Skip to main content
Erschienen in: Current Reviews in Musculoskeletal Medicine 3/2020

23.04.2020 | Updates in Spine Surgery - Techniques, Biologics, and Non-Operative Management (W Hsu, Section Editor)

Recent Research Advances in Biologic Bone Graft Materials for Spine Surgery

verfasst von: Mark A. Plantz, Wellington K. Hsu

Erschienen in: Current Reviews in Musculoskeletal Medicine | Ausgabe 3/2020

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

Biologic bone graft materials continue to be an important component of various spinal fusion procedures. Given the known risks and morbidity of harvesting iliac crest bone graft, the historical gold standard for spinal fusion, these biologic materials serve the purpose of improving both the efficacy and safety of spinal fusion procedures. Recent advances in biomedical and materials sciences have enabled the design of many novel materials that have shown promise as effective bone graft materials. This review will discuss current research pertaining to several of these materials, including functionalized peptide amphiphiles and other nanocomposites, novel demineralized bone matrix applications, 3D-printed materials, and Hyperelastic Bone®, among others.

Recent Findings

Recent investigation has demonstrated that novel technologies, including nanotechnology and 3D printing, can be used to produce biomaterials with significant osteogenic potential. Notably, peptide amphiphile nanomaterials functionalized to bind BMP-2 have demonstrated significant bone regenerative capacity in a pre-clinical rodent posterolateral lumbar fusion (PLF) model. Additionally, 3D-printed Hyperelastic Bone® has demonstrated promising bone regenerative capacity in several in vivo animal models. Composite materials such as TrioMatrix® (demineralized bone matrix, hydroxyapatite, and nanofiber-based collagen scaffold) have also demonstrated significant osteogenic potential in both in vitro and in vivo settings.

Summary

Advances in materials science and engineering have allowed for the design and implementation of several novel biologic materials, including nanocomposites, 3D-printed materials, and various biologic composites. These materials provide significant bone regenerative capacity and have the potential to be alternatives to other bone graft materials, such as autograft and BMP-2, which have known complications.
Literatur
1.
Zurück zum Zitat Rajaee SS, Bae HW, Kanim LE, Delamarter RB. Spinal fusion in the United States: analysis of trends from 1998 to 2008. Spine. 2012;37(1):67–76.PubMedCrossRef Rajaee SS, Bae HW, Kanim LE, Delamarter RB. Spinal fusion in the United States: analysis of trends from 1998 to 2008. Spine. 2012;37(1):67–76.PubMedCrossRef
2.
Zurück zum Zitat Martin BI, Mirza SK, Spina N, Spiker WR, Lawrence B, Brodke DS. Trends in lumbar fusion procedure rates and associated hospital costs for degenerative spinal diseases in the United States, 2004 to 2015. Spine. 2019;44(5):369–76.PubMedCrossRef Martin BI, Mirza SK, Spina N, Spiker WR, Lawrence B, Brodke DS. Trends in lumbar fusion procedure rates and associated hospital costs for degenerative spinal diseases in the United States, 2004 to 2015. Spine. 2019;44(5):369–76.PubMedCrossRef
3.
Zurück zum Zitat Marawar S, Girardi FP, Sama AA, Ma Y, Gaber-Baylis LK, Besculides MC, et al. National trends in anterior cervical fusion procedures. Spine. 2010;35(15):1454–9.PubMedCrossRef Marawar S, Girardi FP, Sama AA, Ma Y, Gaber-Baylis LK, Besculides MC, et al. National trends in anterior cervical fusion procedures. Spine. 2010;35(15):1454–9.PubMedCrossRef
4.
Zurück zum Zitat Arrington ED, Smith WJ, Chambers HG, Bucknell AL, Davino NA. Complications of iliac crest bone graft harvesting. Clin Orthop Relat Res. 1996;329:300–9.CrossRef Arrington ED, Smith WJ, Chambers HG, Bucknell AL, Davino NA. Complications of iliac crest bone graft harvesting. Clin Orthop Relat Res. 1996;329:300–9.CrossRef
5.
