Skip to main content
Erschienen in:

15.01.2024 | Tropical, Travel and Emerging Infections (LH Chen and F Norman, Section Editors)

Recent Advancements in the Therapeutic Development for Marburg Virus: Updates on Clinical Trials

verfasst von: Garima Sharma, Ashish Ranjan Sharma, Jin-Chul Kim

Erschienen in: Current Infectious Disease Reports | Ausgabe 2/2024

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

We aim to provide valuable insights into the current state of therapeutic development for the deadly Marburg virus and guide researchers and clinicians to study the emerging therapies and shape future directions against this deadly virus.

Recent Findings

We find considerable progress in understanding the molecular biology and pathogenesis of the Marburg virus, leading to the identification of small-molecule antivirals and host-targeted approaches, including RNA polymerase inhibitors, viral entry inhibitors, and RNA interference therapies. However, there are very few ongoing clinical trials on the therapy/vaccine development against Marburg virus. Some of the potential studied candidates are chimpanzee adenovirus type 3, modified vaccinia Ankara, Marburg DNA plasmid vaccine, antisense phosphorodiamidate morpholino oligomers, and galidesivir. Yet, there are no approved vaccines or drugs against Marburg virus due to the viral genetic variability.

Summary

Extensive efforts and global awareness in the scientific society are requisite to develop preventive and therapeutic measures focusing on combinatorial formulations against Marburg virus.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Wellington J, Nur A, Nicholas A, Uwishema O, Chaito H, Awosiku O, et al. Marburg virus outbreak in Ghana: An impending crisis. Ann Med Surg. 2022;81:104377.CrossRef Wellington J, Nur A, Nicholas A, Uwishema O, Chaito H, Awosiku O, et al. Marburg virus outbreak in Ghana: An impending crisis. Ann Med Surg. 2022;81:104377.CrossRef
3.
Zurück zum Zitat Feldmann H, Slenczka W, Klenk HD. Emerging and reemerging of filoviruses. Arch Virol Suppl. 1996;11:77–100.PubMed Feldmann H, Slenczka W, Klenk HD. Emerging and reemerging of filoviruses. Arch Virol Suppl. 1996;11:77–100.PubMed
5.
Zurück zum Zitat Nsomo N. Marburg virus disease - Equatorial Guinea and the United Republic of Tanzania. 2023;1–8. Nsomo N. Marburg virus disease - Equatorial Guinea and the United Republic of Tanzania. 2023;1–8.
8.
Zurück zum Zitat •• Araf Y, Maliha ST, Zhai J, Zheng C. Marburg virus outbreak in 2022: A public health concern. Lancet Microbe. 2022. A description about the need of raising concern among people worldwide to prevent future outbreak and possible pandemic of Marburg virus disease. •• Araf Y, Maliha ST, Zhai J, Zheng C. Marburg virus outbreak in 2022: A public health concern. Lancet Microbe. 2022. A description about the need of raising concern among people worldwide to prevent future outbreak and possible pandemic of Marburg virus disease.
11.
Zurück zum Zitat • Sah R, Mohanty A, Reda A, Siddiq A, Mohapatra RK, Dhama K. Marburg virus re-emerged in 2022: Recently detected in Ghana, another zoonotic pathogen coming up amid rising cases of Monkeypox and ongoing COVID-19 pandemic- global health concerns and counteracting measures. Vet Q. 2022;42:167–71. The impact of Marburg virus spread on global health amid the COVID-19 and monkeypox is described.PubMedPubMedCentralCrossRef • Sah R, Mohanty A, Reda A, Siddiq A, Mohapatra RK, Dhama K. Marburg virus re-emerged in 2022: Recently detected in Ghana, another zoonotic pathogen coming up amid rising cases of Monkeypox and ongoing COVID-19 pandemic- global health concerns and counteracting measures. Vet Q. 2022;42:167–71. The impact of Marburg virus spread on global health amid the COVID-19 and monkeypox is described.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Brainard J, Pond K, Hooper L, Edmunds K, Hunter P. Presence and persistence of Ebola or Marburg virus in patients and survivors: A rapid systematic review. PLoS Negl Trop Dis. 2016;10:e0004475.PubMedPubMedCentralCrossRef Brainard J, Pond K, Hooper L, Edmunds K, Hunter P. Presence and persistence of Ebola or Marburg virus in patients and survivors: A rapid systematic review. PLoS Negl Trop Dis. 2016;10:e0004475.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Glaze ER, Roy MJ, Dalrymple LW, Lanning LL. A comparison of the pathogenesis of Marburg virus disease in humans and nonhuman Primates and evaluation of the suitability of these animal models for predicting clinical efficacy under the “Animal Rule.” Comp Med. 2015;65:241–59.PubMedPubMedCentral Glaze ER, Roy MJ, Dalrymple LW, Lanning LL. A comparison of the pathogenesis of Marburg virus disease in humans and nonhuman Primates and evaluation of the suitability of these animal models for predicting clinical efficacy under the “Animal Rule.” Comp Med. 2015;65:241–59.PubMedPubMedCentral
14.
