Skip to main content
Erschienen in: Current Psychiatry Reports 4/2015

01.04.2015 | Eating Disorders (C Grilo, Section Editor)

Recent Advances in Neuroimaging to Model Eating Disorder Neurobiology

verfasst von: Guido K. W. Frank

Erschienen in: Current Psychiatry Reports | Ausgabe 4/2015

Einloggen, um Zugang zu erhalten

Abstract

The eating disorders (EDs) anorexia nervosa (AN), bulimia nervosa (BN), and binge eating disorder (BED) are severe psychiatric disorders with high mortality. There are many symptoms, such as food restriction, episodic binge eating, purging, or excessive exercise that are either overlapping or lie on opposite ends of a scale or spectrum across those disorders. Identifying how specific ED behaviors are linked to particular neurobiological mechanisms could help better categorize ED subgroups and develop specific treatments. This review provides support from recent brain imaging research that brain structure and function measures can be linked to disorder-specific biological or behavioral variables, which may help distinguish ED subgroups, or find commonalities between them. Brain structure and function may therefore be suitable research targets to further study the relationship between dimensions of behavior and brain function relevant to EDs and beyond the categorical AN, BN, and BED distinctions.
Literatur
1.
Zurück zum Zitat American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5(TM)). 5th ed. 2013, Arlington, Va.: American Psychiatric Publishing; 5 edition (May 27, 2013) American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5(TM)). 5th ed. 2013, Arlington, Va.: American Psychiatric Publishing; 5 edition (May 27, 2013)
2.
Zurück zum Zitat Agras WS et al. A 4-year prospective study of eating disorder NOS compared with full eating disorder syndromes. Int J Eat Disord. 2009;42(6):565–70.CrossRefPubMedCentralPubMed Agras WS et al. A 4-year prospective study of eating disorder NOS compared with full eating disorder syndromes. Int J Eat Disord. 2009;42(6):565–70.CrossRefPubMedCentralPubMed
3.
Zurück zum Zitat Kaye WH et al. Nothing tastes as good as skinny feels: the neurobiology of anorexia nervosa. Trends Neurosci. 2013;36(2):110–20.CrossRefPubMed Kaye WH et al. Nothing tastes as good as skinny feels: the neurobiology of anorexia nervosa. Trends Neurosci. 2013;36(2):110–20.CrossRefPubMed
4.
Zurück zum Zitat Agras W et al. Report of the National Institutes of Health workshop on overcoming barriers to treatment research in anorexia nervosa. Int J Eat Disord. 2004;35(4):509–21.CrossRefPubMed Agras W et al. Report of the National Institutes of Health workshop on overcoming barriers to treatment research in anorexia nervosa. Int J Eat Disord. 2004;35(4):509–21.CrossRefPubMed
5.
Zurück zum Zitat Ohman A et al. On the unconscious subcortical origin of human fear. Phys Behav. 2007;92(1–2):180–5.CrossRef Ohman A et al. On the unconscious subcortical origin of human fear. Phys Behav. 2007;92(1–2):180–5.CrossRef
6.
Zurück zum Zitat Phillips ML, Swartz HA. A critical appraisal of neuroimaging studies of bipolar disorder: toward a new conceptualization of underlying neural circuitry and a road map for future research. Am J Psychiatry. 2014;171(8):829–43.CrossRefPubMed Phillips ML, Swartz HA. A critical appraisal of neuroimaging studies of bipolar disorder: toward a new conceptualization of underlying neural circuitry and a road map for future research. Am J Psychiatry. 2014;171(8):829–43.CrossRefPubMed
7.
Zurück zum Zitat Rive MM et al. Neural correlates of dysfunctional emotion regulation in major depressive disorder. A systematic review of neuroimaging studies. Neurosci Biobehav Rev. 2013;37(10 Pt 2):2529–53.CrossRefPubMed Rive MM et al. Neural correlates of dysfunctional emotion regulation in major depressive disorder. A systematic review of neuroimaging studies. Neurosci Biobehav Rev. 2013;37(10 Pt 2):2529–53.CrossRefPubMed
8.
Zurück zum Zitat Chau DT, Roth RM, Green AI. The neural circuitry of reward and its relevance to psychiatric disorders. Curr Psychiatry Rep. 2001;6:391–9.CrossRef Chau DT, Roth RM, Green AI. The neural circuitry of reward and its relevance to psychiatric disorders. Curr Psychiatry Rep. 2001;6:391–9.CrossRef
