Skip to main content
Erschienen in: Brain Structure and Function 1/2010

01.07.2010 | Original article

Realistic modelling of receptor activation in hippocampal excitatory synapses: analysis of multivesicular release, release location, temperature and synaptic cross-talk

verfasst von: Jérôme Boucher, Helmut Kröger, Attila Sík

Erschienen in: Brain Structure and Function | Ausgabe 1/2010

Einloggen, um Zugang zu erhalten

Abstract

Chemically mediated synaptic transmission results from fusion of synaptic vesicles with the presynaptic plasma membrane, subsequent release of the vesicular content into the cleft and binding to postsynaptic receptors. Previous modelling studies of excitatory neurotransmitter glutamate were based on simplified geometries failing to account for the biologically realistic synaptic environment, in particular, the presence of astrocytes, the geometry of extracellular space, and the neurotransmitter uptake mechanism. Using 3-dimensional reconstructions of hippocampal glutamatergic synapses including the surrounding astrocytic processes we have developed a biologically realistic model to analyse receptor activation in different conditions. We used the finite element method to simulate glutamate release, analyse glutamate diffusion following single and multiple vesicle release and binding at the postsynaptic site to AMPA and NMDA receptors. We demonstrate that: (1) the transmitter diffusion is highly temperature-sensitive; (2) release conditions and geometry more specifically affect AMPARs than NMDARs; (3) the sensitivities of AMPARs and NMDARs to simultaneous vesicular release are different; (4) in the case of multivesicle neurotransmitter release with variable delays, the binding of glutamate to AMPARs is additive up to 1 ms after the release, then becomes independent, but to NMDARs the binding is additive up to 33 ms; (5) the number of AMPARs varies more than the number of NMDRs in response to the input firing patterns; (6) the presence of astrocytes effectively blocks synaptic cross-talk; and (7) synaptic cross-talk, mediated by NMDARs but not AMPARs, is only possible after quasi-simultaneous multivesicular release at physiological temperature (35°C) without intervening astrocytes, but not at 25°C. Our simulations demonstrate the importance of temperature and ultrastructural synaptic environment in synaptic transmission and synaptic cross-talk.
Literatur
Zurück zum Zitat Agmon N, Edelstein AL (1997) Collective binding properties of receptor arrays. Biophys J 72:1582–1594CrossRefPubMed Agmon N, Edelstein AL (1997) Collective binding properties of receptor arrays. Biophys J 72:1582–1594CrossRefPubMed
Zurück zum Zitat Andrasfalvy BK, Magee JC (2001) Distance-dependent increase in AMPA receptor number in the dendrites of adult hippocampal CA1 pyramidal neurons. J Neurosci 21:9151–9159PubMed Andrasfalvy BK, Magee JC (2001) Distance-dependent increase in AMPA receptor number in the dendrites of adult hippocampal CA1 pyramidal neurons. J Neurosci 21:9151–9159PubMed
Zurück zum Zitat Asztely F, Erdemli G, Kullmann DM (1997) Extrasynaptic glutamate spillover in the hippocampus: dependence on temperature and the role of active glutamate uptake. Neuron 18:281–293CrossRefPubMed Asztely F, Erdemli G, Kullmann DM (1997) Extrasynaptic glutamate spillover in the hippocampus: dependence on temperature and the role of active glutamate uptake. Neuron 18:281–293CrossRefPubMed
Zurück zum Zitat Bartol TM Jr, Land BR, Salpeter EE, Salpeter MM (1991) Monte Carlo simulation of miniature endplate current generation in the vertebrate neuromuscular junction. Biophys J 59:1290–1307CrossRefPubMed Bartol TM Jr, Land BR, Salpeter EE, Salpeter MM (1991) Monte Carlo simulation of miniature endplate current generation in the vertebrate neuromuscular junction. Biophys J 59:1290–1307CrossRefPubMed