Zurück zum Zitat Messaoudi I, Amarasinghe GK, Basler CF. Filovirus pathogenesis and immune evasion: Insights from Ebola virus and Marburg virus. Nat Rev Microbiol. 2015;13:663–76.PubMedPubMedCentralCrossRef Messaoudi I, Amarasinghe GK, Basler CF. Filovirus pathogenesis and immune evasion: Insights from Ebola virus and Marburg virus. Nat Rev Microbiol. 2015;13:663–76.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Pigott DM, Golding N, Mylne A, Huang Z, Weiss DJ, Brady OJ, et al. Mapping the zoonotic niche of Marburg virus disease in Africa. Trans R Soc Trop Med Hyg. 2015;109:366–78.PubMedPubMedCentralCrossRef Pigott DM, Golding N, Mylne A, Huang Z, Weiss DJ, Brady OJ, et al. Mapping the zoonotic niche of Marburg virus disease in Africa. Trans R Soc Trop Med Hyg. 2015;109:366–78.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Morens DM, Breman JG, Calisher CH, Doherty PC, Hahn BH, Keusch GT, et al. The origin of COVID-19 and why it matters. Am J Trop Med Hyg. 2020;103:955–9.PubMedPubMedCentralCrossRef Morens DM, Breman JG, Calisher CH, Doherty PC, Hahn BH, Keusch GT, et al. The origin of COVID-19 and why it matters. Am J Trop Med Hyg. 2020;103:955–9.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat •• Meltzer E, Schwartz E. Ebola and Marburg virus infections in resource-rich countries: Implications for future outbreaks. Curr Infect Dis Rep [Internet]. 2023;25:181–8. Available from: https://doi.org/10.1007/s11908-023-00810-y. An important review explaining that rigorous infection-control measures may cause delays in the diagnosis and treatment of other important life-threatening infections. •• Meltzer E, Schwartz E. Ebola and Marburg virus infections in resource-rich countries: Implications for future outbreaks. Curr Infect Dis Rep [Internet]. 2023;25:181–8. Available from: https://​doi.​org/​10.​1007/​s11908-023-00810-y. An important review explaining that rigorous infection-control measures may cause delays in the diagnosis and treatment of other important life-threatening infections.
19.
Zurück zum Zitat •• Mane Manohar MP, Lee VJ, Chinedum Odunukwe EU, Singh PK, Mpofu BS, Oxley C. Advancements in Marburg (MARV) virus vaccine research with its recent reemergence in Equatorial Guinea and Tanzania: a scoping review. Cureus. 2023;15:e42014. An important scoping review discusses the status of the Marburg virus-associated vaccine development. This review mentions that although various candidates for Marburg virus therapy/vaccine has been proposed, no vaccine or specific therapy have been approved yet. •• Mane Manohar MP, Lee VJ, Chinedum Odunukwe EU, Singh PK, Mpofu BS, Oxley C. Advancements in Marburg (MARV) virus vaccine research with its recent reemergence in Equatorial Guinea and Tanzania: a scoping review. Cureus. 2023;15:e42014. An important scoping review discusses the status of the Marburg virus-associated vaccine development. This review mentions that although various candidates for Marburg virus therapy/vaccine has been proposed, no vaccine or specific therapy have been approved yet.
20.
Zurück zum Zitat Ji X, Olinger GG, Aris S, Chen Y, Gewurz H, Spear GT. Mannose-binding lectin binds to Ebola and Marburg envelope glycoproteins, resulting in blocking of virus interaction with DC-SIGN and complement-mediated virus neutralization. J Gen Virol. 2005;86:2535–42.PubMedCrossRef Ji X, Olinger GG, Aris S, Chen Y, Gewurz H, Spear GT. Mannose-binding lectin binds to Ebola and Marburg envelope glycoproteins, resulting in blocking of virus interaction with DC-SIGN and complement-mediated virus neutralization. J Gen Virol. 2005;86:2535–42.PubMedCrossRef
21.
Zurück zum Zitat Wang J, Qiao L, Hou Z, Luo G. TIM-1 promotes hepatitis C virus cell attachment and infection. J Virol. 2017;91. Wang J, Qiao L, Hou Z, Luo G. TIM-1 promotes hepatitis C virus cell attachment and infection. J Virol. 2017;91.
22.
Zurück zum Zitat Liu N, Tao Y, Brenowitz MD, Girvin ME, Lai JR. Structural and functional studies on the Marburg virus GP2 fusion loop. J Infect Dis. 2015;212(Suppl 2):S146–53.PubMedPubMedCentralCrossRef Liu N, Tao Y, Brenowitz MD, Girvin ME, Lai JR. Structural and functional studies on the Marburg virus GP2 fusion loop. J Infect Dis. 2015;212(Suppl 2):S146–53.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Madara JJ, Han Z, Ruthel G, Freedman BD, Harty RN. The multifunctional Ebola virus VP40 matrix protein is a promising therapeutic target. Future Virol. 2015;10:537–46.PubMedPubMedCentralCrossRef Madara JJ, Han Z, Ruthel G, Freedman BD, Harty RN. The multifunctional Ebola virus VP40 matrix protein is a promising therapeutic target. Future Virol. 2015;10:537–46.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Edwards MR, Liu G, Mire CE, Sureshchandra S, Luthra P, Yen B, et al. Differential regulation of interferon responses by Ebola and Marburg virus VP35 proteins. Cell Rep. 2016;14:1632–40.PubMedPubMedCentralCrossRef Edwards MR, Liu G, Mire CE, Sureshchandra S, Luthra P, Yen B, et al. Differential regulation of interferon responses by Ebola and Marburg virus VP35 proteins. Cell Rep. 2016;14:1632–40.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Kajihara M, Marzi A, Nakayama E, Noda T, Kuroda M, Manzoor R, et al. Inhibition of Marburg virus budding by nonneutralizing antibodies to the envelope glycoprotein. J Virol. 