9.
Zurück zum Zitat Kelley AE, Berridge KC. The neuroscience of natural rewards: relevance to addictive drugs. J Neurosci. 2002;22(9):3306–11.PubMed Kelley AE, Berridge KC. The neuroscience of natural rewards: relevance to addictive drugs. J Neurosci. 2002;22(9):3306–11.PubMed
10.
Zurück zum Zitat Takahashi YK et al. The orbitofrontal cortex and ventral tegmental area are necessary for learning from unexpected outcomes. Neuron. 2009;62(2):269–80.CrossRefPubMedCentralPubMed Takahashi YK et al. The orbitofrontal cortex and ventral tegmental area are necessary for learning from unexpected outcomes. Neuron. 2009;62(2):269–80.CrossRefPubMedCentralPubMed
11.
Zurück zum Zitat Alvarez J, Emory E. Executive Function and the Frontal Lobes: A Meta-Analytic Review. Jun 1. Neuropsychol Rev, 2006. Alvarez J, Emory E. Executive Function and the Frontal Lobes: A Meta-Analytic Review. Jun 1. Neuropsychol Rev, 2006.
12.••
Zurück zum Zitat Van den Eynde F et al. Structural magnetic resonance imaging in eating disorders: a systematic review of voxel-based morphometry studies. Eur Eati Disord Rev J Eat Disord Assoc. 2012;20(2):94–105. This review is very important as it described very clearly the heterogenity in structural brain research in anorexia nervosa.CrossRef Van den Eynde F et al. Structural magnetic resonance imaging in eating disorders: a systematic review of voxel-based morphometry studies. Eur Eati Disord Rev J Eat Disord Assoc. 2012;20(2):94–105. This review is very important as it described very clearly the heterogenity in structural brain research in anorexia nervosa.CrossRef
13.
Zurück zum Zitat Brooks SJ et al. Restraint of appetite and reduced regional brain volumes in anorexia nervosa: a voxel-based morphometric study. BMC Psychiatry. 2011;11:179.CrossRefPubMedCentralPubMed Brooks SJ et al. Restraint of appetite and reduced regional brain volumes in anorexia nervosa: a voxel-based morphometric study. BMC Psychiatry. 2011;11:179.CrossRefPubMedCentralPubMed
14.
Zurück zum Zitat Joos A et al. Voxel-based morphometry in eating disorders: correlation of psychopathology with grey matter volume. Psychiatry Res. 2010;182(2):146–51.CrossRefPubMed Joos A et al. Voxel-based morphometry in eating disorders: correlation of psychopathology with grey matter volume. Psychiatry Res. 2010;182(2):146–51.CrossRefPubMed
15.
Zurück zum Zitat Suchan B et al. Reduction of gray matter density in the extrastriate body area in women with anorexia nervosa. Behav Brain Res. 2010;206(1):63–7.CrossRefPubMed Suchan B et al. Reduction of gray matter density in the extrastriate body area in women with anorexia nervosa. Behav Brain Res. 2010;206(1):63–7.CrossRefPubMed
16.
Zurück zum Zitat Friederich HC et al. Grey matter abnormalities within cortico-limbic-striatal circuits in acute and weight-restored anorexia nervosa patients. Neuroimage. 2012;59(2):1106–13.CrossRefPubMed Friederich HC et al. Grey matter abnormalities within cortico-limbic-striatal circuits in acute and weight-restored anorexia nervosa patients. Neuroimage. 2012;59(2):1106–13.CrossRefPubMed
17.
Zurück zum Zitat Fonville L et al. Alterations in brain structure in adults with anorexia nervosa and the impact of illness duration. Psychol Med. 2014;44(9):1965–75.CrossRefPubMed Fonville L et al. Alterations in brain structure in adults with anorexia nervosa and the impact of illness duration. Psychol Med. 2014;44(9):1965–75.CrossRefPubMed
18.
Zurück zum Zitat Amianto F et al. Brain volumetric abnormalities in patients with anorexia and bulimia nervosa: a voxel-based morphometry study. Psychiatry Res. 2013;213(3):210–6.CrossRefPubMed Amianto F et al. Brain volumetric abnormalities in patients with anorexia and bulimia nervosa: a voxel-based morphometry study. Psychiatry Res. 2013;213(3):210–6.CrossRefPubMed
19.
Zurück zum Zitat Marsh R et al. Anatomical characteristics of the cerebral surface in bulimia nervosa. Biol Psychiatry. 2013. Marsh R et al. Anatomical characteristics of the cerebral surface in bulimia nervosa. Biol Psychiatry. 2013.
20.
21.
