Skip to main content
Erschienen in: Surgical Endoscopy 11/2020

03.12.2019

Real-time automatic surgical phase recognition in laparoscopic sigmoidectomy using the convolutional neural network-based deep learning approach

verfasst von: Daichi Kitaguchi, Nobuyoshi Takeshita, Hiroki Matsuzaki, Hiroaki Takano, Yohei Owada, Tsuyoshi Enomoto, Tatsuya Oda, Hirohisa Miura, Takahiro Yamanashi, Masahiko Watanabe, Daisuke Sato, Yusuke Sugomori, Seigo Hara, Masaaki Ito

Erschienen in: Surgical Endoscopy | Ausgabe 11/2020

Einloggen, um Zugang zu erhalten

Abstract

Background

Automatic surgical workflow recognition is a key component for developing the context-aware computer-assisted surgery (CA-CAS) systems. However, automatic surgical phase recognition focused on colorectal surgery has not been reported. We aimed to develop a deep learning model for automatic surgical phase recognition based on laparoscopic sigmoidectomy (Lap-S) videos, which could be used for real-time phase recognition, and to clarify the accuracies of the automatic surgical phase and action recognitions using visual information.

Methods

The dataset used contained 71 cases of Lap-S. The video data were divided into frame units every 1/30 s as static images. Every Lap-S video was manually divided into 11 surgical phases (Phases 0–10) and manually annotated for each surgical action on every frame. The model was generated based on the training data. Validation of the model was performed on a set of unseen test data. Convolutional neural network (CNN)-based deep learning was also used.

Results

The average surgical time was 175 min (± 43 min SD), with the individual surgical phases also showing high variations in the duration between cases. Each surgery started in the first phase (Phase 0) and ended in the last phase (Phase 10), and phase transitions occurred 14 (± 2 SD) times per procedure on an average. The accuracy of the automatic surgical phase recognition was 91.9% and those for the automatic surgical action recognition of extracorporeal action and irrigation were 89.4% and 82.5%, respectively. Moreover, this system could perform real-time automatic surgical phase recognition at 32 fps.