2012;86:13467–74.PubMedPubMedCentralCrossRef Kajihara M, Marzi A, Nakayama E, Noda T, Kuroda M, Manzoor R, et al. Inhibition of Marburg virus budding by nonneutralizing antibodies to the envelope glycoprotein. J Virol. 2012;86:13467–74.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat King LB, Fusco ML, Flyak AI, Ilinykh PA, Huang K, Gunn B, et al. The Marburgvirus-neutralizing human monoclonal antibody MR191 targets a conserved site to block virus receptor binding. Cell Host Microbe. 2018;23:101-109.e4.PubMedPubMedCentralCrossRef King LB, Fusco ML, Flyak AI, Ilinykh PA, Huang K, Gunn B, et al. The Marburgvirus-neutralizing human monoclonal antibody MR191 targets a conserved site to block virus receptor binding. Cell Host Microbe. 2018;23:101-109.e4.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Amatya P, Wagner N, Chen G, Luthra P, Shi L, Borek D, et al. Inhibition of Marburg virus RNA synthesis by a synthetic anti-VP35 antibody. ACS Infect Dis. 2019;5:1385–96.PubMedPubMedCentralCrossRef Amatya P, Wagner N, Chen G, Luthra P, Shi L, Borek D, et al. Inhibition of Marburg virus RNA synthesis by a synthetic anti-VP35 antibody. ACS Infect Dis. 2019;5:1385–96.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Edwards MR, Basler CF. Current status of small molecule drug development for Ebola virus and other filoviruses. Curr Opin Virol. 2019;35:42–56.PubMedPubMedCentralCrossRef Edwards MR, Basler CF. Current status of small molecule drug development for Ebola virus and other filoviruses. Curr Opin Virol. 2019;35:42–56.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Patel DA, Patel AC, Nolan WC, Zhang Y, Holtzman MJ. High throughput screening for small molecule enhancers of the interferon signaling pathway to drive next-generation antiviral drug discovery. PLoS ONE. 2012;7:e36594.ADSPubMedPubMedCentralCrossRef Patel DA, Patel AC, Nolan WC, Zhang Y, Holtzman MJ. High throughput screening for small molecule enhancers of the interferon signaling pathway to drive next-generation antiviral drug discovery. PLoS ONE. 2012;7:e36594.ADSPubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Shehzadi K, Saba A, Yu M, Liang J. Structure-based drug design of RdRp inhibitors against SARS-CoV-2. Top Curr Chem. 2023;381:22.CrossRef Shehzadi K, Saba A, Yu M, Liang J. Structure-based drug design of RdRp inhibitors against SARS-CoV-2. Top Curr Chem. 2023;381:22.CrossRef
36.
Zurück zum Zitat Zhang X, Li A, Li T, Shou Z, Li Y, Qiao X, et al. A potential anti-HIV-1 compound, Q308, inhibits HSV-2 infection and replication in vitro and in vivo. Biomed Pharmacother. 2023;162:114595.PubMedCrossRef Zhang X, Li A, Li T, Shou Z, Li Y, Qiao X, et al. A potential anti-HIV-1 compound, Q308, inhibits HSV-2 infection and replication in vitro and in vivo. Biomed Pharmacother. 2023;162:114595.PubMedCrossRef
37.
Zurück zum Zitat • Peng S, Wang H, Wang Z, Wang Q. Progression of antiviral agents targeting viral polymerases. Molecules. 2022;27:7370. A review on antiviral therapies against viruses via targeting viral polymerases.PubMedPubMedCentralCrossRef • Peng S, Wang H, Wang Z, Wang Q. Progression of antiviral agents targeting viral polymerases. Molecules. 2022;27:7370. A review on antiviral therapies against viruses via targeting viral polymerases.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Ahmed S, Mahtarin R, Ahmed SS, Akter S, Islam MS, Mamun AA, et al. Investigating the binding affinity, interaction, and structure-activity-relationship of 76 prescription antiviral drugs targeting RdRp and Mpro of SARS-CoV-2. J Biomol Struct Dyn. 2021;39:6290–305.PubMedCrossRef Ahmed S, Mahtarin R, Ahmed SS, Akter S, Islam MS, Mamun AA, et al. Investigating the binding affinity, interaction, and structure-activity-relationship of 76 prescription antiviral drugs targeting RdRp and Mpro of SARS-CoV-2. J Biomol Struct Dyn. 2021;39:6290–305.PubMedCrossRef
39.
Zurück zum Zitat Quesada Muñoz L, Fernández-Fradejas J, Martinez-Barros H, Sánchez Cuervo M, Martín Rufo M, Pintor Recuenco MDR, et al. Real-world effectiveness and factors associated with increased mortality in non-critically ill patients with COVID-19 pneumonia receiving remdesivir. Eur J Hosp Pharm Sci Pract. 2023. Quesada Muñoz L, Fernández-Fradejas J, Martinez-Barros H, Sánchez Cuervo M, Martín Rufo M, Pintor Recuenco MDR, et al. Real-world effectiveness and factors associated with increased mortality in non-critically ill patients with COVID-19 pneumonia receiving remdesivir. Eur J Hosp Pharm Sci Pract. 2023.
40.