Zurück zum Zitat Bekkers JM, Richerson GB, Stevens CF (1990) Origin of variability in quantal size in cultured hippocampal neurons and hippocampal slices. Proc Natl Acad Sci USA 87:5359–5362CrossRefPubMed Bekkers JM, Richerson GB, Stevens CF (1990) Origin of variability in quantal size in cultured hippocampal neurons and hippocampal slices. Proc Natl Acad Sci USA 87:5359–5362CrossRefPubMed
Zurück zum Zitat Bergles DE, Jahr CE (1998) Glial contribution to glutamate uptake at Schaffer collateral-commissural synapses in the hippocampus. J Neurosci 18:7709–7716PubMed Bergles DE, Jahr CE (1998) Glial contribution to glutamate uptake at Schaffer collateral-commissural synapses in the hippocampus. J Neurosci 18:7709–7716PubMed
Zurück zum Zitat Bruns D, Riedel D, Klingauf J, Jahn R (2000) Quantal release of serotonin. Neuron 28:205–220CrossRefPubMed Bruns D, Riedel D, Klingauf J, Jahn R (2000) Quantal release of serotonin. Neuron 28:205–220CrossRefPubMed
Zurück zum Zitat Chen KC, Nicholson C (2000) Changes in brain cell shape create residual extracellular space volume and explain tortuosity behavior during osmotic challenge. Proc Natl Acad Sci USA 97:8306–8311CrossRefPubMed Chen KC, Nicholson C (2000) Changes in brain cell shape create residual extracellular space volume and explain tortuosity behavior during osmotic challenge. Proc Natl Acad Sci USA 97:8306–8311CrossRefPubMed
Zurück zum Zitat Clements JD (1996) Transmitter timecourse in the synaptic cleft: its role in central synaptic function. Trends Neurosci 19:163–171CrossRefPubMed Clements JD (1996) Transmitter timecourse in the synaptic cleft: its role in central synaptic function. Trends Neurosci 19:163–171CrossRefPubMed
Zurück zum Zitat Clements JD, Lester RA, Tong G, Jahr CE, Westbrook GL (1992) The time course of glutamate in the synaptic cleft. Science 258:1498–1501CrossRefPubMed Clements JD, Lester RA, Tong G, Jahr CE, Westbrook GL (1992) The time course of glutamate in the synaptic cleft. Science 258:1498–1501CrossRefPubMed
Zurück zum Zitat De Robertis E (1967) Ultrastructure and cytochemistry of the synaptic region. The macromolecular components involved in nerve transmission are being studied. Science 156:907–914CrossRefPubMed De Robertis E (1967) Ultrastructure and cytochemistry of the synaptic region. The macromolecular components involved in nerve transmission are being studied. Science 156:907–914CrossRefPubMed
Zurück zum Zitat Diamond JS, Jahr CE (1997) Transporters buffer synaptically released glutamate on a submillisecond time scale. J Neurosci 17:4672–4687PubMed Diamond JS, Jahr CE (1997) Transporters buffer synaptically released glutamate on a submillisecond time scale. J Neurosci 17:4672–4687PubMed
Zurück zum Zitat Dobrunz LE, Stevens CF (1997) Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron 18:995–1008CrossRefPubMed Dobrunz LE, Stevens CF (1997) Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron 18:995–1008CrossRefPubMed
Zurück zum Zitat Faber DS, Young WS, Legendre P, Korn H (1992) Intrinsic quantal variability due to stochastic properties of receptor–transmitter interactions. Science 258:1494–1498CrossRefPubMed Faber DS, Young WS, Legendre P, Korn H (1992) Intrinsic quantal variability due to stochastic properties of receptor–transmitter interactions. Science 258:1494–1498CrossRefPubMed
Zurück zum Zitat Forti L, Bossi M, Bergamaschi A, Villa A, Malgaroli A (1997) Loose-patch recordings of single quanta at individual hippocampal synapses. Nature 388:874–878CrossRefPubMed Forti L, Bossi M, Bergamaschi A, Villa A, Malgaroli A (1997) Loose-patch recordings of single quanta at individual hippocampal synapses. Nature 388:874–878CrossRefPubMed
Zurück zum Zitat Franks KM, Bartol TM Jr, Sejnowski TJ (2002) A Monte Carlo model reveals independent signaling at central glutamatergic synapses. Biophys J 83:2333–2348CrossRefPubMed Franks KM, Bartol TM Jr, Sejnowski TJ (2002) A Monte Carlo model reveals independent signaling at central glutamatergic synapses. Biophys J 83:2333–2348CrossRefPubMed