Zurück zum Zitat Dimitriou R, Mataliotakis GI, Angoules AG, Kanakaris NK, Giannoudis PV. Complications following autologous bone graft harvesting from the iliac crest and using the RIA: a systematic review. Injury. 2011;42:S3–S15.PubMedCrossRef Dimitriou R, Mataliotakis GI, Angoules AG, Kanakaris NK, Giannoudis PV. Complications following autologous bone graft harvesting from the iliac crest and using the RIA: a systematic review. Injury. 2011;42:S3–S15.PubMedCrossRef
6.
Zurück zum Zitat Silber JS, Anderson DG, Daffner SD, Brislin BT, Leland JM, Hilibrand AS, et al. Donor site morbidity after anterior iliac crest bone harvest for single-level anterior cervical discectomy and fusion. Spine. 2003;28(2):134–9.PubMedCrossRef Silber JS, Anderson DG, Daffner SD, Brislin BT, Leland JM, Hilibrand AS, et al. Donor site morbidity after anterior iliac crest bone harvest for single-level anterior cervical discectomy and fusion. Spine. 2003;28(2):134–9.PubMedCrossRef
7.
Zurück zum Zitat Kannan A, Dodwad S-NM, Hsu WK. Biologics in spine arthrodesis. J Spinal Disord Tech. 2015;28(5):163–70.PubMedCrossRef Kannan A, Dodwad S-NM, Hsu WK. Biologics in spine arthrodesis. J Spinal Disord Tech. 2015;28(5):163–70.PubMedCrossRef
8.
Zurück zum Zitat Löwik DW, van Hest JC. Peptide based amphiphiles. J Chem Soc Rev. 2004;33(4):234–45.CrossRef Löwik DW, van Hest JC. Peptide based amphiphiles. J Chem Soc Rev. 2004;33(4):234–45.CrossRef
9.
Zurück zum Zitat Cui H, Webber MJ, Stupp SI. Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. AdvSci. 2010;94(1):1–18. Cui H, Webber MJ, Stupp SI. Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. AdvSci. 2010;94(1):1–18.
10.
Zurück zum Zitat Berndt P, Fields GB, Tirrell M. Synthetic lipidation of peptides and amino acids: monolayer structure and properties. J Am Chem Soc. 1995;117(37):9515–22.CrossRef Berndt P, Fields GB, Tirrell M. Synthetic lipidation of peptides and amino acids: monolayer structure and properties. J Am Chem Soc. 1995;117(37):9515–22.CrossRef
11.
Zurück zum Zitat Cui H, Webber MJ, Stupp SI. Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Peptide Sci. 2010;94(1):1–18.CrossRef Cui H, Webber MJ, Stupp SI. Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Peptide Sci. 2010;94(1):1–18.CrossRef
12.
Zurück zum Zitat Anderson JM, Vines JB, Patterson JL, Chen H, Javed A, Jun H-W. Osteogenic differentiation of human mesenchymal stem cells synergistically enhanced by biomimetic peptide amphiphiles combined with conditioned medium. Acta Biomater. 2011;7(2):675–82.PubMedCrossRef Anderson JM, Vines JB, Patterson JL, Chen H, Javed A, Jun H-W. Osteogenic differentiation of human mesenchymal stem cells synergistically enhanced by biomimetic peptide amphiphiles combined with conditioned medium. Acta Biomater. 2011;7(2):675–82.PubMedCrossRef
13.
Zurück zum Zitat Sargeant TD, Aparicio C, Goldberger JE, Cui H, Stupp SI. Mineralization of peptide amphiphile nanofibers and its effect on the differentiation of human mesenchymal stem cells. Acta Biomater. 2012;8(7):2456–65.PubMedPubMedCentralCrossRef Sargeant TD, Aparicio C, Goldberger JE, Cui H, Stupp SI. Mineralization of peptide amphiphile nanofibers and its effect on the differentiation of human mesenchymal stem cells. Acta Biomater. 2012;8(7):2456–65.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Hartgerink JD, Beniash E, Stupp SI. Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc Natl Acad Sci. 2002;99(8):5133–8.PubMedCrossRef Hartgerink JD, Beniash E, Stupp SI. Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc Natl Acad Sci. 2002;99(8):5133–8.PubMedCrossRef
15.