Zurück zum Zitat Radoshitzky SR, Iversen P, Lu X, Zou J, Kaptein SJF, Stuthman KS, et al. Expanded profiling of remdesivir as a broad-spectrum antiviral and low potential for interaction with other medications in vitro. Sci Rep. 2023;13:3131.ADSPubMedPubMedCentralCrossRef Radoshitzky SR, Iversen P, Lu X, Zou J, Kaptein SJF, Stuthman KS, et al. Expanded profiling of remdesivir as a broad-spectrum antiviral and low potential for interaction with other medications in vitro. Sci Rep. 2023;13:3131.ADSPubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Grimes SL, Choi YJ, Banerjee A, Small G, Anderson-Daniels J, Gribble J, et al. A mutation in the coronavirus nsp13-helicase impairs enzymatic activity and confers partial remdesivir resistance. MBio. 2023;e0106023. Grimes SL, Choi YJ, Banerjee A, Small G, Anderson-Daniels J, Gribble J, et al. A mutation in the coronavirus nsp13-helicase impairs enzymatic activity and confers partial remdesivir resistance. MBio. 2023;e0106023.
42.
Zurück zum Zitat Ye W, Yao M, Dong Y, Ye C, Wang D, Liu H, et al. Remdesivir (GS-5734) impedes enterovirus replication through viral RNA synthesis inhibition. Front Microbiol. 2020;11:1105.PubMedPubMedCentralCrossRef Ye W, Yao M, Dong Y, Ye C, Wang D, Liu H, et al. Remdesivir (GS-5734) impedes enterovirus replication through viral RNA synthesis inhibition. Front Microbiol. 2020;11:1105.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Porter DP, Weidner JM, Gomba L, Bannister R, Blair C, Jordan R, et al. Remdesivir (GS-5734) is efficacious in cynomolgus macaques infected with Marburg virus. J Infect Dis. 2020;222:1894–901.PubMedCrossRef Porter DP, Weidner JM, Gomba L, Bannister R, Blair C, Jordan R, et al. Remdesivir (GS-5734) is efficacious in cynomolgus macaques infected with Marburg virus. J Infect Dis. 2020;222:1894–901.PubMedCrossRef
44.
Zurück zum Zitat Warren TK, Jordan R, Lo MK, Ray AS, Mackman RL, Soloveva V, et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature. 2016;531:381–5.ADSPubMedPubMedCentralCrossRef Warren TK, Jordan R, Lo MK, Ray AS, Mackman RL, Soloveva V, et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature. 2016;531:381–5.ADSPubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Lo MK, Jordan R, Arvey A, Sudhamsu J, Shrivastava-Ranjan P, Hotard AL, et al. GS-5734 and its parent nucleoside analog inhibit Filo-, Pneumo-, and Paramyxoviruses. Sci Rep. 2017;7:43395.ADSPubMedPubMedCentralCrossRef Lo MK, Jordan R, Arvey A, Sudhamsu J, Shrivastava-Ranjan P, Hotard AL, et al. GS-5734 and its parent nucleoside analog inhibit Filo-, Pneumo-, and Paramyxoviruses. Sci Rep. 2017;7:43395.ADSPubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Jin Z, Smith LK, Rajwanshi VK, Kim B, Deval J. The ambiguous base-pairing and high substrate efficiency of T-705 (favipiravir) ribofuranosyl 5′-triphosphate towards influenza A virus polymerase. PLoS One. 2013;8. Jin Z, Smith LK, Rajwanshi VK, Kim B, Deval J. The ambiguous base-pairing and high substrate efficiency of T-705 (favipiravir) ribofuranosyl 5′-triphosphate towards influenza A virus polymerase. PLoS One. 2013;8.
47.
Zurück zum Zitat Bixler SL, Bocan TM, Wells J, Wetzel KS, Van Tongeren SA, Dong L, et al. Efficacy of favipiravir (T-705) in nonhuman primates infected with Ebola virus or Marburg virus. Antiviral Res. 2018;151:97–104.PubMedCrossRef Bixler SL, Bocan TM, Wells J, Wetzel KS, Van Tongeren SA, Dong L, et al. Efficacy of favipiravir (T-705) in nonhuman primates infected with Ebola virus or Marburg virus. Antiviral Res. 2018;151:97–104.PubMedCrossRef
48.
Zurück zum Zitat Guedj J, Piorkowski G, Jacquot F, Madelain V, Nguyen THT, Rodallec A, et al. Antiviral efficacy of favipiravir against Ebola virus: A translational study in cynomolgus macaques. PLoS Med. 2018;15:e1002535.PubMedPubMedCentralCrossRef Guedj J, Piorkowski G, Jacquot F, Madelain V, Nguyen THT, Rodallec A, et al. Antiviral efficacy of favipiravir against Ebola virus: A translational study in cynomolgus macaques. PLoS Med. 2018;15:e1002535.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Oestereich L, Lüdtke A, Wurr S, Rieger T, Muñoz-Fontela C, Günther S. Successful treatment of advanced Ebola virus infection with T-705 (favipiravir) in a small animal model. Antiviral Res. 2014;105:17–21.PubMedCrossRef Oestereich L, Lüdtke A, Wurr S, Rieger T, Muñoz-Fontela C, Günther S. Successful treatment of advanced Ebola virus infection with T-705 (favipiravir) in a small animal model. Antiviral Res. 2014;105:17–21.PubMedCrossRef
50.
Zurück zum Zitat Smither SJ, Eastaugh LS, Steward JA, Nelson M, Lenk RP, Lever MS. Post-exposure efficacy of oral T-705 (favipiravir) against inhalational Ebola virus infection in a mouse model. Antiviral Res. 2014;104:153–5.PubMedCrossRef Smither SJ, Eastaugh LS, Steward JA, Nelson M, Lenk RP, Lever MS. Post-exposure efficacy of oral T-705 (favipiravir) against inhalational Ebola virus infection in a mouse model. Antiviral Res. 2014;104:153–5.PubMedCrossRef
51.