Zurück zum Zitat Franks KM, Stevens CF, Sejnowski TJ (2003) Independent sources of quantal variability at single glutamatergic synapses. J Neurosci 23:3186–3195PubMed Franks KM, Stevens CF, Sejnowski TJ (2003) Independent sources of quantal variability at single glutamatergic synapses. J Neurosci 23:3186–3195PubMed
Zurück zum Zitat Frerking M, Borges S, Wilson M (1995) Variation in GABA mini amplitude is the consequence of variation in transmitter concentration. Neuron 15:885–895CrossRefPubMed Frerking M, Borges S, Wilson M (1995) Variation in GABA mini amplitude is the consequence of variation in transmitter concentration. Neuron 15:885–895CrossRefPubMed
Zurück zum Zitat Geiger JRP, Roth A, Tasskin B, Jonas P (1999) Glutamate-mediated synaptic excitation of cortical interneurons. In: The handbook of experimental pharmacology. Springer, Berlin Geiger JRP, Roth A, Tasskin B, Jonas P (1999) Glutamate-mediated synaptic excitation of cortical interneurons. In: The handbook of experimental pharmacology. Springer, Berlin
Zurück zum Zitat Glavinovic MI, Rabie HR (1998) Monte Carlo simulation of spontaneous miniature excitatory postsynaptic currents in rat hippocampal synapse in the presence and absence of desensitization. Pflugers Arch 435:193–202CrossRefPubMed Glavinovic MI, Rabie HR (1998) Monte Carlo simulation of spontaneous miniature excitatory postsynaptic currents in rat hippocampal synapse in the presence and absence of desensitization. Pflugers Arch 435:193–202CrossRefPubMed
Zurück zum Zitat Hanse E, Gustafsson B (2001a) Quantal variability at glutamatergic synapses in area CA1 of the rat neonatal hippocampus. J Physiol 531:467–480CrossRefPubMed Hanse E, Gustafsson B (2001a) Quantal variability at glutamatergic synapses in area CA1 of the rat neonatal hippocampus. J Physiol 531:467–480CrossRefPubMed
Zurück zum Zitat Hanse E, Gustafsson B (2001b) Vesicle release probability and pre-primed pool at glutamatergic synapses in area CA1 of the rat neonatal hippocampus. J Physiol 531:481–493CrossRefPubMed Hanse E, Gustafsson B (2001b) Vesicle release probability and pre-primed pool at glutamatergic synapses in area CA1 of the rat neonatal hippocampus. J Physiol 531:481–493CrossRefPubMed
Zurück zum Zitat Harris KM, Landis DM (1986) Membrane structure at synaptic junctions in area CA1 of the rat hippocampus. Neuroscience 19:857–872CrossRefPubMed Harris KM, Landis DM (1986) Membrane structure at synaptic junctions in area CA1 of the rat hippocampus. Neuroscience 19:857–872CrossRefPubMed
Zurück zum Zitat Hestrin S, Nicoll RA, Perkel DJ, Sah P (1990a) Analysis of excitatory synaptic action in pyramidal cells using whole-cell recording from rat hippocampal slices. J Physiol 422:203–225PubMed Hestrin S, Nicoll RA, Perkel DJ, Sah P (1990a) Analysis of excitatory synaptic action in pyramidal cells using whole-cell recording from rat hippocampal slices. J Physiol 422:203–225PubMed
Zurück zum Zitat Hestrin S, Sah P, Nicoll RA (1990b) Mechanisms generating the time course of dual component excitatory synaptic currents recorded in hippocampal slices. Neuron 5:247–253CrossRefPubMed Hestrin S, Sah P, Nicoll RA (1990b) Mechanisms generating the time course of dual component excitatory synaptic currents recorded in hippocampal slices. Neuron 5:247–253CrossRefPubMed
Zurück zum Zitat Heuser JE, Reese TS, Dennis MJ, Jan Y, Jan L, Evans L (1979) Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J Cell Biol 81:275–300CrossRefPubMed Heuser JE, Reese TS, Dennis MJ, Jan Y, Jan L, Evans L (1979) Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J Cell Biol 81:275–300CrossRefPubMed
Zurück zum Zitat Holmes WR (1995) Modeling the effect of glutamate diffusion and uptake on NMDA and non-NMDA receptor saturation. Biophys J 69:1734–1747CrossRefPubMed Holmes WR (1995) Modeling the effect of glutamate diffusion and uptake on NMDA and non-NMDA receptor saturation. Biophys J 69:1734–1747CrossRefPubMed