Zurück zum Zitat Freund W et al. Substantial and reversible brain gray matter reduction but no acute brain lesions in ultramarathon runners: experience from the TransEurope-FootRace Project. BMC Med. 2012;10:170.CrossRefPubMedCentralPubMed Freund W et al. Substantial and reversible brain gray matter reduction but no acute brain lesions in ultramarathon runners: experience from the TransEurope-FootRace Project. BMC Med. 2012;10:170.CrossRefPubMedCentralPubMed
22.•
Zurück zum Zitat Frank GK et al. Alterations in brain structures related to taste reward circuitry in Ill and recovered anorexia nervosa and in bulimia nervosa. Am J Psychiatry, 2013. This study is important as it for the first time contrasted nutritionally highly controlled ill and recovered anorexia and ill bulimia subjects on structural brain volume suggesting common alterations across eating disorder groups. Frank GK et al. Alterations in brain structures related to taste reward circuitry in Ill and recovered anorexia nervosa and in bulimia nervosa. Am J Psychiatry, 2013. This study is important as it for the first time contrasted nutritionally highly controlled ill and recovered anorexia and ill bulimia subjects on structural brain volume suggesting common alterations across eating disorder groups.
23.••
Zurück zum Zitat Frank GK et al. Localized brain volume and white matter integrity alterations in adolescent anorexia nervosa. J Am Acad Child Adolesc Psychiatry. 2013;52(10):1066–1075 e5. This study is important as it confirmed in youth with anorexia nervosa larger orbitofrontal and insula cortical volumes previously found in adults. Frank GK et al. Localized brain volume and white matter integrity alterations in adolescent anorexia nervosa. J Am Acad Child Adolesc Psychiatry. 2013;52(10):1066–1075 e5. This study is important as it confirmed in youth with anorexia nervosa larger orbitofrontal and insula cortical volumes previously found in adults.
24.
Zurück zum Zitat Shott ME et al. Orbitofrontal cortex volume and brain reward response in obesity. Int J Obes (Lond). 2014. Shott ME et al. Orbitofrontal cortex volume and brain reward response in obesity. Int J Obes (Lond). 2014.
25.
Zurück zum Zitat Plassmann H, O’Doherty JP, Rangel A. Appetitive and aversive goal values are encoded in the medial orbitofrontal cortex at the time of decision making. J Neurosci Off J Soc Neurosci. 2010;30(32):10799–808.CrossRef Plassmann H, O’Doherty JP, Rangel A. Appetitive and aversive goal values are encoded in the medial orbitofrontal cortex at the time of decision making. J Neurosci Off J Soc Neurosci. 2010;30(32):10799–808.CrossRef
26.
Zurück zum Zitat Rolls ET. Functions of the orbitofrontal and pregenual cingulate cortex in taste, olfaction, appetite and emotion. Acta Physiol Hung. 2008;95(2):131–64.CrossRefPubMed Rolls ET. Functions of the orbitofrontal and pregenual cingulate cortex in taste, olfaction, appetite and emotion. Acta Physiol Hung. 2008;95(2):131–64.CrossRefPubMed
27.
29.
Zurück zum Zitat Craig AD. How do you feel–now? The anterior insula and human awareness. Nature reviews. Neuroscience. 2009;10(1):59–70.PubMed Craig AD. How do you feel–now? The anterior insula and human awareness. Nature reviews. Neuroscience. 2009;10(1):59–70.PubMed
30.
Zurück zum Zitat Wang GJ et al. Gastric distention activates satiety circuitry in the human brain. Neuroimage. 2008;39(4):1824–31.CrossRefPubMed Wang GJ et al. Gastric distention activates satiety circuitry in the human brain. Neuroimage. 2008;39(4):1824–31.CrossRefPubMed
31.
Zurück zum Zitat Devue C et al. Here I am: the cortical correlates of visual self-recognition. Brain Res. 2007;1143:169–82.CrossRefPubMed Devue C et al. Here I am: the cortical correlates of visual self-recognition. Brain Res. 2007;1143:169–82.CrossRefPubMed
32.
Zurück zum Zitat Critchley HD et al. Neural systems supporting interoceptive awareness. Nat Neurosci. 2004;7(2):189–95.CrossRefPubMed Critchley HD et al. Neural systems supporting interoceptive awareness. Nat Neurosci. 2004;7(2):189–95.CrossRefPubMed
33.
Zurück zum Zitat Konstantakopoulos G et al. Delusionality of body image beliefs in eating disorders. Psychiatry Res. 2012;200(2–3):482–8.CrossRefPubMed Konstantakopoulos G et al. Delusionality of body image beliefs in eating disorders. Psychiatry Res. 2012;200(2–3):482–8.CrossRefPubMed
