Skip to main content
main-content

01.12.2019 | Research | Ausgabe 1/2019 Open Access

Orphanet Journal of Rare Diseases 1/2019

Real-world clinical course of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in Japan

Zeitschrift:
Orphanet Journal of Rare Diseases > Ausgabe 1/2019
Autoren:
Shuntaro Tsutsumi, Tomoo Sato, Naoko Yagishita, Junji Yamauchi, Natsumi Araya, Daisuke Hasegawa, Misako Nagasaka, Ariella L. G. Coler-Reilly, Eisuke Inoue, Ayako Takata, Yoshihisa Yamano
Wichtige Hinweise

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s13023-019-1212-4.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Background

As human T-cell leukemia virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a rare chronic neurological disease, large scale studies to collect continuous clinical data have been difficult to conduct. Therefore, the incidence of comorbidities and drug utilization data remain unknown. When conducting trials to develop new drugs in rare disease such as HAM/TSP, historical control data obtained from registry studies would be useful, as cohorts in rare disease tend to be small. Long-term follow-up of patients with a chronic disease can also be challenging. In this study, we addressed the following two goals using registry data on patients (n = 486) enrolled in the Japanese HAM/TSP patient registry “HAM-net” from 2012 to 2016: 1) to clarify the epidemiological information of HAM/TSP such as the incidence of comorbidities and drug utilization and 2) to provide the real-world data on changes in lower limb motor dysfunction.

Results

In HAM-net-registered patients, common comorbidities were fractures, herpes zoster, and uveitis, with incidences of 55.5, 10.4, and 6.5, respectively, per 1000 person-years. Every year, oral steroid treatment was administered in 48.2–50.7% of the HAM-net-registered patients and interferon-α treatment was used in 2.6–3.5% of patients. The median dose of oral prednisolone was low at 5.0 mg/day. The incidence of fractures and herpes zoster tended to be higher in the steroid-treated group than in the untreated group (fractures: 61.0 vs. 48.3, herpes zoster: 12.7 vs. 8.8, per 1000 person-years). The analysis of chronological change in Osame motor disability score (OMDS) indicated that the mean change in OMDS was + 0.20 [95% confidence intervals (CI): 0.14–0.25] per year in the one-year observation group (n = 346) and + 0.57 (95% CI: 0.42–0.73) over four years in the four-year observation group (n = 148). Significant deterioration of OMDS was noted in all subgroups with varying steroid use status.

Conclusions

This study revealed the incidence of comorbidities and drug utilization data in patients with HAM/TSP using registry data. Furthermore, this study provided real-world data on chronological changes in lower limb motor dysfunction in patients with HAM/TSP, indicating the utility of these data as historical controls.
Zusatzmaterial
Additional file 2: Table S1. Continuation rates of treatments in HAM-net-registered patients. Table S2. Distribution of the daily dose of prednisolone at the time of initial interview in HAM-net-registered patients. Table S3. Cross-tabulation of OMDS at the time of initial interview versus OMDS at the time of 2nd-year interview (one-year observation group, n = 346). Table S4. Cross-tabulation of OMDS at the time of initial interview versus OMDS at the time of 2nd-year interview (steroid group, n = 131). Table S5. Cross-tabulation of OMDS at the time of initial interview versus OMDS at the time of 2nd-year interview (steroid-history group, n = 82). Table S6. Cross-tabulation of OMDS at the time of initial interview versus OMDS at the time of 2nd-year interview (untreated group, n = 85). Table S7. Cross-tabulation of OMDS at the time of initial interview versus OMDS at the time of 2nd-year interview (miscellaneous group, n = 48). Table S8. Baseline characteristics of patients with HAM/TSP with OMDS 3–6 who had been observed for one year (n = 239). Table S9. Changes in OMDS in patients with HAM/TSP with OMDS 3–6 who had been observed for one year (n = 239). Table S10. Cross-tabulation of OMDS at the time of initial interview versus OMDS at the time of 5th-year interview (Four-year observation group, n = 148). Table S11. Cross-tabulation of OMDS at the time of initial interview versus OMDS at the time of 5th-year interview (steroid group, n = 47). Table S12. Cross-tabulation of OMDS at the time of initial interview versus OMDS at the time of 5th-year interview (steroid-history group, n = 36). Table S13. Cross-tabulation of OMDS at the time of initial interview versus OMDS at the time of 5th-year interview (untreated group, n = 32). Table S14. Cross-tabulation of OMDS at the time of initial interview versus OMDS at the time of 5th-year interview (miscellaneous group, n = 33). Table S15. Baseline characteristics of patients with HAM/TSP with OMDS 3–6 who had been observed for four years (n = 100). Table S16. Changes in OMDS in patients with HAM/TSP with OMDS 3–6 who had been observed for four years (n = 100).
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2019

Orphanet Journal of Rare Diseases 1/2019 Zur Ausgabe