Zurück zum Zitat Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science. 2001;294(5547):1684–8.PubMedCrossRef Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science. 2001;294(5547):1684–8.PubMedCrossRef
17.
Zurück zum Zitat Ghanaati S, Webber MJ, Unger RE, Orth C, Hulvat JF, Kiehna SE, et al. Dynamic in vivo biocompatibility of angiogenic peptide amphiphile nanofibers. Biomaterials. 2009;30(31):6202–12.PubMedPubMedCentralCrossRef Ghanaati S, Webber MJ, Unger RE, Orth C, Hulvat JF, Kiehna SE, et al. Dynamic in vivo biocompatibility of angiogenic peptide amphiphile nanofibers. Biomaterials. 2009;30(31):6202–12.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Lee SS, Huang BJ, Kaltz SR, Sur S, Newcomb CJ, Stock SR, et al. Bone regeneration with low dose BMP-2 amplified by biomimetic supramolecular nanofibers within collagen scaffolds. Biomaterials. 2013;34(2):452–9.PubMedCrossRef Lee SS, Huang BJ, Kaltz SR, Sur S, Newcomb CJ, Stock SR, et al. Bone regeneration with low dose BMP-2 amplified by biomimetic supramolecular nanofibers within collagen scaffolds. Biomaterials. 2013;34(2):452–9.PubMedCrossRef
19.
Zurück zum Zitat • Lee SS, Hsu EL, Mendoza M, Ghodasra J, Nickoli MS, Ashtekar A, et al. Gel scaffolds of BMP-2-binding peptide amphiphile nanofibers for spinal arthrodesis. Adv Healthcare Mater. 2015;4(1):131–41 This study demonstrated that peptide amphiphile nanomaterials can be functionalized to bind and locally deliver BMP-2 in a pre-clinical rodent posterolateral lumbar fusion (PLF) model. Notably, this nanocomposite material yielded excellent bone regenerative capacity and fusion rates with subtherapeutic (10-fold lower) doses of BMP-2. CrossRef • Lee SS, Hsu EL, Mendoza M, Ghodasra J, Nickoli MS, Ashtekar A, et al. Gel scaffolds of BMP-2-binding peptide amphiphile nanofibers for spinal arthrodesis. Adv Healthcare Mater. 2015;4(1):131–41 This study demonstrated that peptide amphiphile nanomaterials can be functionalized to bind and locally deliver BMP-2 in a pre-clinical rodent posterolateral lumbar fusion (PLF) model. Notably, this nanocomposite material yielded excellent bone regenerative capacity and fusion rates with subtherapeutic (10-fold lower) doses of BMP-2. CrossRef
20.
Zurück zum Zitat Tannoury CA, An HS. Complications with the use of bone morphogenetic protein 2 (BMP-2) in spine surgery. Spine J. 2014;14(3):552–9.PubMedCrossRef Tannoury CA, An HS. Complications with the use of bone morphogenetic protein 2 (BMP-2) in spine surgery. Spine J. 2014;14(3):552–9.PubMedCrossRef
21.
Zurück zum Zitat Wildemann B, Kadow-Romacker A, Haas N, Schmidmaier G. Quantification of various growth factors in different demineralized bone matrix preparations. J Biomed Mater Res A. 2007;81(2):437–42.PubMedCrossRef Wildemann B, Kadow-Romacker A, Haas N, Schmidmaier G. Quantification of various growth factors in different demineralized bone matrix preparations. J Biomed Mater Res A. 2007;81(2):437–42.PubMedCrossRef
22.
Zurück zum Zitat Boyce T, Edwards J, Scarborough N. Allograft bone: the influence of processing on safety and performance. Orthopedic Clinics. 1999;30(4):571–81.PubMed Boyce T, Edwards J, Scarborough N. Allograft bone: the influence of processing on safety and performance. Orthopedic Clinics. 1999;30(4):571–81.PubMed
23.
Zurück zum Zitat Bae HW, Zhao L, Kanim LE, Wong P, Delamarter RB, Dawson EG. Intervariability and intravariability of bone morphogenetic proteins in commercially available demineralized bone matrix products. Spine. 2006;31(12):1299–306.PubMedCrossRef Bae HW, Zhao L, Kanim LE, Wong P, Delamarter RB, Dawson EG. Intervariability and intravariability of bone morphogenetic proteins in commercially available demineralized bone matrix products. Spine. 2006;31(12):1299–306.PubMedCrossRef
24.