Zurück zum Zitat Nguyen THT, Guedj J, Anglaret X, Laouénan C, Madelain V, Taburet A-M, et al. Favipiravir pharmacokinetics in Ebola-infected patients of the JIKI trial reveals concentrations lower than targeted. PLoS Negl Trop Dis. 2017;11:e0005389.PubMedPubMedCentralCrossRef Nguyen THT, Guedj J, Anglaret X, Laouénan C, Madelain V, Taburet A-M, et al. Favipiravir pharmacokinetics in Ebola-infected patients of the JIKI trial reveals concentrations lower than targeted. PLoS Negl Trop Dis. 2017;11:e0005389.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Zhu W, Zhang Z, He S, Wong G, Banadyga L, Qiu X. Successful treatment of Marburg virus with orally administrated T-705 (favipiravir) in a mouse model. Antiviral Res. 2018;151:39–49.PubMedPubMedCentralCrossRef Zhu W, Zhang Z, He S, Wong G, Banadyga L, Qiu X. Successful treatment of Marburg virus with orally administrated T-705 (favipiravir) in a mouse model. Antiviral Res. 2018;151:39–49.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Espy N, Nagle E, Pfeffer B, Garcia K, Chitty AJ, Wiley M, et al. T-705 induces lethal mutagenesis in Ebola and Marburg populations in macaques. Antiviral Res. 2019;170:104529.PubMedCrossRef Espy N, Nagle E, Pfeffer B, Garcia K, Chitty AJ, Wiley M, et al. T-705 induces lethal mutagenesis in Ebola and Marburg populations in macaques. Antiviral Res. 2019;170:104529.PubMedCrossRef
54.
Zurück zum Zitat Mire CE, Geisbert JB, Borisevich V, Fenton KA, Agans KN, Flyak AI, et al. Therapeutic treatment of Marburg and Ravn virus infection in nonhuman primates with a human monoclonal antibody. Sci Transl Med. 2017;9. Mire CE, Geisbert JB, Borisevich V, Fenton KA, Agans KN, Flyak AI, et al. Therapeutic treatment of Marburg and Ravn virus infection in nonhuman primates with a human monoclonal antibody. Sci Transl Med. 2017;9.
55.
Zurück zum Zitat Krähling V, Becker D, Rohde C, Eickmann M, Eroğlu Y, Herwig A, et al. Development of an antibody capture ELISA using inactivated Ebola Zaire Makona virus. Med Microbiol Immunol. 2016;205:173–83.PubMedCrossRef Krähling V, Becker D, Rohde C, Eickmann M, Eroğlu Y, Herwig A, et al. Development of an antibody capture ELISA using inactivated Ebola Zaire Makona virus. Med Microbiol Immunol. 2016;205:173–83.PubMedCrossRef
56.
Zurück zum Zitat Audet J, Wong G, Wang H, Lu G, Gao GF, Kobinger G, et al. Molecular characterization of the monoclonal antibodies composing ZMAb: A protective cocktail against Ebola virus. Sci Rep. 2014;4:6881.ADSPubMedPubMedCentralCrossRef Audet J, Wong G, Wang H, Lu G, Gao GF, Kobinger G, et al. Molecular characterization of the monoclonal antibodies composing ZMAb: A protective cocktail against Ebola virus. Sci Rep. 2014;4:6881.ADSPubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Barrientos LG, Lasala F, Otero JR, Sanchez A, Delgado R. In vitro evaluation of cyanovirin-N antiviral activity, by use of lentiviral vectors pseudotyped with filovirus envelope glycoproteins. J Infect Dis. 2004;189:1440–3.PubMedCrossRef Barrientos LG, Lasala F, Otero JR, Sanchez A, Delgado R. In vitro evaluation of cyanovirin-N antiviral activity, by use of lentiviral vectors pseudotyped with filovirus envelope glycoproteins. J Infect Dis. 2004;189:1440–3.PubMedCrossRef
58.
Zurück zum Zitat Cai L, Sun Y, Song Y, Xu L, Bei Z, Zhang D, et al. Viral polymerase inhibitors T-705 and T-1105 are potential inhibitors of Zika virus replication. Arch Virol. 2017;162:2847–53.PubMedPubMedCentralCrossRef Cai L, Sun Y, Song Y, Xu L, Bei Z, Zhang D, et al. Viral polymerase inhibitors T-705 and T-1105 are potential inhibitors of Zika virus replication. Arch Virol. 2017;162:2847–53.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Pessi A, Bixler SL, Soloveva V, Radoshitzky S, Retterer C, Kenny T, et al. Cholesterol-conjugated stapled peptides inhibit Ebola and Marburg viruses in vitro and in vivo. Antiviral Res. 2019;171:104592.PubMedCrossRef Pessi A, Bixler SL, Soloveva V, Radoshitzky S, Retterer C, Kenny T, et al. Cholesterol-conjugated stapled peptides inhibit Ebola and Marburg viruses in vitro and in vivo. Antiviral Res. 2019;171:104592.PubMedCrossRef
60.
Zurück zum Zitat Fowler T, Bamberg S, Möller P, Klenk H-D, Meyer TF, Becker S, et al. Inhibition of Marburg virus protein expression and viral release by RNA interference. J Gen Virol. 2005;86:1181–8.PubMedCrossRef Fowler T, Bamberg S, Möller P, Klenk H-D, Meyer TF, Becker S, et al. Inhibition of Marburg virus protein expression and viral release by RNA interference. J Gen Virol. 2005;86:1181–8.PubMedCrossRef
61.
Zurück zum Zitat Cheng H, Koning K, O’Hearn A, Wang M, Rumschlag-Booms E, Varhegyi E, et al. A parallel genome-wide RNAi screening strategy to identify host proteins important for entry of Marburg virus and H5N1 influenza virus. Virol J. 2015;12:194.PubMedPubMedCentralCrossRef Cheng H, Koning K, O’Hearn A, Wang M, Rumschlag-Booms E, Varhegyi E, et al. A parallel genome-wide RNAi screening strategy to identify host proteins important for entry of Marburg virus and H5N1 influenza virus. Virol J. 2015;12:194.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Ursic-Bedoya R, Mire CE, Robbins M, Geisbert JB, Judge A, MacLachlan I, et al. Protection against lethal Marburg virus infection mediated by lipid encapsulated small interfering RNA. J Infect Dis. 2014;209:562–70.PubMedCrossRef Ursic-Bedoya R, Mire CE, Robbins M, Geisbert JB, Judge A, MacLachlan I, et al. Protection against lethal Marburg virus infection mediated by lipid encapsulated small interfering RNA. J Infect Dis. 2014;209:562–70.PubMedCrossRef
63.
