acad Sci USA 106(52):22456–22461PubMedPubMedCentralCrossRef Störmer V, McDonald JJ, Hillyard SA (2009) Cross-modal cueing of attention alters appearance and early cortical processing of visual stimuli. Proc Natl Acad Sci USA 106(52):22456–22461PubMedPubMedCentralCrossRef
Zurück zum Zitat Suchan B, Zoppelt D, Daum I (2003) Frontocentral negativity in electroencephalogram reflects motor response evaluation in humans on correct trials. Neurosci Lett 350(2):101–104PubMedCrossRef Suchan B, Zoppelt D, Daum I (2003) Frontocentral negativity in electroencephalogram reflects motor response evaluation in humans on correct trials. Neurosci Lett 350(2):101–104PubMedCrossRef
Zurück zum Zitat Suchan B, Jokisch D, Skotara N, Daum I (2007) Evaluation-related frontocentral negativity evoked by correct responses and errors. Behav Brain Res 183(2):206–212PubMedCrossRef Suchan B, Jokisch D, Skotara N, Daum I (2007) Evaluation-related frontocentral negativity evoked by correct responses and errors. Behav Brain Res 183(2):206–212PubMedCrossRef
Zurück zum Zitat Thiebaut de Schotten M, Dell’Acqua F, Forkel SJ, Simmons A, Vergani F, Murphy DGM, Catani M (2011) A lateralized brain network for visuospatial attention. Nat Neurosci 14(10):1245–1246PubMedCrossRef Thiebaut de Schotten M, Dell’Acqua F, Forkel SJ, Simmons A, Vergani F, Murphy DGM, Catani M (2011) A lateralized brain network for visuospatial attention. Nat Neurosci 14(10):1245–1246PubMedCrossRef
Zurück zum Zitat Tommasi L (2009) Mechanisms and functions of brain and behavioral asymmetries. Philos Trans R Soc Lond B Biol Sci 364(1519):855–859PubMedCrossRef Tommasi L (2009) Mechanisms and functions of brain and behavioral asymmetries. Philos Trans R Soc Lond B Biol Sci 364(1519):855–859PubMedCrossRef
Zurück zum Zitat Tuch DS, Salat DH, Wisco JJ, Zaleta AK, Havelone ND, Rosas HD (2005) Choice reaction time performance correlates with diffusion anisotropy in white matter pathways supporting visuospatial attention. Proc Natl Acad Sci USA 102(34):12212–12217PubMedPubMedCentralCrossRef Tuch DS, Salat DH, Wisco JJ, Zaleta AK, Havelone ND, Rosas HD (2005) Choice reaction time performance correlates with diffusion anisotropy in white matter pathways supporting visuospatial attention. Proc Natl Acad Sci USA 102(34):12212–12217PubMedPubMedCentralCrossRef
Zurück zum Zitat Verleger R (1997) On the utility of P3 latency as an index of mental chronometry. Psychophysiology 34(2):131–156PubMedCrossRef Verleger R (1997) On the utility of P3 latency as an index of mental chronometry. Psychophysiology 34(2):131–156PubMedCrossRef
Zurück zum Zitat Verleger R (2008) P3b: towards some decision about memory. Clin Neurophysiol 119(4):968–970PubMedCrossRef Verleger R (2008) P3b: towards some decision about memory. Clin Neurophysiol 119(4):968–970PubMedCrossRef
Zurück zum Zitat Verleger R, Jaśkowski P, Wascher E (2005) Evidence for an integrative role of P3b in linking reaction to perception. J Psychophysiol 19(3):165–181CrossRef Verleger R, Jaśkowski P, Wascher E (2005) Evidence for an integrative role of P3b in linking reaction to perception. J Psychophysiol 19(3):165–181CrossRef
Zurück zum Zitat Verleger R, Baur N, Metzner MF, Śmigasiewicz K (2014a) The hard oddball: effects of difficult response selection on stimulus-related P3 and on response-related negative potentials. Psychophysiology 51(11):1089–1100PubMedCrossRef Verleger R, Baur N, Metzner MF, Śmigasiewicz K (2014a) The hard oddball: effects of difficult response selection on stimulus-related P3 and on response-related negative potentials. Psychophysiology 51(11):1089–1100PubMedCrossRef