Zurück zum Zitat Isaac JT, Oliet SH, Hjelmstad GO, Nicoll RA, Malenka RC (1996) Expression mechanisms of long-term potentiation in the hippocampus. J Physiol Paris 90:299–303CrossRefPubMed Isaac JT, Oliet SH, Hjelmstad GO, Nicoll RA, Malenka RC (1996) Expression mechanisms of long-term potentiation in the hippocampus. J Physiol Paris 90:299–303CrossRefPubMed
Zurück zum Zitat Jonas P, Major G, Sakmann B (1993) Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus. J Physiol 472:615–663PubMed Jonas P, Major G, Sakmann B (1993) Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus. J Physiol 472:615–663PubMed
Zurück zum Zitat Katz B (1969) The release of neural transmitter substances. Liverpool University Press, Liverpool, UK Katz B (1969) The release of neural transmitter substances. Liverpool University Press, Liverpool, UK
Zurück zum Zitat Kharazia VN, Weinberg RJ (1999) Immunogold localization of AMPA and NMDA receptors in somatic sensory cortex of albino rat. J Comp Neurol 412:292–302CrossRefPubMed Kharazia VN, Weinberg RJ (1999) Immunogold localization of AMPA and NMDA receptors in somatic sensory cortex of albino rat. J Comp Neurol 412:292–302CrossRefPubMed
Zurück zum Zitat Kidd FL, Isaac JT (2001) Kinetics and activation of postsynaptic kainate receptors at thalamocortical synapses: role of glutamate clearance. J Neurophysiol 86:1139–1148PubMed Kidd FL, Isaac JT (2001) Kinetics and activation of postsynaptic kainate receptors at thalamocortical synapses: role of glutamate clearance. J Neurophysiol 86:1139–1148PubMed
Zurück zum Zitat Kirov SA, Sorra KE, Harris KM (1999) Slices have more synapses than perfusion-fixed hippocampus from both young and mature rats. J Neurosci 19:2876–2886PubMed Kirov SA, Sorra KE, Harris KM (1999) Slices have more synapses than perfusion-fixed hippocampus from both young and mature rats. J Neurosci 19:2876–2886PubMed
Zurück zum Zitat Kleinle J, Vogt K, Luscher HR, Muller L, Senn W, Wyler K, Streit J (1996) Transmitter concentration profiles in the synaptic cleft: an analytical model of release and diffusion. Biophys J 71:2413–2426CrossRefPubMed Kleinle J, Vogt K, Luscher HR, Muller L, Senn W, Wyler K, Streit J (1996) Transmitter concentration profiles in the synaptic cleft: an analytical model of release and diffusion. Biophys J 71:2413–2426CrossRefPubMed
Zurück zum Zitat Korn H, Bausela F, Charpier S, Faber DS (1993) Synaptic noise and multiquantal release at dendritic synapses. J Neurophysiol 70:1249–1254PubMed Korn H, Bausela F, Charpier S, Faber DS (1993) Synaptic noise and multiquantal release at dendritic synapses. J Neurophysiol 70:1249–1254PubMed
Zurück zum Zitat Kruk PJ, Korn H, Faber DS (1997) The effects of geometrical parameters on synaptic transmission: a Monte Carlo simulation study. Biophys J 73:2874–2890CrossRefPubMed Kruk PJ, Korn H, Faber DS (1997) The effects of geometrical parameters on synaptic transmission: a Monte Carlo simulation study. Biophys J 73:2874–2890CrossRefPubMed
Zurück zum Zitat Kullmann DM, Asztely F (1998) Extrasynaptic glutamate spillover in the hippocampus: evidence and implications. Trends Neurosci 21:8–14CrossRefPubMed Kullmann DM, Asztely F (1998) Extrasynaptic glutamate spillover in the hippocampus: evidence and implications. Trends Neurosci 21:8–14CrossRefPubMed
Zurück zum Zitat Kullmann DM, Siegelbaum SA (1995) The site of expression of NMDA receptor-dependent LTP: new fuel for an old fire. Neuron 15:997–1002CrossRefPubMed Kullmann DM, Siegelbaum SA (1995) The site of expression of NMDA receptor-dependent LTP: new fuel for an old fire. Neuron 15:997–1002CrossRefPubMed
Zurück zum Zitat Kullmann DM, Erdemil G, Asztely F (1996) LTP of AMPA and NMDA receptor-mediated signals: evidence for presynaptic expression and extrasynaptic glutamate spill-over. Neuron 17:461–474CrossRefPubMed Kullmann DM, Erdemil G, Asztely F (1996) LTP of AMPA and NMDA receptor-mediated signals: evidence for presynaptic expression and extrasynaptic glutamate spill-over. Neuron 17:461–474CrossRefPubMed