Zurück zum Zitat Geisbert TW, Lee ACH, Robbins M, Geisbert JB, Honko AN, Sood V, et al. Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: A proof-of-concept study. Lancet (London, England). 2010;375:1896–905.PubMedPubMedCentralCrossRef Geisbert TW, Lee ACH, Robbins M, Geisbert JB, Honko AN, Sood V, et al. Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: A proof-of-concept study. Lancet (London, England). 2010;375:1896–905.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Thi EP, Mire CE, Lee ACH, Geisbert JB, Zhou JZ, Agans KN, et al. Lipid nanoparticle siRNA treatment of Ebola-virus-Makona-infected nonhuman primates. Nature. 2015;521:362–5.ADSPubMedPubMedCentralCrossRef Thi EP, Mire CE, Lee ACH, Geisbert JB, Zhou JZ, Agans KN, et al. Lipid nanoparticle siRNA treatment of Ebola-virus-Makona-infected nonhuman primates. Nature. 2015;521:362–5.ADSPubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Dunning J, Sahr F, Rojek A, Gannon F, Carson G, Idriss B, et al. Experimental treatment of Ebola virus disease with TKM-130803: A single-arm phase 2 clinical trial. PLoS Med. 2016;13:e1001997.PubMedPubMedCentralCrossRef Dunning J, Sahr F, Rojek A, Gannon F, Carson G, Idriss B, et al. Experimental treatment of Ebola virus disease with TKM-130803: A single-arm phase 2 clinical trial. PLoS Med. 2016;13:e1001997.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Thi EP, Mire CE, Lee AC, Geisbert JB, Ursic-Bedoya R, Agans KN, et al. siRNA rescues nonhuman primates from advanced Marburg and Ravn virus disease. J Clin Invest. 2017;127:4437–48.PubMedPubMedCentralCrossRef Thi EP, Mire CE, Lee AC, Geisbert JB, Ursic-Bedoya R, Agans KN, et al. siRNA rescues nonhuman primates from advanced Marburg and Ravn virus disease. J Clin Invest. 2017;127:4437–48.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Olejnik J, Mühlberger E, Hume AJ. Recent advances in Marburgvirus research. F1000Res. 2019;8. Olejnik J, Mühlberger E, Hume AJ. Recent advances in Marburgvirus research. F1000Res. 2019;8.
68.
Zurück zum Zitat Gordon TB, Hayward JA, Marsh GA, Baker ML, Tachedjian G. Host and viral proteins modulating Ebola and Marburg virus egress. Viruses. 2019;11. Gordon TB, Hayward JA, Marsh GA, Baker ML, Tachedjian G. Host and viral proteins modulating Ebola and Marburg virus egress. Viruses. 2019;11.
71.
Zurück zum Zitat Swenson DL, Wang D, Luo M, Warfield KL, Woraratanadharm J, Holman DH, et al. Vaccine to confer to nonhuman primates complete protection against multistrain Ebola and Marburg virus infections. Clin Vaccine Immunol. 2008;15:460–7.PubMedPubMedCentralCrossRef Swenson DL, Wang D, Luo M, Warfield KL, Woraratanadharm J, Holman DH, et al. Vaccine to confer to nonhuman primates complete protection against multistrain Ebola and Marburg virus infections. Clin Vaccine Immunol. 2008;15:460–7.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Ledgerwood JE, DeZure AD, Stanley DA, Coates EE, Novik L, Enama ME, et al. Chimpanzee adenovirus vector Ebola vaccine. N Engl J Med. 2017;376:928–38.PubMedCrossRef Ledgerwood JE, DeZure AD, Stanley DA, Coates EE, Novik L, Enama ME, et al. Chimpanzee adenovirus vector Ebola vaccine. N Engl J Med. 2017;376:928–38.PubMedCrossRef
74.
Zurück zum Zitat Kibuuka H, Berkowitz NM, Millard M, Enama ME, Tindikahwa A, Sekiziyivu AB, et al. Safety and immunogenicity of Ebola virus and Marburg virus glycoprotein DNA vaccines assessed separately and concomitantly in healthy Ugandan adults: A phase 1b, randomised, double-blind, placebo-controlled clinical trial. Lancet [Internet]. Elsevier; 2015;385:1545–54. Available from: https://doi.org/10.1016/S0140-6736(14)62385-0. Kibuuka H, Berkowitz NM, Millard M, Enama ME, Tindikahwa A, Sekiziyivu AB, et al. Safety and immunogenicity of Ebola virus and Marburg virus glycoprotein DNA vaccines assessed separately and concomitantly in healthy Ugandan adults: A phase 1b, randomised, double-blind, placebo-controlled clinical trial. Lancet [Internet]. Elsevier; 2015;385:1545–54. Available from: https://​doi.​org/​10.​1016/​S0140-6736(14)62385-0.
75.
Zurück zum Zitat Watson-Jones D, Kavunga-Membo H, Grais RF, Ahuka S, Roberts N, Edmunds WJ, et al. Protocol for a phase 3 trial to evaluate the effectiveness and safety of a heterologous, two-dose vaccine for Ebola virus disease in the Democratic Republic of the Congo. BMJ Open. 2022;12:e055596.PubMedPubMedCentralCrossRef Watson-Jones D, Kavunga-Membo H, Grais RF, Ahuka S, Roberts N, Edmunds WJ, et al. Protocol for a phase 3 trial to evaluate the effectiveness and safety of a heterologous, two-dose vaccine for Ebola virus disease in the Democratic Republic of the Congo. BMJ Open. 2022;12:e055596.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Volkmann A, Williamson A-L, Weidenthaler H, Meyer TPH, Robertson JS, Excler J-L, et al. The Brighton Collaboration standardized template for collection of key information for risk/benefit assessment of a modified vaccinia Ankara (MVA) vaccine platform. Vaccine. 2021;39:3067–80.PubMedCrossRef Volkmann A, Williamson A-L, Weidenthaler H, Meyer TPH, Robertson JS, Excler J-L, et al. The Brighton Collaboration standardized template for collection of key information for risk/benefit assessment of a modified vaccinia Ankara (MVA) vaccine platform. Vaccine. 2021;39:3067–80.PubMedCrossRef
