Skip to main content
Erschienen in: European Radiology 6/2013

01.06.2013 | Interventional

Real-time X-ray-based 4D image guidance of minimally invasive interventions

verfasst von: Jan Kuntz, Rajiv Gupta, Stefan O. Schönberg, Wolfhard Semmler, Marc Kachelrieß, Sönke Bartling

Erschienen in: European Radiology | Ausgabe 6/2013

Einloggen, um Zugang zu erhalten

Abstract

Objective

A new technology is introduced that enables real-time 4D (three spatial dimensions plus time) X-ray guidance for vascular catheter interventions with acceptable levels of ionising radiation.

Methods

The enabling technology is a combination of low-dose tomographic data acquisition with novel compressed sensing reconstruction and use of prior image information. It was implemented in a prototype set-up consisting of a gantry-based flat detector system. In pigs (n = 5) angiographic interventions were simulated. Radiation dosage on a per time base was compared with the “gold standard” of X-ray projection imaging.

Results

Contrary to current image guidance methods that lack permanent 4D updates, the spatial position of interventional instruments could be resolved in continuous, spatial 4D guidance; the movement of the guide wire as well as the expansion of stents could be precisely tracked in 3D angiographic road maps. Dose rate was 23.8 μGy/s, similar to biplane standard angiographic fluoroscopy, which has a dose rate of 20.6 μGy/s.

Conclusion

Real-time 4D X-ray image-guidance with acceptable levels of radiation has great potential to significantly influence the field of minimally invasive medicine by allowing faster and safer interventions and by enabling novel, much more complex procedures for vascular and oncological minimally invasive therapy.