Zurück zum Zitat Aghdasi B, Montgomery S, Daubs M, Wang JJTS. A review of demineralized bone matrices for spinal fusion: the evidence for efficacy. Surgeon. 2013;11(1):39–48.PubMedCrossRef Aghdasi B, Montgomery S, Daubs M, Wang JJTS. A review of demineralized bone matrices for spinal fusion: the evidence for efficacy. Surgeon. 2013;11(1):39–48.PubMedCrossRef
25.
Zurück zum Zitat Hsu WK, Polavarapu M, Riaz R, Roc GC, Stock SR, Glicksman ZS, et al. Nanocomposite therapy as a more efficacious and less inflammatory alternative to bone morphogenetic protein-2 in a rodent arthrodesis model. J Orthop Res. 2011;29(12):1812–9.PubMedCrossRef Hsu WK, Polavarapu M, Riaz R, Roc GC, Stock SR, Glicksman ZS, et al. Nanocomposite therapy as a more efficacious and less inflammatory alternative to bone morphogenetic protein-2 in a rodent arthrodesis model. J Orthop Res. 2011;29(12):1812–9.PubMedCrossRef
26.
Zurück zum Zitat Rodriguez RU, Kemper N, Breathwaite E, Dutta SM, Huber A, Murchison A, et al. Demineralized bone matrix fibers formable as general and custom 3D printed mold-based implants for promoting bone regeneration. Biofabrication. 2016;8(3):035007.PubMedCrossRef Rodriguez RU, Kemper N, Breathwaite E, Dutta SM, Huber A, Murchison A, et al. Demineralized bone matrix fibers formable as general and custom 3D printed mold-based implants for promoting bone regeneration. Biofabrication. 2016;8(3):035007.PubMedCrossRef
27.
Zurück zum Zitat Alom N, Peto H, Kirkham GR, Shakesheff KM, White LJ. Bone extracellular matrix hydrogel enhances osteogenic differentiation of C2C12 myoblasts and mouse primary calvarial cells. J Biomed Mater Res B Appl Biomater. 2018;106(2):900–8.PubMedCrossRef Alom N, Peto H, Kirkham GR, Shakesheff KM, White LJ. Bone extracellular matrix hydrogel enhances osteogenic differentiation of C2C12 myoblasts and mouse primary calvarial cells. J Biomed Mater Res B Appl Biomater. 2018;106(2):900–8.PubMedCrossRef
28.
Zurück zum Zitat Trieu HH, Chaffin KA. Bioactive nanocomposites and methods for their use. Google Patents. 2007. Trieu HH, Chaffin KA. Bioactive nanocomposites and methods for their use. Google Patents. 2007.
29.
Zurück zum Zitat Chan CK, Kumar TS, Liao S, Murugan R, Ngiam M, Ramakrishnan S. Biomimetic nanocomposites for bone graft applications. Future Med. 2006. Chan CK, Kumar TS, Liao S, Murugan R, Ngiam M, Ramakrishnan S. Biomimetic nanocomposites for bone graft applications. Future Med. 2006.
30.
Zurück zum Zitat Gandhimathi C, Venugopal JR, Ramakrishna S, Srinivasan DK. Electrospun-electrosprayed hydroxyapatite nanostructured composites for bone tissue regeneration. J Appl Polym Sci. 2018;135(42):46756.CrossRef Gandhimathi C, Venugopal JR, Ramakrishna S, Srinivasan DK. Electrospun-electrosprayed hydroxyapatite nanostructured composites for bone tissue regeneration. J Appl Polym Sci. 2018;135(42):46756.CrossRef
31.
Zurück zum Zitat Liu X, Zhao K, Gong T, Song J, Bao C, Luo E, et al. Delivery of growth factors using a smart porous nanocomposite scaffold to repair a mandibular bone defect. Biomacromolecules. 2014;15(3):1019–30.PubMedCrossRef Liu X, Zhao K, Gong T, Song J, Bao C, Luo E, et al. Delivery of growth factors using a smart porous nanocomposite scaffold to repair a mandibular bone defect. Biomacromolecules. 2014;15(3):1019–30.PubMedCrossRef
32.