77.
Zurück zum Zitat Kortepeter MG, Dierberg K, Shenoy ES, Cieslak TJ. Marburg virus disease: a summary for clinicians. Int J Infect Dis IJID Off Publ Int Soc Infect Dis. 2020;99:233–42. Kortepeter MG, Dierberg K, Shenoy ES, Cieslak TJ. Marburg virus disease: a summary for clinicians. Int J Infect Dis IJID Off Publ Int Soc Infect Dis. 2020;99:233–42.
78.
Zurück zum Zitat Malherbe DC, Domi A, Hauser MJ, Meyer M, Gunn BM, Alter G, et al. Modified vaccinia Ankara vaccine expressing Marburg virus-like particles protects guinea pigs from lethal Marburg virus infection. NPJ Vaccines. 2020;5:78.PubMedPubMedCentralCrossRef Malherbe DC, Domi A, Hauser MJ, Meyer M, Gunn BM, Alter G, et al. Modified vaccinia Ankara vaccine expressing Marburg virus-like particles protects guinea pigs from lethal Marburg virus infection. NPJ Vaccines. 2020;5:78.PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat •• Bockstal V, Shukarev G, McLean C, Goldstein N, Bart S, Gaddah A, et al. First-in-human study to evaluate safety, tolerability, and immunogenicity of heterologous regimens using the multivalent filovirus vaccines Ad26.Filo and MVA-BN-Filo administered in different sequences and schedules: a randomized, controlled study. PLoS One. 2022;17:e0274906. This study demonstrates that heterologous two-dose vaccine regimens with Ad26.Filo and MVA-BN-Filo (a combination of vaccines encoding the glycoprotein (GP) of EBOV, SUDV, and MARV) are well tolerated and immunogenic in healthy adults. •• Bockstal V, Shukarev G, McLean C, Goldstein N, Bart S, Gaddah A, et al. First-in-human study to evaluate safety, tolerability, and immunogenicity of heterologous regimens using the multivalent filovirus vaccines Ad26.Filo and MVA-BN-Filo administered in different sequences and schedules: a randomized, controlled study. PLoS One. 2022;17:e0274906. This study demonstrates that heterologous two-dose vaccine regimens with Ad26.Filo and MVA-BN-Filo (a combination of vaccines encoding the glycoprotein (GP) of EBOV, SUDV, and MARV) are well tolerated and immunogenic in healthy adults.
80.
Zurück zum Zitat Heald AE, Iversen PL, Saoud JB, Sazani P, Charleston JS, Axtelle T, et al. Safety and pharmacokinetic profiles of phosphorodiamidate morpholino oligomers with activity against Ebola virus and Marburg virus: Results of two single-ascending-dose studies. Antimicrob Agents Chemother [Internet]. American Society for Microbiology; 2014;58:6639–47. Available from: https://doi.org/10.1128/AAC.03442-14. Heald AE, Iversen PL, Saoud JB, Sazani P, Charleston JS, Axtelle T, et al. Safety and pharmacokinetic profiles of phosphorodiamidate morpholino oligomers with activity against Ebola virus and Marburg virus: Results of two single-ascending-dose studies. Antimicrob Agents Chemother [Internet]. American Society for Microbiology; 2014;58:6639–47. Available from: https://​doi.​org/​10.​1128/​AAC.​03442-14.
81.
Zurück zum Zitat Heald AE, Charleston JS, Iversen PL, Warren TK, Saoud JB, Al-Ibrahim M, et al. AVI-7288 for Marburg virus in nonhuman primates and humans. N Engl J Med [Internet]. Massachusetts Medical Society; 2015;373:339–48. Available from: https://doi.org/10.1056/NEJMoa1410345. Heald AE, Charleston JS, Iversen PL, Warren TK, Saoud JB, Al-Ibrahim M, et al. AVI-7288 for Marburg virus in nonhuman primates and humans. N Engl J Med [Internet]. Massachusetts Medical Society; 2015;373:339–48. Available from: https://​doi.​org/​10.​1056/​NEJMoa1410345.
82.
Zurück zum Zitat Julander JG, Demarest JF, Taylor R, Gowen BB, Walling DM, Mathis A, et al. An update on the progress of galidesivir (BCX4430), a broad-spectrum antiviral. Antiviral Res. 2021;195:105180.PubMedPubMedCentralCrossRef Julander JG, Demarest JF, Taylor R, Gowen BB, Walling DM, Mathis A, et al. An update on the progress of galidesivir (BCX4430), a broad-spectrum antiviral. Antiviral Res. 2021;195:105180.PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat • Srivastava S, Sharma D, Kumar S, Sharma A, Rijal R, Asija A, et al. Emergence of Marburg virus: a global perspective on fatal outbreaks and clinical challenges. Front Microbiol. 2023;14:1239079. A discussion about key challenges to control fatal outbreaks. • Srivastava S, Sharma D, Kumar S, Sharma A, Rijal R, Asija A, et al. Emergence of Marburg virus: a global perspective on fatal outbreaks and clinical challenges. Front Microbiol. 2023;14:1239079. A discussion about key challenges to control fatal outbreaks.
Metadaten
Titel
Recent Advancements in the Therapeutic Development for Marburg Virus: Updates on Clinical Trials
verfasst von
Garima Sharma
Ashish Ranjan Sharma
Jin-Chul Kim
Publikationsdatum
15.01.2024
Verlag
Springer US
Erschienen in
Current Infectious Disease Reports / Ausgabe 2/2024
Print ISSN: 1523-3847
Elektronische ISSN: 1534-3146
DOI
https://doi.org/10.1007/s11908-023-00828-2