Zurück zum Zitat Lehre KP, Danbolt NC (1998) The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. J Neurosci 18:8751–8757PubMed Lehre KP, Danbolt NC (1998) The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. J Neurosci 18:8751–8757PubMed
Zurück zum Zitat Lester RA, Jahr CE (1992) NMDA channel behavior depends on agonist affinity. J Neurosci 12:635–643PubMed Lester RA, Jahr CE (1992) NMDA channel behavior depends on agonist affinity. J Neurosci 12:635–643PubMed
Zurück zum Zitat Liu G, Tsien RW (1995) Synaptic transmission at single visualized hippocampal boutons. Neuropharmacology 34:1407–1421CrossRefPubMed Liu G, Tsien RW (1995) Synaptic transmission at single visualized hippocampal boutons. Neuropharmacology 34:1407–1421CrossRefPubMed
Zurück zum Zitat Liu G, Choi S, Tsien RW (1999) Variability of neurotransmitter concentration and nonsaturation of postsynaptic AMPA receptors at synapses in hippocampal cultures and slices. Neuron 22:395–409CrossRefPubMed Liu G, Choi S, Tsien RW (1999) Variability of neurotransmitter concentration and nonsaturation of postsynaptic AMPA receptors at synapses in hippocampal cultures and slices. Neuron 22:395–409CrossRefPubMed
Zurück zum Zitat Longsworth LG (1953) Diffusion measurements, at 25, of aqueous solutions of amino acids, peptides and sugars. J Am Chem Soc 75:5705–5709 Longsworth LG (1953) Diffusion measurements, at 25, of aqueous solutions of amino acids, peptides and sugars. J Am Chem Soc 75:5705–5709
Zurück zum Zitat Magleby KL, Stevens CF (1972) A quantitative description of end-plate currents. J Physiol 223:173–197PubMed Magleby KL, Stevens CF (1972) A quantitative description of end-plate currents. J Physiol 223:173–197PubMed
Zurück zum Zitat Mainen ZF, Malinow R, Svoboda K (1999) Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated. Nature 399:151–155CrossRefPubMed Mainen ZF, Malinow R, Svoboda K (1999) Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated. Nature 399:151–155CrossRefPubMed
Zurück zum Zitat Matsuzaki M, Ellis-Davies GC, Nemoto T, Miyashita Y, Iino M, Kasai H (2001) Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 4:1086–1092CrossRefPubMed Matsuzaki M, Ellis-Davies GC, Nemoto T, Miyashita Y, Iino M, Kasai H (2001) Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 4:1086–1092CrossRefPubMed
Zurück zum Zitat McAllister AK, Stevens CF (2000) Nonsaturation of AMPA and NMDA receptors at hippocampal synapses. Proc Natl Acad Sci USA 97:6173–6178CrossRefPubMed McAllister AK, Stevens CF (2000) Nonsaturation of AMPA and NMDA receptors at hippocampal synapses. Proc Natl Acad Sci USA 97:6173–6178CrossRefPubMed
Zurück zum Zitat Murthy VN, Schikorski T, Stevens CF, Zhu Y (2001) Inactivity produces increases in neurotransmitter release and synapse size. Neuron 32:673–682CrossRefPubMed Murthy VN, Schikorski T, Stevens CF, Zhu Y (2001) Inactivity produces increases in neurotransmitter release and synapse size. Neuron 32:673–682CrossRefPubMed
Zurück zum Zitat Nieto-Sampedro M, Hoff SF, Cotman CW (1982) Perforated postsynaptic densities: probable intermediates in synapse turnover. Proc Natl Acad Sci USA 79:5718–5722CrossRefPubMed Nieto-Sampedro M, Hoff SF, Cotman CW (1982) Perforated postsynaptic densities: probable intermediates in synapse turnover. Proc Natl Acad Sci USA 79:5718–5722CrossRefPubMed
Zurück zum Zitat Nusser Z, Lujan R, Laube G, Roberts JD, Molnar E, Somogyi P (1998) Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron 21:545–559CrossRefPubMed Nusser Z, Lujan R, Laube G, Roberts JD, Molnar E, Somogyi P (1998) Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron 21:545–559CrossRefPubMed