34.
Zurück zum Zitat Kringelbach ML. Food for thought: hedonic experience beyond homeostasis in the human brain. Neuroscience. 2004;126(4):807–19.CrossRefPubMed Kringelbach ML. Food for thought: hedonic experience beyond homeostasis in the human brain. Neuroscience. 2004;126(4):807–19.CrossRefPubMed
35.
Zurück zum Zitat Berridge KC. Food reward: brain substrates of wanting and liking. Neurosci Biobehav Rev. 1996;20(1):1–25.CrossRefPubMed Berridge KC. Food reward: brain substrates of wanting and liking. Neurosci Biobehav Rev. 1996;20(1):1–25.CrossRefPubMed
36.
Zurück zum Zitat Kelley AE, Schiltz CA, Landry CF. Neural systems recruited by drug- and food-related cues: studies of gene activation in corticolimbic regions. Physiol Behav. 2005;86(1–2):11–4.CrossRefPubMed Kelley AE, Schiltz CA, Landry CF. Neural systems recruited by drug- and food-related cues: studies of gene activation in corticolimbic regions. Physiol Behav. 2005;86(1–2):11–4.CrossRefPubMed
37.
Zurück zum Zitat Lak A, Stauffer WR, Schultz W. Dopamine prediction error responses integrate subjective value from different reward dimensions. Proc Natl Acad Sci U S A. 2014;111(6):2343–8.CrossRefPubMedCentralPubMed Lak A, Stauffer WR, Schultz W. Dopamine prediction error responses integrate subjective value from different reward dimensions. Proc Natl Acad Sci U S A. 2014;111(6):2343–8.CrossRefPubMedCentralPubMed
38.
Zurück zum Zitat Kringelbach ML, Rolls E. The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology. Prog Neurobiol. 2004;72(5):341–72.CrossRefPubMed Kringelbach ML, Rolls E. The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology. Prog Neurobiol. 2004;72(5):341–72.CrossRefPubMed
39.
Zurück zum Zitat Rolls ET. Taste, olfactory and food texture reward processing in the brain and obesity. Int J Obes. 2011;35(4):550–61.CrossRef Rolls ET. Taste, olfactory and food texture reward processing in the brain and obesity. Int J Obes. 2011;35(4):550–61.CrossRef
40.
Zurück zum Zitat O’Reilly RC. Biologically based computational models of high-level cognition. Science. 2006;314(5796):91–4.CrossRefPubMed O’Reilly RC. Biologically based computational models of high-level cognition. Science. 2006;314(5796):91–4.CrossRefPubMed
41.
Zurück zum Zitat Garcia-Garcia I et al. Neural responses to visual food cues: insights from functional magnetic resonance imaging. Eur Eat Disord Rev. 2013;21(2):89–98.CrossRefPubMed Garcia-Garcia I et al. Neural responses to visual food cues: insights from functional magnetic resonance imaging. Eur Eat Disord Rev. 2013;21(2):89–98.CrossRefPubMed
42.
Zurück zum Zitat Lawson EA et al. Oxytocin secretion is associated with severity of disordered eating psychopathology and insular cortex hypoactivation in anorexia nervosa. J Clin Endocrinol Metab. 2012;97(10):E1898–908.CrossRefPubMedCentralPubMed Lawson EA et al. Oxytocin secretion is associated with severity of disordered eating psychopathology and insular cortex hypoactivation in anorexia nervosa. J Clin Endocrinol Metab. 2012;97(10):E1898–908.CrossRefPubMedCentralPubMed
43.
Zurück zum Zitat Schienle A et al. Binge-eating disorder: reward sensitivity and brain activation to images of food. Biol Psychiatry. 2009;65(8):654–61.CrossRefPubMed Schienle A et al. Binge-eating disorder: reward sensitivity and brain activation to images of food. Biol Psychiatry. 2009;65(8):654–61.CrossRefPubMed
44.
Zurück zum Zitat Weygandt M et al. Diagnosing different binge-eating disorders based on reward-related brain activation patterns. Hum Brain Mapp. 2012;33(9):2135–46.CrossRefPubMed Weygandt M et al. Diagnosing different binge-eating disorders based on reward-related brain activation patterns. Hum Brain Mapp. 2012;33(9):2135–46.CrossRefPubMed
45.
Zurück zum Zitat Filbey FM, Myers US, Dewitt S. Reward circuit function in high BMI individuals with compulsive overeating: similarities with addiction. Neuroimage. 2012;63(4):1800–6.CrossRefPubMed Filbey FM, Myers US, Dewitt S. Reward circuit function in high BMI individuals with compulsive overeating: similarities with addiction. Neuroimage. 2012;63(4):1800–6.CrossRefPubMed
46.