Kompaktes Leitlinien-Wissen Innere Medizin (Link öffnet in neuem Fenster)

Mit medbee Pocketcards schnell und sicher entscheiden.
Leitlinien-Wissen kostenlos und immer griffbereit auf ihrem Desktop, Handy oder Tablet.

Neu im Fachgebiet Innere Medizin

Adjuvanter PD-L1-Hemmer verhindert Rezidive bei Hochrisiko-Urothelkarzinom

Sind Menschen mit muskelinvasivem Urothelkarzinom für die neoadjuvante platinbasierte Therapie nicht geeignet oder sprechen sie darauf nicht gut an, ist Pembrolizumab eine adjuvante Alternative: Die krankheitsfreie Lebenszeit wird dadurch mehr als verdoppelt.

Einer von sieben Frauen macht die Menopause sehr zu schaffen

Von mäßigen bis schweren vasomotorischen Beschwerden sind 14,7% der Frauen in der Postmenopause betroffen. Das haben kanadische Forscherinnen in einer Subgruppenanalyse der WARM-Studie herausgefunden.

Duale Checkpointhemmung gegen Melanome verlängert langfristig das Leben

Im Vergleich zu den Überlebenschancen vor der Einführung von Immuncheckpointhemmern (ICI) ist der Fortschritt durch eine ICI-Kombination mit unterschiedlichen Tagets bei fortgeschrittenem Melanom erstaunlich. Das belegen die finalen Ergebnisse der CheckMate-067-Studie und geben Betroffenen "Hoffnung auf Heilung".

Knochenmarktransplantat als Chance für ältere AML-Patienten

Lange Zeit ist die Transplantation von hämatopoetischen Stammzellen nur bei jüngeren Patienten mit akuter myeloischer Leukämie praktiziert worden. Inzwischen profitieren auch Ältere davon. Ergebnisse einer Studie unterstützen dieses Vorgehen.

EKG Essentials: EKG befunden mit System (Link öffnet in neuem Fenster)

In diesem CME-Kurs können Sie Ihr Wissen zur EKG-Befundung anhand von zwölf Video-Tutorials auffrischen und 10 CME-Punkte sammeln.
Praxisnah, relevant und mit vielen Tipps & Tricks vom Profi.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.