Zurück zum Zitat Patneau DK, Mayer ML (1990) Structure-activity relationships for amino acid transmitter candidates acting at N-methyl-d-aspartate and quisqualate receptors. J Neurosci 10:2385–2399PubMed Patneau DK, Mayer ML (1990) Structure-activity relationships for amino acid transmitter candidates acting at N-methyl-d-aspartate and quisqualate receptors. J Neurosci 10:2385–2399PubMed
Zurück zum Zitat Peters A, Palade SL, Webster HDF (1991) The fine structure of the nervous system. Oxford University Press, New York Peters A, Palade SL, Webster HDF (1991) The fine structure of the nervous system. Oxford University Press, New York
Zurück zum Zitat Prange O, Murphy TH (1999) Analysis of multiquantal transmitter release from single cultured cortical neuron terminals. J Neurophysiol 81:1810–1817PubMed Prange O, Murphy TH (1999) Analysis of multiquantal transmitter release from single cultured cortical neuron terminals. J Neurophysiol 81:1810–1817PubMed
Zurück zum Zitat Raastad M, Storm JF, Andersen P (1992) Putative single quantum and single fibre excitatory postsynaptic currents show similar amplitude range and variability in rat hippocampal slices. Eur J Neurosci 4:113–117CrossRefPubMed Raastad M, Storm JF, Andersen P (1992) Putative single quantum and single fibre excitatory postsynaptic currents show similar amplitude range and variability in rat hippocampal slices. Eur J Neurosci 4:113–117CrossRefPubMed
Zurück zum Zitat Racca C, Stephenson FA, Streit P, Roberts JD, Somogyi P (2000) NMDA receptor content of synapses in stratum radiatum of the hippocampal CA1 area. J Neurosci 20:2512–2522PubMed Racca C, Stephenson FA, Streit P, Roberts JD, Somogyi P (2000) NMDA receptor content of synapses in stratum radiatum of the hippocampal CA1 area. J Neurosci 20:2512–2522PubMed
Zurück zum Zitat Raghavachari S, Lisman JE (2004) Properties of quantal transmission at CA1 synapses. J Neurophysiol 92:2456–2467CrossRefPubMed Raghavachari S, Lisman JE (2004) Properties of quantal transmission at CA1 synapses. J Neurophysiol 92:2456–2467CrossRefPubMed
Zurück zum Zitat Rusakov DA, Kullmann DM (1998) A tortuous and viscous route to understanding diffusion in the brain. Trends Neurosci 21:469–470CrossRefPubMed Rusakov DA, Kullmann DM (1998) A tortuous and viscous route to understanding diffusion in the brain. Trends Neurosci 21:469–470CrossRefPubMed
Zurück zum Zitat Rusakov DA, Kullmann DM, Stewart MG (1999) Hippocampal synapses: do they talk to their neighbours? Trends Neurosci 22:382–388CrossRefPubMed Rusakov DA, Kullmann DM, Stewart MG (1999) Hippocampal synapses: do they talk to their neighbours? Trends Neurosci 22:382–388CrossRefPubMed
Zurück zum Zitat Schikorski T, Stevens CF (1997) Quantitative ultrastructural analysis of hippocampal excitatory synapses. J Neurosci 17:5858–5867PubMed Schikorski T, Stevens CF (1997) Quantitative ultrastructural analysis of hippocampal excitatory synapses. J Neurosci 17:5858–5867PubMed
Zurück zum Zitat Schikorski T, Stevens CF (2001) Morphological correlates of functionally defined synaptic vesicle populations. Nat Neurosci 4:391–395CrossRefPubMed Schikorski T, Stevens CF (2001) Morphological correlates of functionally defined synaptic vesicle populations. Nat Neurosci 4:391–395CrossRefPubMed
Zurück zum Zitat Schmitz D, Frerking M, Nicoll RA (2000) Synaptic activation of presynaptic kainate receptors on hippocampal mossy fiber synapses. Neuron 27:327–338CrossRefPubMed Schmitz D, Frerking M, Nicoll RA (2000) Synaptic activation of presynaptic kainate receptors on hippocampal mossy fiber synapses. Neuron 27:327–338CrossRefPubMed
Zurück zum Zitat Schwartz EA, Tachibana M (1990) Electrophysiology of glutamate and sodium co-transport in a glial cell of the salamander retina. J Physiol 426:43–80PubMed Schwartz EA, Tachibana M (1990) Electrophysiology of glutamate and sodium co-transport in a glial cell of the salamander retina. J Physiol 426:43–80PubMed