Conclusions

The CNN-based deep learning approach enabled the recognition of surgical phases and actions in 71 Lap-S cases based on manually annotated data. This system could perform automatic surgical phase recognition and automatic target surgical action recognition with high accuracy. Moreover, this study showed the feasibility of real-time automatic surgical phase recognition with high frame rate.
Literatur
1.
Zurück zum Zitat Jin Y, Dou Q, Chen H, Yu L, Qin J, Fu CW, Heng PA (2018) SV-RCNet: workflow recognition from surgical videos using recurrent convolutional network. IEEE Trans Med Imaging 37:1114–1126CrossRef Jin Y, Dou Q, Chen H, Yu L, Qin J, Fu CW, Heng PA (2018) SV-RCNet: workflow recognition from surgical videos using recurrent convolutional network. IEEE Trans Med Imaging 37:1114–1126CrossRef
2.
Zurück zum Zitat Lalys F, Jannin P (2014) Surgical process modelling: a review. Int J Comput Assist Radiol Surg 9:495–511CrossRef Lalys F, Jannin P (2014) Surgical process modelling: a review. Int J Comput Assist Radiol Surg 9:495–511CrossRef
3.
Zurück zum Zitat Cleary K, Chung HY, Mun SK (2005) OR 2020: the operating room of the future. Laparoendosc Adv Surg Tech 15:495–500CrossRef Cleary K, Chung HY, Mun SK (2005) OR 2020: the operating room of the future. Laparoendosc Adv Surg Tech 15:495–500CrossRef
4.
Zurück zum Zitat Rattner WD, Park A (2003) Advanced devices for the operating room of the future. Semin Laparosc Surg 10:85–88PubMed Rattner WD, Park A (2003) Advanced devices for the operating room of the future. Semin Laparosc Surg 10:85–88PubMed
5.
Zurück zum Zitat Meeuwsen FC, van Luyn F, Blikkendaal MD, Jansen FW, van den Dobbelsteen JJ (2019) Surgical phase modelling in minimal invasive surgery. Surg Endosc 33:1426–1432CrossRef Meeuwsen FC, van Luyn F, Blikkendaal MD, Jansen FW, van den Dobbelsteen JJ (2019) Surgical phase modelling in minimal invasive surgery. Surg Endosc 33:1426–1432CrossRef
6.
Zurück zum Zitat Padoy N, Blum T, Feussner H, Berger MO, Navab N (2008) Online recognition of surgical activity for monitoring in the operating room. AAAI 2008:1718–1724 Padoy N, Blum T, Feussner H, Berger MO, Navab N (2008) Online recognition of surgical activity for monitoring in the operating room. AAAI 2008:1718–1724
7.
Zurück zum Zitat Ahmadi SA, Sielhorst T, Stauder R, Horn M, Feussner H, Navab N (2006) Recovery of surgical workflow without explicit models. In: Larsen R, Nielsen M, Sporring J (eds) Medical image computing and computer-assisted intervention—MICCAI 2006. MICCAI 2006. Lecture Notes in Computer Science, Springer, Berlin, pp 420–428 Ahmadi SA, Sielhorst T, Stauder R, Horn M, Feussner H, Navab N (2006) Recovery of surgical workflow without explicit models. In: Larsen R, Nielsen M, Sporring J (eds) Medical image computing and computer-assisted intervention—MICCAI 2006. MICCAI 2006. Lecture Notes in Computer Science, Springer, Berlin, pp 420–428
8.
Zurück zum Zitat Bouarfa L, Jonker P, Dankelman J (2011) Discovery of high-level tasks in the operating room. J Biomed Inform 44:455–462CrossRef Bouarfa L, Jonker P, Dankelman J (2011) Discovery of high-level tasks in the operating room. J Biomed Inform 44:455–462CrossRef
9.
Zurück zum Zitat Stauder R, Okur A, Peter L, Schneider A, Kranzfelder M, Feussner H, Navab N (2014) Random forests for phase detection in surgical workflow analysis. In: Stoyanov D, Collins DL, Sakuma I, Abolmaesumi P, Jannin P (eds) Information Processing in Computer-Assisted Interventions. IPCAI 2014. Lecture Notes in Computer Science, Springer, Cham, vol 8498, pp 148–157 Stauder R, Okur A, Peter L, Schneider A, Kranzfelder M, Feussner H, Navab N (2014) Random forests for phase detection in surgical workflow analysis. In: Stoyanov D, Collins DL, Sakuma I, Abolmaesumi P, Jannin P (eds) Information Processing in Computer-Assisted Interventions. IPCAI 2014. Lecture Notes in Computer Science, Springer, Cham, vol 8498, pp 148–157
10.
Zurück zum Zitat Klank U, Padoy N, Feussner H, Navab N (2008) Automatic feature generation in endoscopic images. Int J Comput Assist Radiol Surg 3:331–339CrossRef Klank U, Padoy N, Feussner H, Navab N (2008) Automatic feature generation in endoscopic images. Int J Comput Assist Radiol Surg 3:331–339CrossRef
11.