Zurück zum Zitat Balodis IM et al. A pilot study linking reduced fronto-striatal recruitment during reward processing to persistent bingeing following treatment for binge-eating disorder. Int J Eat Disord. 2014;47(4):376–84.CrossRefPubMed Balodis IM et al. A pilot study linking reduced fronto-striatal recruitment during reward processing to persistent bingeing following treatment for binge-eating disorder. Int J Eat Disord. 2014;47(4):376–84.CrossRefPubMed
47.•
Zurück zum Zitat Cowdrey FA et al. Increased Neural Processing of Rewarding and Aversive Food Stimuli in Recovered Anorexia Nervosa. Biological Psychiatry, 2011. This study is important as it described random taste reward application in recovered anorexia nervosa. Cowdrey FA et al. Increased Neural Processing of Rewarding and Aversive Food Stimuli in Recovered Anorexia Nervosa. Biological Psychiatry, 2011. This study is important as it described random taste reward application in recovered anorexia nervosa.
48.•
Zurück zum Zitat Oberndorfer TA et al. Altered Insula Response to Sweet Taste Processing After Recovery From Anorexia and Bulimia Nervosa. Am J Psychiatry, 2013. This study importantly described repeated taste reward application in recovered anorexia nervosa, indicating that this application activates brain response differently compared to random application. Oberndorfer TA et al. Altered Insula Response to Sweet Taste Processing After Recovery From Anorexia and Bulimia Nervosa. Am J Psychiatry, 2013. This study importantly described repeated taste reward application in recovered anorexia nervosa, indicating that this application activates brain response differently compared to random application.
49.
Zurück zum Zitat Wagner A et al. Altered insula response to taste stimuli in individuals recovered from restricting-type anorexia nervosa. Neuropsychopharmacology. 2008;33(3):513–23.CrossRefPubMed Wagner A et al. Altered insula response to taste stimuli in individuals recovered from restricting-type anorexia nervosa. Neuropsychopharmacology. 2008;33(3):513–23.CrossRefPubMed
50.
Zurück zum Zitat Vocks S et al. Effects of gustatory stimulation on brain activity during hunger and satiety in females with restricting-type anorexia nervosa: an fMRI study. J Psychiatr Res. 2011;45(3):395–403.CrossRefPubMed Vocks S et al. Effects of gustatory stimulation on brain activity during hunger and satiety in females with restricting-type anorexia nervosa: an fMRI study. J Psychiatr Res. 2011;45(3):395–403.CrossRefPubMed
52.••
Zurück zum Zitat Kaye WH et al. Does a shared neurobiology for foods and drugs of abuse contribute to extremes of food ingestion in anorexia and bulimia nervosa? Biol Psychiatry. 2013;73(9):836–42. This study is an important review on overlapping brain mechanisms in substance use and eating disorders.CrossRefPubMedCentralPubMed Kaye WH et al. Does a shared neurobiology for foods and drugs of abuse contribute to extremes of food ingestion in anorexia and bulimia nervosa? Biol Psychiatry. 2013;73(9):836–42. This study is an important review on overlapping brain mechanisms in substance use and eating disorders.CrossRefPubMedCentralPubMed
54.
Zurück zum Zitat Kaye WH et al. Abnormalities in CNS monoamine metabolism in anorexia nervosa. Arch Gen Psychiatry. 1984;41(4):350–5.CrossRefPubMed Kaye WH et al. Abnormalities in CNS monoamine metabolism in anorexia nervosa. Arch Gen Psychiatry. 1984;41(4):350–5.CrossRefPubMed
55.
Zurück zum Zitat Barbato G et al. Increased dopaminergic activity in restricting-type anorexia nervosa. Psychiatry Res. 2006;142(2–3):253–5.CrossRefPubMed Barbato G et al. Increased dopaminergic activity in restricting-type anorexia nervosa. Psychiatry Res. 2006;142(2–3):253–5.CrossRefPubMed
56.
Zurück zum Zitat Karson CN. Spontaneous eye-blink rates and dopaminergic systems. Brain J Neurol. 1983;106(Pt 3):643–53.CrossRef Karson CN. Spontaneous eye-blink rates and dopaminergic systems. Brain J Neurol. 1983;106(Pt 3):643–53.CrossRef
57.
Zurück zum Zitat Frank GK et al. Increased dopamine D2/D3 receptor binding after recovery from anorexia nervosa measured by positron emission tomography and [11c]raclopride. Biol Psychiatry. 2005;58(11):908–12.CrossRefPubMed Frank GK et al. Increased dopamine D2/D3 receptor binding after recovery from anorexia nervosa measured by positron emission tomography and [11c]raclopride. Biol Psychiatry. 2005;58(11):908–12.CrossRefPubMed