Key Points

• Real-time 4D (three spatial dimensions plus time) angiographic intervention guidance is realistic.
• Low-dose tomographic data acquisition with special compressed sensing-based algorithms is enabled.
• Compared with 4D CT fluoroscopy, this method reduces radiation to acceptable levels.
• Once implemented, vascular interventions may become safer and faster.
• More complex intervention approaches may be developed.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Rodés-Cabau J (2011) Transcatheter aortic valve implantation: current and future approaches. Nat Rev Cardiol 9:15–29PubMedCrossRef Rodés-Cabau J (2011) Transcatheter aortic valve implantation: current and future approaches. Nat Rev Cardiol 9:15–29PubMedCrossRef
2.
Zurück zum Zitat Bock M, Wacker FK (2008) MR-guided intravascular interventions: techniques and applications. J Magn Reson Imaging 27:326–338PubMedCrossRef Bock M, Wacker FK (2008) MR-guided intravascular interventions: techniques and applications. J Magn Reson Imaging 27:326–338PubMedCrossRef
3.
Zurück zum Zitat Schirra CO, Weiss S, Krueger S, Pedersen SF, Razavi R, Schaeffter T, Kozerke S (2009) Toward true 3D visualization of active catheters using compressed sensing. Magn Reson Med 62:341–347PubMedCrossRef Schirra CO, Weiss S, Krueger S, Pedersen SF, Razavi R, Schaeffter T, Kozerke S (2009) Toward true 3D visualization of active catheters using compressed sensing. Magn Reson Med 62:341–347PubMedCrossRef
4.
Zurück zum Zitat Tang J, Hsieh J, Chen G-H (2010) Temporal resolution improvement in cardiac CT using PICCS (TRI-PICCS): performance studies. Med Phys 37:4377–4388PubMedCrossRef Tang J, Hsieh J, Chen G-H (2010) Temporal resolution improvement in cardiac CT using PICCS (TRI-PICCS): performance studies. Med Phys 37:4377–4388PubMedCrossRef
5.
Zurück zum Zitat Carlson SK, Bender CE, Classic KL, Zink FE, Quam JP, Ward EM, Oberg AL (2001) Benefits and safety of CT fluoroscopy in interventional radiologic procedures. Radiology 219:515–520PubMed Carlson SK, Bender CE, Classic KL, Zink FE, Quam JP, Ward EM, Oberg AL (2001) Benefits and safety of CT fluoroscopy in interventional radiologic procedures. Radiology 219:515–520PubMed
6.
Zurück zum Zitat Racadio JM, Babic D, Homan R, Rampton JW, Patel MN, Racadio JM, Johnson ND (2007) Live 3D guidance in the interventional radiology suite. AJR Am J Roentgenol 189:W357–W364PubMedCrossRef Racadio JM, Babic D, Homan R, Rampton JW, Patel MN, Racadio JM, Johnson ND (2007) Live 3D guidance in the interventional radiology suite. AJR Am J Roentgenol 189:W357–W364PubMedCrossRef
7.
Zurück zum Zitat Schulz B, Eichler K, Siebenhandl P, Gruber-Rouh T, Czerny C, Vogl TJ, Zangos S (2012) Accuracy and speed of robotic assisted needle interventions using a modern cone beam computed tomography intervention suite: a phantom study. Eur Radiol 23:198-204 Schulz B, Eichler K, Siebenhandl P, Gruber-Rouh T, Czerny C, Vogl TJ, Zangos S (2012) Accuracy and speed of robotic assisted needle interventions using a modern cone beam computed tomography intervention suite: a phantom study. Eur Radiol 23:198-204
8.
Zurück zum Zitat Kroeze SGC, Huisman M, Verkooijen HM, van Diest PJ, Ruud Bosch JLH, van den Bosch MAAJ (2012) Real-time 3D fluoroscopy-guided large core needle biopsy of renal masses: a critical early evaluation according to the IDEAL recommendations. Cardiovasc Intervent Radiol 35:680–685PubMedCrossRef Kroeze SGC, Huisman M, Verkooijen HM, van Diest PJ, Ruud Bosch JLH, van den Bosch MAAJ (2012) Real-time 3D fluoroscopy-guided large core needle biopsy of renal masses: a critical early evaluation according to the IDEAL recommendations. Cardiovasc Intervent Radiol 35:680–685PubMedCrossRef
9.
Zurück zum Zitat Mistretta CA (2011) Sub-nyquist acquisition and constrained reconstruction in time resolved angiography. Med Phys 38:2975–2985PubMedCrossRef Mistretta CA (2011) Sub-nyquist acquisition and constrained reconstruction in time resolved angiography. Med Phys 38:2975–2985PubMedCrossRef
10.
Zurück zum Zitat Neeman Z, Dromi SA, Sarin S, Wood BJ (2006) CT fluoroscopy shielding: decreases in scattered radiation for the patient and operator. J Vasc Interv Radiol 17:1999–2004PubMedCrossRef Neeman Z, Dromi SA, Sarin S, Wood BJ (2006) CT fluoroscopy shielding: decreases in scattered radiation for the patient and operator. J Vasc Interv Radiol 17:1999–2004PubMedCrossRef
11.
Zurück zum Zitat Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52:1289–1306CrossRef Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52:1289–1306CrossRef
12.
Zurück zum Zitat Chen G-H, Tang J, Leng S (2008) Prior image constrained compressed sensing (PICCS): a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets. Med Phys 35:660–663PubMedCrossRef Chen G-H, Tang J, Leng S (2008) Prior image constrained compressed sensing (PICCS): a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets. Med Phys 35:660–663PubMedCrossRef
13.