Zurück zum Zitat Lee JH, Shin YC, Lee S-M, Jin OS, Kang SH, Hong SW, et al. Enhanced osteogenesis by reduced graphene oxide/hydroxyapatite nanocomposites. Sci Rep. 2015;5:18833.PubMedPubMedCentralCrossRef Lee JH, Shin YC, Lee S-M, Jin OS, Kang SH, Hong SW, et al. Enhanced osteogenesis by reduced graphene oxide/hydroxyapatite nanocomposites. Sci Rep. 2015;5:18833.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat • Wilcox B, Mobbs RJ, Wu A-M, Phan K. Systematic review of 3D printing in spinal surgery: the current state of play. J Spine Surg. 2017;3(3):433 This systematic review summarized the recent applications of 3D printing in spinal surgery. It discussed both 3D-printed models for surgical approach and actual 3D-printed, customizable implants for various spine applications. PubMedPubMedCentralCrossRef • Wilcox B, Mobbs RJ, Wu A-M, Phan K. Systematic review of 3D printing in spinal surgery: the current state of play. J Spine Surg. 2017;3(3):433 This systematic review summarized the recent applications of 3D printing in spinal surgery. It discussed both 3D-printed models for surgical approach and actual 3D-printed, customizable implants for various spine applications. PubMedPubMedCentralCrossRef
34.
35.
Zurück zum Zitat Phan K, Sgro A, Maharaj MM, D’Urso P, Mobbs RJ. Application of a 3D custom printed patient specific spinal implant for C1/2 arthrodesis. J Spine Surg. 2016;2(4):314.PubMedPubMedCentralCrossRef Phan K, Sgro A, Maharaj MM, D’Urso P, Mobbs RJ. Application of a 3D custom printed patient specific spinal implant for C1/2 arthrodesis. J Spine Surg. 2016;2(4):314.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Xu N, Wei F, Liu X, Jiang L, Cai H, Li Z, et al. Reconstruction of the upper cervical spine using a personalized 3D-printed vertebral body in an adolescent with Ewing sarcoma. Spine. 2016;41(1):E50–E4.PubMedCrossRef Xu N, Wei F, Liu X, Jiang L, Cai H, Li Z, et al. Reconstruction of the upper cervical spine using a personalized 3D-printed vertebral body in an adolescent with Ewing sarcoma. Spine. 2016;41(1):E50–E4.PubMedCrossRef
37.
Zurück zum Zitat Mobbs RJ, Coughlan M, Thompson R, Sutterlin CE, Phan KJ. The utility of 3D printing for surgical planning and patient-specific implant design for complex spinal pathologies: case report. J Neurosurg Spine. 2017;26(4):513–8.CrossRef Mobbs RJ, Coughlan M, Thompson R, Sutterlin CE, Phan KJ. The utility of 3D printing for surgical planning and patient-specific implant design for complex spinal pathologies: case report. J Neurosurg Spine. 2017;26(4):513–8.CrossRef
38.
Zurück zum Zitat Choy WJ, Mobbs RJ, Wilcox B, Phan S, Phan K, Sutterlin CE III. Reconstruction of thoracic spine using a personalized 3D-printed vertebral body in adolescent with T9 primary bone tumor. World Neurosurg. 2017;105:1032. e13–7.CrossRef Choy WJ, Mobbs RJ, Wilcox B, Phan S, Phan K, Sutterlin CE III. Reconstruction of thoracic spine using a personalized 3D-printed vertebral body in adolescent with T9 primary bone tumor. World Neurosurg. 2017;105:1032. e13–7.CrossRef
39.
Zurück zum Zitat Wei R, Guo W, Ji T, Zhang Y, Liang HJESJ. One-step reconstruction with a 3D-printed, custom-made prosthesis after total en bloc sacrectomy: a technical note. Eur Spine J. 2017;26(7):1902–9.PubMedCrossRef Wei R, Guo W, Ji T, Zhang Y, Liang HJESJ. One-step reconstruction with a 3D-printed, custom-made prosthesis after total en bloc sacrectomy: a technical note. Eur Spine J. 2017;26(7):1902–9.PubMedCrossRef
40.