58.
Zurück zum Zitat Rescorla RA. Stimulus generalization: some predictions from a model of Pavlovian conditioning. J Exp Psychol Anim Behav Process. 1976;2(1):88–96.CrossRefPubMed Rescorla RA. Stimulus generalization: some predictions from a model of Pavlovian conditioning. J Exp Psychol Anim Behav Process. 1976;2(1):88–96.CrossRefPubMed
59.
Zurück zum Zitat Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward. Science. 1997;275(5306):1593–9.CrossRefPubMed Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward. Science. 1997;275(5306):1593–9.CrossRefPubMed
60.
Zurück zum Zitat D’Ardenne K et al. BOLD responses reflecting dopaminergic signals in the human ventral tegmental area. Science. 2008;319(5867):1264–7.CrossRefPubMed D’Ardenne K et al. BOLD responses reflecting dopaminergic signals in the human ventral tegmental area. Science. 2008;319(5867):1264–7.CrossRefPubMed
61.
Zurück zum Zitat O’Doherty JP et al. Temporal difference models and reward-related learning in the human brain. Neuron. 2003;38(2):329–37.CrossRefPubMed O’Doherty JP et al. Temporal difference models and reward-related learning in the human brain. Neuron. 2003;38(2):329–37.CrossRefPubMed
62.
Zurück zum Zitat Kelley AE et al. Corticostriatal-hypothalamic circuitry and food motivation: integration of energy, action and reward. Physiol Behav. 2005;86(5):773–95.CrossRefPubMed Kelley AE et al. Corticostriatal-hypothalamic circuitry and food motivation: integration of energy, action and reward. Physiol Behav. 2005;86(5):773–95.CrossRefPubMed
63.
Zurück zum Zitat Daw ND, Doya K. The computational neurobiology of learning and reward. Curr Opin Neurobiol. 2006;16(2):199–204.CrossRefPubMed Daw ND, Doya K. The computational neurobiology of learning and reward. Curr Opin Neurobiol. 2006;16(2):199–204.CrossRefPubMed
64.
Zurück zum Zitat Jocham G, Klein TA, Ullsperger M. Dopamine-mediated reinforcement learning signals in the striatum and ventromedial prefrontal cortex underlie value-based choices. J Neurosci. 2011;31(5):1606–13.CrossRefPubMed Jocham G, Klein TA, Ullsperger M. Dopamine-mediated reinforcement learning signals in the striatum and ventromedial prefrontal cortex underlie value-based choices. J Neurosci. 2011;31(5):1606–13.CrossRefPubMed
66.
Zurück zum Zitat de Araujo IE, Ren X, Ferreira JG. Metabolic sensing in brain dopamine systems. Results Probl Cell Differ. 2010;52:69–86.CrossRefPubMed de Araujo IE, Ren X, Ferreira JG. Metabolic sensing in brain dopamine systems. Results Probl Cell Differ. 2010;52:69–86.CrossRefPubMed
67.
Zurück zum Zitat Sutton RS, Barto AG eds. Toward a modern theory of adaptive networks: expectation and prediction. MIT Press: Boston, MA; 1998. Sutton RS, Barto AG eds. Toward a modern theory of adaptive networks: expectation and prediction. MIT Press: Boston, MA; 1998.
68.
Zurück zum Zitat Avena NM, Rada P, Hoebel BG. Underweight rats have enhanced dopamine release and blunted acetylcholine response in the nucleus accumbens while bingeing on sucrose. Neuroscience. 2008;156(4):865–71.CrossRefPubMedCentralPubMed Avena NM, Rada P, Hoebel BG. Underweight rats have enhanced dopamine release and blunted acetylcholine response in the nucleus accumbens while bingeing on sucrose. Neuroscience. 2008;156(4):865–71.CrossRefPubMedCentralPubMed
69.
Zurück zum Zitat Carr K et al. Evidence of increased dopamine receptor signaling in food-restricted rats. Neuroscience. 2003;119:1157–67.CrossRefPubMed Carr K et al. Evidence of increased dopamine receptor signaling in food-restricted rats. Neuroscience. 2003;119:1157–67.CrossRefPubMed
70.
Zurück zum Zitat Carr KD. Chronic food restriction: enhancing effects on drug reward and striatal cell signaling. Physiol Behav. 2007;91(5):459–72.CrossRefPubMed Carr KD. Chronic food restriction: enhancing effects on drug reward and striatal cell signaling. Physiol Behav. 2007;91(5):459–72.CrossRefPubMed
71.
Zurück zum Zitat Johnson PM, Kenny PJ. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci. 2010;13(5):635–41.CrossRefPubMedCentralPubMed Johnson PM, Kenny PJ. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci. 2010;13(5):635–41.CrossRefPubMedCentralPubMed