Zurück zum Zitat Tang J, Nett BE, Chen G-H (2009) Performance comparison between total variation (TV)-based compressed sensing and statistical iterative reconstruction algorithms. Phys Med Biol 54:5781–5804PubMedCrossRef Tang J, Nett BE, Chen G-H (2009) Performance comparison between total variation (TV)-based compressed sensing and statistical iterative reconstruction algorithms. Phys Med Biol 54:5781–5804PubMedCrossRef
14.
Zurück zum Zitat Pan X, Sidky EY, Vannier M (2009) Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction? Inverse Probl 25:1230009PubMedCrossRef Pan X, Sidky EY, Vannier M (2009) Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction? Inverse Probl 25:1230009PubMedCrossRef
15.
Zurück zum Zitat Ritschl L, Bergner F, Fleischmann C, Kachelriess M (2011) Improved total variation-based CT image reconstruction applied to clinical data. Phys Med Biol 56:1545–1561PubMedCrossRef Ritschl L, Bergner F, Fleischmann C, Kachelriess M (2011) Improved total variation-based CT image reconstruction applied to clinical data. Phys Med Biol 56:1545–1561PubMedCrossRef
16.
Zurück zum Zitat Chen G-H, Tang J, Nett B, Qi Z, Leng S, Szczykutowicz T (2010) Prior image constrained compressed sensing (PICCS) and applications in X-ray computed tomography. Curr Med Imaging Rev 2:119–134 Chen G-H, Tang J, Nett B, Qi Z, Leng S, Szczykutowicz T (2010) Prior image constrained compressed sensing (PICCS) and applications in X-ray computed tomography. Curr Med Imaging Rev 2:119–134
17.
Zurück zum Zitat Chen GH, Tang J, Leng S (2008) Prior Image Constrained Compressed SEnsing (PICCS). Proc Soc Photo Opt Instrum Eng 6856:685618PubMed Chen GH, Tang J, Leng S (2008) Prior Image Constrained Compressed SEnsing (PICCS). Proc Soc Photo Opt Instrum Eng 6856:685618PubMed
18.
Zurück zum Zitat Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Opt Soc Am 1:612–619CrossRef Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Opt Soc Am 1:612–619CrossRef
19.
Zurück zum Zitat McKinnon GC, Bates RH (1981) Towards imaging the beating heart usefully with a conventional CT scanner. IEEE Trans Biomed Eng 28:123–127CrossRef McKinnon GC, Bates RH (1981) Towards imaging the beating heart usefully with a conventional CT scanner. IEEE Trans Biomed Eng 28:123–127CrossRef
20.
Zurück zum Zitat Sidky EY, Pan X, Reiser IS, Nishikawa RM, Moore RH, Kopans DB (2009) Enhanced imaging of microcalcifications in digital breast tomosynthesis through improved image-reconstruction algorithms. Med Phys 36:4920–4932PubMedCrossRef Sidky EY, Pan X, Reiser IS, Nishikawa RM, Moore RH, Kopans DB (2009) Enhanced imaging of microcalcifications in digital breast tomosynthesis through improved image-reconstruction algorithms. Med Phys 36:4920–4932PubMedCrossRef
21.
Zurück zum Zitat Candes EJ, Plan Y (2011) A probabilistic and RIPless theory of compressed sensing. IEEE Trans Inf Theory 57:7235–7254CrossRef Candes EJ, Plan Y (2011) A probabilistic and RIPless theory of compressed sensing. IEEE Trans Inf Theory 57:7235–7254CrossRef
22.
Zurück zum Zitat Gupta R, Grasruck M, Suess C, Bartling SH, Schmidt B, Stierstorfer K, Popescu S, Brady T, Flohr T (2006) Ultra-high resolution flat-panel volume CT: fundamental principles, design architecture, and system characterization. Eur Radiol 16:1191–1205PubMedCrossRef Gupta R, Grasruck M, Suess C, Bartling SH, Schmidt B, Stierstorfer K, Popescu S, Brady T, Flohr T (2006) Ultra-high resolution flat-panel volume CT: fundamental principles, design architecture, and system characterization. Eur Radiol 16:1191–1205PubMedCrossRef
23.
Zurück zum Zitat Grasruck M, Suess C, Stierstorfer K, Popescu S, Flohr T (2005) Evaluation of image quality and dose on a flat-panel CT-scanner. Proc SPIE 5745:179–188CrossRef Grasruck M, Suess C, Stierstorfer K, Popescu S, Flohr T (2005) Evaluation of image quality and dose on a flat-panel CT-scanner. Proc SPIE 5745:179–188CrossRef
24.
Zurück zum Zitat McNitt-Gray MF (2002) AAPM/RSNA physics tutorial for residents: topics in CT. Radiation dose in CT. Radiographics 22:1541–1553PubMedCrossRef McNitt-Gray MF (2002) AAPM/RSNA physics tutorial for residents: topics in CT. Radiation dose in CT. Radiographics 22:1541–1553PubMedCrossRef
25.
Zurück zum Zitat Kachelriess M, Knaup M, Bockenbach O (2007) Hyperfast parallel-beam and cone-beam backprojection using the cell general purpose hardware. Med Phys 34:1474–1486PubMedCrossRef Kachelriess M, Knaup M, Bockenbach O (2007) Hyperfast parallel-beam and cone-beam backprojection using the cell general purpose hardware. Med Phys 34:1474–1486PubMedCrossRef
Metadaten
Titel
Real-time X-ray-based 4D image guidance of minimally invasive interventions
verfasst von
Jan Kuntz
Rajiv Gupta
Stefan O. Schönberg
Wolfhard Semmler
Marc Kachelrieß
Sönke Bartling
Publikationsdatum
01.06.2013
Verlag
Springer-Verlag
Erschienen in
European Radiology / Ausgabe 6/2013
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-012-2761-2

Weitere Artikel der Ausgabe 6/2013

European Radiology 6/2013 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.