Zurück zum Zitat Verleger R, Metzner MF, Ouyang G, Śmigasiewicz K, Zhou C (2014b) Testing the stimulus-to-response bridging function of the oddball-P3 by delayed response signals and residue iteration decomposition (RIDE). NeuroImage 100:271–280PubMedCrossRef Verleger R, Metzner MF, Ouyang G, Śmigasiewicz K, Zhou C (2014b) Testing the stimulus-to-response bridging function of the oddball-P3 by delayed response signals and residue iteration decomposition (RIDE). NeuroImage 100:271–280PubMedCrossRef
Zurück zum Zitat Vogel EK, Luck SJ (2000) The visual N1 component as an index of a discrimination process. Psychophysiology 37(2):190–203PubMedCrossRef Vogel EK, Luck SJ (2000) The visual N1 component as an index of a discrimination process. Psychophysiology 37(2):190–203PubMedCrossRef
Zurück zum Zitat Walhovd KB, Fjell AM (2007) White matter volume predicts reaction time instability. Neuropsychologia 45(10):2277–2284PubMedCrossRef Walhovd KB, Fjell AM (2007) White matter volume predicts reaction time instability. Neuropsychologia 45(10):2277–2284PubMedCrossRef
Zurück zum Zitat Wascher E, Hoffmann S, Sänger J, Grosjean M (2009) Visuo-spatial processing and the N1 components of the ERP. Psychophysiology 46(6):1270–1277PubMedCrossRef Wascher E, Hoffmann S, Sänger J, Grosjean M (2009) Visuo-spatial processing and the N1 components of the ERP. Psychophysiology 46(6):1270–1277PubMedCrossRef
Zurück zum Zitat Weintraub S, Mesulam MM (1987) Right cerebral dominance in spatial attention: further evidence based on ipsilateral neglect. Arch Neurol 44(6):621–625PubMedCrossRef Weintraub S, Mesulam MM (1987) Right cerebral dominance in spatial attention: further evidence based on ipsilateral neglect. Arch Neurol 44(6):621–625PubMedCrossRef
Zurück zum Zitat Westerhausen R, Kreuder F, Woerner W, Huster RJ, Smit CM, Schweiger E, Wittling W (2006) Interhemispheric transfer time and structural properties of the corpus callosum. Neurosci Lett 409(2):140–145PubMedCrossRef Westerhausen R, Kreuder F, Woerner W, Huster RJ, Smit CM, Schweiger E, Wittling W (2006) Interhemispheric transfer time and structural properties of the corpus callosum. Neurosci Lett 409(2):140–145PubMedCrossRef
Zurück zum Zitat Whitford TJ, Kubicki M, Ghorashi S, Schneiderman JS, Hawley KJ, McCarley RW, Shenton ME, Spencer KM (2011) Predicting inter-hemispheric transfer time from the diffusion properties of the corpus callosum in healthy individuals and schizophrenia patients: a combined ERP and DTI study. NeuroImage 54(3):2318–2329PubMedCrossRef Whitford TJ, Kubicki M, Ghorashi S, Schneiderman JS, Hawley KJ, McCarley RW, Shenton ME, Spencer KM (2011) Predicting inter-hemispheric transfer time from the diffusion properties of the corpus callosum in healthy individuals and schizophrenia patients: a combined ERP and DTI study. NeuroImage 54(3):2318–2329PubMedCrossRef
Metadaten
Titel
Reaction Time in a Visual 4-Choice Reaction Time Task: ERP Effects of Motor Preparation and Hemispheric Involvement
verfasst von
Ingrida Antonova
Claudia van Swam
Daniela Hubl
Thomas Dierks
Inga Griskova-Bulanova
Thomas Koenig
Publikationsdatum
30.01.2016
Verlag
Springer US
Erschienen in
Brain Topography / Ausgabe 4/2016
Print ISSN: 0896-0267
Elektronische ISSN: 1573-6792
DOI
https://doi.org/10.1007/s10548-016-0473-7

Weitere Artikel der Ausgabe 4/2016

Brain Topography 4/2016 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.