Zurück zum Zitat Blum T, Feussner H, Navab N (2010) Modeling and segmentation of surgical workflow from laparoscopic video. In: Jiang T, Navab N, Pluim JPW, Viergever MA (eds) Medical Image Computing and Computer-Assisted Intervention—MICCAI 2010. MICCAI 2010. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, vol 6363, pp 400–407 Blum T, Feussner H, Navab N (2010) Modeling and segmentation of surgical workflow from laparoscopic video. In: Jiang T, Navab N, Pluim JPW, Viergever MA (eds) Medical Image Computing and Computer-Assisted Intervention—MICCAI 2010. MICCAI 2010. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, vol 6363, pp 400–407
12.
Zurück zum Zitat Dergachyova O, Bouget D, Huaulmé A, Morandi X, Jannin P (2016) Automatic data-driven real-time segmentation and recognition of surgical workflow. Int J Comput Assist Radiol Surg 11:1081–1089CrossRef Dergachyova O, Bouget D, Huaulmé A, Morandi X, Jannin P (2016) Automatic data-driven real-time segmentation and recognition of surgical workflow. Int J Comput Assist Radiol Surg 11:1081–1089CrossRef
13.
Zurück zum Zitat Primus MJ, Schoeffmann K, Böszörmenyi L (2016) Temporal segmentation of laparoscopic videos into surgical phases. In: 14th International Workshop on Content-based Multimedia Indexing, pp 1–6 Primus MJ, Schoeffmann K, Böszörmenyi L (2016) Temporal segmentation of laparoscopic videos into surgical phases. In: 14th International Workshop on Content-based Multimedia Indexing, pp 1–6
14.
Zurück zum Zitat Twinanda AP, Shehata S, Mutter D, Marescaux J, de Mathelin M, Padoy N (2017) EndoNet: a deep architecture for recognition tasks on laparoscopic videos. IEEE Trans Med Imaging 36:86–97CrossRef Twinanda AP, Shehata S, Mutter D, Marescaux J, de Mathelin M, Padoy N (2017) EndoNet: a deep architecture for recognition tasks on laparoscopic videos. IEEE Trans Med Imaging 36:86–97CrossRef
15.
Zurück zum Zitat Lea C, Choi JH, Reiter A, Hager GD (2016) Surgical phase recognition: from instrumented ORs to hospitals around the world. In: Medical Image Computing and Computer-Assisted Intervention M2CAI—MICCAI workshop, pp 45–54 Lea C, Choi JH, Reiter A, Hager GD (2016) Surgical phase recognition: from instrumented ORs to hospitals around the world. In: Medical Image Computing and Computer-Assisted Intervention M2CAI—MICCAI workshop, pp 45–54
16.
Zurück zum Zitat Pascual M, Salvans S, Pera M (2016) Laparoscopic colorectal surgery: current status and implementation of the latest technological innovations. World J Gastroenterol 22:704–717CrossRef Pascual M, Salvans S, Pera M (2016) Laparoscopic colorectal surgery: current status and implementation of the latest technological innovations. World J Gastroenterol 22:704–717CrossRef
17.
Zurück zum Zitat Miskovic D, Ni M, Wyles SM, Parvaiz A, Hanna GB (2012) Observational clinical human reliability analysis (OCHRA) for competency assessment in laparoscopic colorectal surgery at the specialist level. Surg Endosc 26:796–803CrossRef Miskovic D, Ni M, Wyles SM, Parvaiz A, Hanna GB (2012) Observational clinical human reliability analysis (OCHRA) for competency assessment in laparoscopic colorectal surgery at the specialist level. Surg Endosc 26:796–803CrossRef
18.
Zurück zum Zitat Szegedy C, Ioffe S, Vanhoucke V, Alemi AA (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence. 2017, vol 4 Szegedy C, Ioffe S, Vanhoucke V, Alemi AA (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence. 2017, vol 4
19.
Zurück zum Zitat Byra M, Styczynski G, Szmigielski C, Kalinowski P, Michałowski Ł, Paluszkiewicz R, Ziarkiewicz-Wróblewska B, Zieniewicz K, Sobieraj P, Nowicki A (2018) Transfer learning with deep convolutional neural network for liver steatosis assessment in ultrasound images. Int J Comput Assist Radiol Surg 13:1895–1903CrossRef Byra M, Styczynski G, Szmigielski C, Kalinowski P, Michałowski Ł, Paluszkiewicz R, Ziarkiewicz-Wróblewska B, Zieniewicz K, Sobieraj P, Nowicki A (2018) Transfer learning with deep convolutional neural network for liver steatosis assessment in ultrasound images. Int J Comput Assist Radiol Surg 13:1895–1903CrossRef
20.
Zurück zum Zitat Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29:1189–1232CrossRef Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29:1189–1232CrossRef
21.