Zurück zum Zitat Semyanov A, Kullmann DM (2000) Modulation of GABAergic signaling among interneurons by metabotropic glutamate receptors. Neuron 25:663–672CrossRefPubMed Semyanov A, Kullmann DM (2000) Modulation of GABAergic signaling among interneurons by metabotropic glutamate receptors. Neuron 25:663–672CrossRefPubMed
Zurück zum Zitat Spruce AE, Breckenridge LJ, Lee AK, Almers W (1990) Properties of the fusion pore that forms during exocytosis of a mast cell secretory vesicle. Neuron 4:643–654CrossRefPubMed Spruce AE, Breckenridge LJ, Lee AK, Almers W (1990) Properties of the fusion pore that forms during exocytosis of a mast cell secretory vesicle. Neuron 4:643–654CrossRefPubMed
Zurück zum Zitat Stevens CF, Wang Y (1995) Facilitation and depression at single central synapses. Neuron 14:795–802CrossRefPubMed Stevens CF, Wang Y (1995) Facilitation and depression at single central synapses. Neuron 14:795–802CrossRefPubMed
Zurück zum Zitat Stiles JR, Van Helden D, Bartol TM Jr, Salpeter EE, Salpeter MM (1996) Miniature endplate current rise times less than 100 microseconds from improved dual recordings can be modeled with passive acetylcholine diffusion from a synaptic vesicle. Proc Natl Acad Sci USA 93:5747–5752CrossRefPubMed Stiles JR, Van Helden D, Bartol TM Jr, Salpeter EE, Salpeter MM (1996) Miniature endplate current rise times less than 100 microseconds from improved dual recordings can be modeled with passive acetylcholine diffusion from a synaptic vesicle. Proc Natl Acad Sci USA 93:5747–5752CrossRefPubMed
Zurück zum Zitat Takuma H, Kwak S, Yoshizawa T, Kanazawa I (1999) Reduction of GluR2 RNA editing, a molecular change that increases calcium influx through AMPA receptors, selective in the spinal ventral gray of patients with amyotrophic lateral sclerosis. Ann Neurol 46:806–815CrossRefPubMed Takuma H, Kwak S, Yoshizawa T, Kanazawa I (1999) Reduction of GluR2 RNA editing, a molecular change that increases calcium influx through AMPA receptors, selective in the spinal ventral gray of patients with amyotrophic lateral sclerosis. Ann Neurol 46:806–815CrossRefPubMed
Zurück zum Zitat Takumi Y, Ramirez-Leon V, Laake P, Rinvik E, Ottersen OP (1999) Different modes of expression of AMPA and NMDA receptors in hippocampal synapses. Nat Neurosci 2:618–624CrossRefPubMed Takumi Y, Ramirez-Leon V, Laake P, Rinvik E, Ottersen OP (1999) Different modes of expression of AMPA and NMDA receptors in hippocampal synapses. Nat Neurosci 2:618–624CrossRefPubMed
Zurück zum Zitat Tong G, Jahr CE (1994a) Block of glutamate transporters potentiates postsynaptic excitation. Neuron 13:1195–1203CrossRefPubMed Tong G, Jahr CE (1994a) Block of glutamate transporters potentiates postsynaptic excitation. Neuron 13:1195–1203CrossRefPubMed
Zurück zum Zitat Tong G, Jahr CE (1994b) Multivesicular release from excitatory synapses of cultured hippocampal neurons. Neuron 12:51–59CrossRefPubMed Tong G, Jahr CE (1994b) Multivesicular release from excitatory synapses of cultured hippocampal neurons. Neuron 12:51–59CrossRefPubMed
Zurück zum Zitat Van der Kloot W, Molgo J (1994) Quantal acetylcholine release at the vertebrate neuromuscular junction. Physiol Rev 74:899–991PubMed Van der Kloot W, Molgo J (1994) Quantal acetylcholine release at the vertebrate neuromuscular junction. Physiol Rev 74:899–991PubMed
Zurück zum Zitat Ventriglia F, Di Maio V (2002) Stochastic fluctuations of the synaptic function. Biosystems 67:287–294CrossRefPubMed Ventriglia F, Di Maio V (2002) Stochastic fluctuations of the synaptic function. Biosystems 67:287–294CrossRefPubMed
Zurück zum Zitat Ventriglia F, Di Maio V (2003) Stochastic fluctuations of the quantal EPSC amplitude in computer simulated excitatory synapses of hippocampus. Biosystems 71:195–204CrossRefPubMed Ventriglia F, Di Maio V (2003) Stochastic fluctuations of the quantal EPSC amplitude in computer simulated excitatory synapses of hippocampus. Biosystems 71:195–204CrossRefPubMed