72.
Zurück zum Zitat Volkow ND et al. Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors. Neuroimage. 2008;42(4):1537–43.CrossRefPubMedCentralPubMed Volkow ND et al. Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors. Neuroimage. 2008;42(4):1537–43.CrossRefPubMedCentralPubMed
73.•
Zurück zum Zitat Frank GK et al. Anorexia Nervosa and Obesity are Associated with Opposite Brain Reward Response. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2012. This study for the first time contrasted brain reward response in underweight individuals with anorexia nervosa and obese individuals, supporting animal literature on effects of eating and weight change on brain dopamine circuits. Frank GK et al. Anorexia Nervosa and Obesity are Associated with Opposite Brain Reward Response. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2012. This study for the first time contrasted brain reward response in underweight individuals with anorexia nervosa and obese individuals, supporting animal literature on effects of eating and weight change on brain dopamine circuits.
74.
Zurück zum Zitat Goodman A. Neurobiology of addiction. An integrative review. Biochem Pharmacol. 2008;75(1):266–322.CrossRefPubMed Goodman A. Neurobiology of addiction. An integrative review. Biochem Pharmacol. 2008;75(1):266–322.CrossRefPubMed
75.
Zurück zum Zitat Hyman SE, Malenka RC. Addiction and the brain: the neurobiology of compulsion and its persistence. Nat Rev Neurosci. 2001;2(10):695–703.CrossRefPubMed Hyman SE, Malenka RC. Addiction and the brain: the neurobiology of compulsion and its persistence. Nat Rev Neurosci. 2001;2(10):695–703.CrossRefPubMed
76.
Zurück zum Zitat Corsica JA, Pelchat ML. Food addiction: true or false? Curr Opin Gastroenterol. 2010;26(2):165–9.CrossRefPubMed Corsica JA, Pelchat ML. Food addiction: true or false? Curr Opin Gastroenterol. 2010;26(2):165–9.CrossRefPubMed
77.
Zurück zum Zitat Koob GF, Le Moal M. Plasticity of reward neurocircuitry and the 'dark side' of drug addiction. Nat Neurosci. 2005;8(11):1442–4.CrossRefPubMed Koob GF, Le Moal M. Plasticity of reward neurocircuitry and the 'dark side' of drug addiction. Nat Neurosci. 2005;8(11):1442–4.CrossRefPubMed
79.
80.
Zurück zum Zitat Harrison A et al. Emotional functioning in eating disorders: attentional bias, emotion recognition and emotion regulation. Psychol Med. 2010;1–11. Harrison A et al. Emotional functioning in eating disorders: attentional bias, emotion recognition and emotion regulation. Psychol Med. 2010;1–11.
81.
82.
Zurück zum Zitat Missale C et al. Dopamine receptors: from structure to function. Physiol Rev. 1998;78(1):189–225.PubMed Missale C et al. Dopamine receptors: from structure to function. Physiol Rev. 1998;78(1):189–225.PubMed
83.
Zurück zum Zitat Nair SG et al. Role of dorsal medial prefrontal cortex dopamine D1-family receptors in relapse to high-fat food seeking induced by the anxiogenic drug yohimbine. Neuropsychopharmacology. 2011;36(2):497–510.CrossRefPubMedCentralPubMed Nair SG et al. Role of dorsal medial prefrontal cortex dopamine D1-family receptors in relapse to high-fat food seeking induced by the anxiogenic drug yohimbine. Neuropsychopharmacology. 2011;36(2):497–510.CrossRefPubMedCentralPubMed
84.
Zurück zum Zitat Pecina M et al. DRD2 polymorphisms modulate reward and emotion processing, dopamine neurotransmission and openness to experience. Cortex. 2013;49(3):877–90.CrossRefPubMedCentralPubMed Pecina M et al. DRD2 polymorphisms modulate reward and emotion processing, dopamine neurotransmission and openness to experience. Cortex. 2013;49(3):877–90.CrossRefPubMedCentralPubMed
85.
87.••
Zurück zum Zitat Kapur S, Phillips AG, Insel TR. Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? Mol Psychiatry. 2012;17(12):1174–9. This article is important as it described the need to styudy psychiatric disease from a dimesnional perspective.CrossRefPubMed Kapur S, Phillips AG, Insel TR. Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? Mol Psychiatry. 2012;17(12):1174–9. This article is important as it described the need to styudy psychiatric disease from a dimesnional perspective.CrossRefPubMed