Zurück zum Zitat Deng L, Pan J, Xu X, Yang W, Liu C, Liu H (2018) PDRLGB: precise DNA-binding residue prediction using a light gradient boosting machine. BMC Bioinform 19:522CrossRef Deng L, Pan J, Xu X, Yang W, Liu C, Liu H (2018) PDRLGB: precise DNA-binding residue prediction using a light gradient boosting machine. BMC Bioinform 19:522CrossRef
22.
Zurück zum Zitat Foster JD, Miskovic D, Allison AS, Conti JA, Ockrim J, Cooper EJ, Hanna GB, Francis NK (2016) Application of objective clinical human reliability analysis (OCHRA) in assessment of technical performance in laparoscopic rectal cancer surgery. Tech Coloproctol 20:361–367CrossRef Foster JD, Miskovic D, Allison AS, Conti JA, Ockrim J, Cooper EJ, Hanna GB, Francis NK (2016) Application of objective clinical human reliability analysis (OCHRA) in assessment of technical performance in laparoscopic rectal cancer surgery. Tech Coloproctol 20:361–367CrossRef
23.
Zurück zum Zitat Quellec G, Charrière K, Lamard M, Droueche Z, Roux C, Cochener B, Cazuguel G (2014) Real-time recognition of surgical tasks in eye surgery videos. Med Image Anal 18:579–590CrossRef Quellec G, Charrière K, Lamard M, Droueche Z, Roux C, Cochener B, Cazuguel G (2014) Real-time recognition of surgical tasks in eye surgery videos. Med Image Anal 18:579–590CrossRef
24.
Zurück zum Zitat Quellec G, Lamard M, Droueche Z, Cochener B, Roux C, Cazuguel G (2013) A polynomial model of surgical gestures for real-time retrieval of surgery videos. In: Greenspan H, Müller H, Syeda-Mahmood T (eds) Medical Content-Based Retrieval for Clinical Decision Support. MCBR-CDS 2012. Lecture Notes in Computer Science, Springer, Berlin, vol 7723, pp 10–20 Quellec G, Lamard M, Droueche Z, Cochener B, Roux C, Cazuguel G (2013) A polynomial model of surgical gestures for real-time retrieval of surgery videos. In: Greenspan H, Müller H, Syeda-Mahmood T (eds) Medical Content-Based Retrieval for Clinical Decision Support. MCBR-CDS 2012. Lecture Notes in Computer Science, Springer, Berlin, vol 7723, pp 10–20
25.
Zurück zum Zitat Quellec G, Lamard M, Cochener B, Cazuguel G (2015) Real-time task recognition in cataract surgery videos using adaptive spatiotemporal polynomials. IEEE Trans Med Imaging 34:877–887CrossRef Quellec G, Lamard M, Cochener B, Cazuguel G (2015) Real-time task recognition in cataract surgery videos using adaptive spatiotemporal polynomials. IEEE Trans Med Imaging 34:877–887CrossRef
26.
Zurück zum Zitat Charriere K, Quellec G, Lamard M, Martiano D, Cazuguel G, Coatrieux G, Cochener B (2016) Real-time multilevel sequencing of cataract surgery videos. In: 14th International Workshop on Content-based Multimedia Indexing, pp 1–6 Charriere K, Quellec G, Lamard M, Martiano D, Cazuguel G, Coatrieux G, Cochener B (2016) Real-time multilevel sequencing of cataract surgery videos. In: 14th International Workshop on Content-based Multimedia Indexing, pp 1–6
27.
Zurück zum Zitat Charrière K, Quellec G, Lamard M, Martiano D, Cazuguel G, Coatrieux G, Cochener B (2017) Real-time analysis of cataract surgery videos using statistical models. Multimed Tools Appl 76:22473–22491CrossRef Charrière K, Quellec G, Lamard M, Martiano D, Cazuguel G, Coatrieux G, Cochener B (2017) Real-time analysis of cataract surgery videos using statistical models. Multimed Tools Appl 76:22473–22491CrossRef
28.
Zurück zum Zitat Despinoy F, Bouget D, Forestier G, Penet C, Zemiti N, Poignet P, Jannin P (2016) Unsupervised trajectory segmentation for surgical gesture recognition in robotic training. IEEE Trans Biomed Eng 63:1280–1291CrossRef Despinoy F, Bouget D, Forestier G, Penet C, Zemiti N, Poignet P, Jannin P (2016) Unsupervised trajectory segmentation for surgical gesture recognition in robotic training. IEEE Trans Biomed Eng 63:1280–1291CrossRef
Metadaten
Titel
Real-time automatic surgical phase recognition in laparoscopic sigmoidectomy using the convolutional neural network-based deep learning approach
verfasst von
Daichi Kitaguchi
Nobuyoshi Takeshita
Hiroki Matsuzaki
Hiroaki Takano
Yohei Owada
Tsuyoshi Enomoto
Tatsuya Oda
Hirohisa Miura
Takahiro Yamanashi
Masahiko Watanabe
Daisuke Sato
Yusuke Sugomori
Seigo Hara
Masaaki Ito
Publikationsdatum
03.12.2019
Verlag
Springer US
Erschienen in
Surgical Endoscopy / Ausgabe 11/2020
Print ISSN: 0930-2794
Elektronische ISSN: 1432-2218
DOI
https://doi.org/10.1007/s00464-019-07281-0

Weitere Artikel der Ausgabe 11/2020

Surgical Endoscopy 11/2020 Zur Ausgabe

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.