Zurück zum Zitat Ventriglia F, Maio VD (2003) Synaptic fusion pore structure and AMPA receptor activation according to Brownian simulation of glutamate diffusion. Biol Cybern 88:201–209CrossRefPubMed Ventriglia F, Maio VD (2003) Synaptic fusion pore structure and AMPA receptor activation according to Brownian simulation of glutamate diffusion. Biol Cybern 88:201–209CrossRefPubMed
Zurück zum Zitat Vogt KE, Nicoll RA (1999) Glutamate and gamma-aminobutyric acid mediate a heterosynaptic depression at mossy fiber synapses in the hippocampus. Proc Natl Acad Sci USA 96:1118–1122CrossRefPubMed Vogt KE, Nicoll RA (1999) Glutamate and gamma-aminobutyric acid mediate a heterosynaptic depression at mossy fiber synapses in the hippocampus. Proc Natl Acad Sci USA 96:1118–1122CrossRefPubMed
Zurück zum Zitat Wadiche JI, Jahr CE (2001) Multivesicular release at climbing fiber-Purkinje cell synapses. Neuron 32:301–313CrossRefPubMed Wadiche JI, Jahr CE (2001) Multivesicular release at climbing fiber-Purkinje cell synapses. Neuron 32:301–313CrossRefPubMed
Zurück zum Zitat Wadiche JI, Arriza JL, Amara SG, Kavanaugh MP (1995) Kinetics of a human glutamate transporter. Neuron 14:1019–1027CrossRefPubMed Wadiche JI, Arriza JL, Amara SG, Kavanaugh MP (1995) Kinetics of a human glutamate transporter. Neuron 14:1019–1027CrossRefPubMed
Zurück zum Zitat Wahl LM, Pouzat C, Stratford KJ (1996) Monte Carlo simulation of fast excitatory synaptic transmission at a hippocampal synapse. J Neurophysiol 75:597–608PubMed Wahl LM, Pouzat C, Stratford KJ (1996) Monte Carlo simulation of fast excitatory synaptic transmission at a hippocampal synapse. J Neurophysiol 75:597–608PubMed
Zurück zum Zitat Wall MJ, Usowicz MM (1998) Development of the quantal properties of evoked and spontaneous synaptic currents at a brain synapse. Nat Neurosci 1:675–682CrossRefPubMed Wall MJ, Usowicz MM (1998) Development of the quantal properties of evoked and spontaneous synaptic currents at a brain synapse. Nat Neurosci 1:675–682CrossRefPubMed
Zurück zum Zitat Wathey JC, Nass MM, Lester HA (1979) Numerical reconstruction of the quantal event at nicotinic synapses. Biophys J 27:145–164CrossRefPubMed Wathey JC, Nass MM, Lester HA (1979) Numerical reconstruction of the quantal event at nicotinic synapses. Biophys J 27:145–164CrossRefPubMed
Zurück zum Zitat Wong RK, Prince DA (1981) Afterpotential generation in hippocampal pyramidal cells. J Neurophysiol 45:86–97PubMed Wong RK, Prince DA (1981) Afterpotential generation in hippocampal pyramidal cells. J Neurophysiol 45:86–97PubMed
Zurück zum Zitat Wong RK, Prince DA, Basbaum AI (1979) Intradendritic recordings from hippocampal neurons. Proc Natl Acad Sci USA 76:986–990CrossRefPubMed Wong RK, Prince DA, Basbaum AI (1979) Intradendritic recordings from hippocampal neurons. Proc Natl Acad Sci USA 76:986–990CrossRefPubMed
Zurück zum Zitat Zhang B, Ganetzky B, Bellen HJ, Murthy VN (1999) Tailoring uniform coats for synaptic vesicles during endocytosis. Neuron 23:419–422CrossRefPubMed Zhang B, Ganetzky B, Bellen HJ, Murthy VN (1999) Tailoring uniform coats for synaptic vesicles during endocytosis. Neuron 23:419–422CrossRefPubMed
Zurück zum Zitat Zimmermann H, Denston CR (1977) Separation of synaptic vesicles of different functional states from the cholinergic synapses of the Torpedo electric organ. Neuroscience 2:715–730CrossRefPubMed Zimmermann H, Denston CR (1977) Separation of synaptic vesicles of different functional states from the cholinergic synapses of the Torpedo electric organ. Neuroscience 2:715–730CrossRefPubMed
Metadaten
Titel
Realistic modelling of receptor activation in hippocampal excitatory synapses: analysis of multivesicular release, release location, temperature and synaptic cross-talk
verfasst von
Jérôme Boucher
Helmut Kröger
Attila Sík
Publikationsdatum
01.07.2010
Verlag
Springer-Verlag
Erschienen in
Brain Structure and Function / Ausgabe 1/2010
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-010-0273-x

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.