88.
Zurück zum Zitat NIMH-RDoC-working-group, Positive Valence Systems: Workshop Proceedings, NIMH, Editor. Rockville, Maryland 2011. NIMH-RDoC-working-group, Positive Valence Systems: Workshop Proceedings, NIMH, Editor. Rockville, Maryland 2011.
89.
Zurück zum Zitat Fruchterman T, Reingold E. Graph drawing by force-directed placement. Software Pract Exp. 1991;21:1129–64.CrossRef Fruchterman T, Reingold E. Graph drawing by force-directed placement. Software Pract Exp. 1991;21:1129–64.CrossRef
90.
Zurück zum Zitat Borsboom D, Cramer AO. Network analysis: an integrative approach to the structure of psychopathology. Annu Rev Clin Psychol. 2013;9:91–121.CrossRefPubMed Borsboom D, Cramer AO. Network analysis: an integrative approach to the structure of psychopathology. Annu Rev Clin Psychol. 2013;9:91–121.CrossRefPubMed
91.
Zurück zum Zitat Kaye W et al. The neurobiology of anorexia nervosa: clinical implications of alterations of the function of serotonin and other neuronal systems. Int J Eat Disord Spec Issue Anorexia Nervosa. 2005;37:S15–9. Discussion S20-21.CrossRef Kaye W et al. The neurobiology of anorexia nervosa: clinical implications of alterations of the function of serotonin and other neuronal systems. Int J Eat Disord Spec Issue Anorexia Nervosa. 2005;37:S15–9. Discussion S20-21.CrossRef
92.
Zurück zum Zitat Frank GK, Kaye WH. Current status of functional imaging in eating disorders. Int J Eat Disord. 2012;45(6):723–36.CrossRefPubMed Frank GK, Kaye WH. Current status of functional imaging in eating disorders. Int J Eat Disord. 2012;45(6):723–36.CrossRefPubMed
94.
Zurück zum Zitat Porto LC et al. Impairment of the serotonergic control of feeding in adult female rats exposed to intra-uterine malnutrition. Br J Nutr. 2009;101(8):1255–61.CrossRefPubMed Porto LC et al. Impairment of the serotonergic control of feeding in adult female rats exposed to intra-uterine malnutrition. Br J Nutr. 2009;101(8):1255–61.CrossRefPubMed
95.
Zurück zum Zitat de Souza SL, Orozco-Solis R, de Castro M, et al. Perinatal protein restriction reduces the inhibitory action of serotonin on food intake. Eur J Neurosci. 2008;27(6):1400–8.CrossRef de Souza SL, Orozco-Solis R, de Castro M, et al. Perinatal protein restriction reduces the inhibitory action of serotonin on food intake. Eur J Neurosci. 2008;27(6):1400–8.CrossRef
97.
Zurück zum Zitat Frank G. The role of neurotransmitter systems in eating and substance use disorders, in eating disorders, addictions and substance use disorders. In: Brewerton T, Baker-Dennis A, editors. Springer: Berlin; 2014. Frank G. The role of neurotransmitter systems in eating and substance use disorders, in eating disorders, addictions and substance use disorders. In: Brewerton T, Baker-Dennis A, editors. Springer: Berlin; 2014.
98.
Zurück zum Zitat Brewerton TD, Dennis AB. Eating disorders, addictions and substance use disorders: research, clinical and treatment perspectives. xxv:681. Brewerton TD, Dennis AB. Eating disorders, addictions and substance use disorders: research, clinical and treatment perspectives. xxv:681.
Metadaten
Titel
Recent Advances in Neuroimaging to Model Eating Disorder Neurobiology
verfasst von
Guido K. W. Frank
Publikationsdatum
01.04.2015
Verlag
Springer US
Erschienen in
Current Psychiatry Reports / Ausgabe 4/2015
Print ISSN: 1523-3812
Elektronische ISSN: 1535-1645
DOI
https://doi.org/10.1007/s11920-015-0559-z

Weitere Artikel der Ausgabe 4/2015

Current Psychiatry Reports 4/2015 Zur Ausgabe

Disaster Psychiatry: Trauma, PTSD, and Related Disorders (E Foa and A Asnaani, Section Editors)

Psychological Mechanisms of Effective Cognitive–Behavioral Treatments for PTSD

Disaster Psychiatry: Trauma, PTSD, and Related Disorders (E Foa and A Asnaani, Section Editors)

Psychopharmacological Strategies in the Management of Posttraumatic Stress Disorder (PTSD): What Have We Learned?

Women's Mental Health (D Rubinow, Section Editor)

Psychiatric Consultation to the Postpartum Mother

Eating Disorders (C Grilo, Section Editor)

Current Considerations Regarding Food Addiction

Update Psychiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.