Zurück zum Zitat Kim D, Lim J-Y, Shim K-W, Han JW, Yi S, Yoon DH, et al. Sacral reconstruction with a 3D-printed implant after hemisacrectomy in a patient with sacral osteosarcoma: 1-year follow-up result. Synapse. 2017;58(2):453–7. Kim D, Lim J-Y, Shim K-W, Han JW, Yi S, Yoon DH, et al. Sacral reconstruction with a 3D-printed implant after hemisacrectomy in a patient with sacral osteosarcoma: 1-year follow-up result. Synapse. 2017;58(2):453–7.
41.
Zurück zum Zitat Do AV, Khorsand B, Geary SM, Salem AK. 3D printing of scaffolds for tissue regeneration applications. Adv Healthcare Mater. 2015;4(12):1742–62.CrossRef Do AV, Khorsand B, Geary SM, Salem AK. 3D printing of scaffolds for tissue regeneration applications. Adv Healthcare Mater. 2015;4(12):1742–62.CrossRef
42.
Zurück zum Zitat Bergmann C, Lindner M, Zhang W, Koczur K, Kirsten A, Telle R, et al. 3D printing of bone substitute implants using calcium phosphate and bioactive glasses. J Eur Ceram Soc. 2010;30(12):2563–7.CrossRef Bergmann C, Lindner M, Zhang W, Koczur K, Kirsten A, Telle R, et al. 3D printing of bone substitute implants using calcium phosphate and bioactive glasses. J Eur Ceram Soc. 2010;30(12):2563–7.CrossRef
43.
Zurück zum Zitat Cox SC, Thornby JA, Gibbons GJ, Williams MA, Mallick KK. 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Mater Sci Eng C. 2015;47:237–47.CrossRef Cox SC, Thornby JA, Gibbons GJ, Williams MA, Mallick KK. 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Mater Sci Eng C. 2015;47:237–47.CrossRef
44.
Zurück zum Zitat Inzana JA, Olvera D, Fuller SM, Kelly JP, Graeve OA, Schwarz EM, et al. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials. 2014;35(13):4026–34.PubMedPubMedCentralCrossRef Inzana JA, Olvera D, Fuller SM, Kelly JP, Graeve OA, Schwarz EM, et al. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials. 2014;35(13):4026–34.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat • KC MG, Easley J, Seim HB, Regan D, Berven SH, Hsu WK, et al. Bony ingrowth potential of 3D-printed porous titanium alloy: a direct comparison of interbody cage materials in an in vivo ovine lumbar fusion model. Spine J. 2018;18(7):1250–60 This study compared three different interbody implants—polyetheretherketone (PEEK), plasma sprayed porous titanium-coated PEEK (PSP), and 3D-printed porous titanium alloy cage (PTA)—in an ovine interbody lumbar fusion model. The 3D-printed porous titanium alloy cage (PTA) yielded superior results, including a significant reduction in range-of-motion, increased stiffness, and increased bony ingrowth relative to the other materials. CrossRef • KC MG, Easley J, Seim HB, Regan D, Berven SH, Hsu WK, et al. Bony ingrowth potential of 3D-printed porous titanium alloy: a direct comparison of interbody cage materials in an in vivo ovine lumbar fusion model. Spine J. 2018;18(7):1250–60 This study compared three different interbody implants—polyetheretherketone (PEEK), plasma sprayed porous titanium-coated PEEK (PSP), and 3D-printed porous titanium alloy cage (PTA)—in an ovine interbody lumbar fusion model. The 3D-printed porous titanium alloy cage (PTA) yielded superior results, including a significant reduction in range-of-motion, increased stiffness, and increased bony ingrowth relative to the other materials. CrossRef
46.
Zurück zum Zitat • Jakus AE, Rutz AL, Jordan SW, Kannan A, Mitchell SM, Yun C, et al. Hyperelastic “bone”: a highly versatile, growth factor–free, osteoregenerative, scalable, and surgically friendly biomaterial. Sci Transl Med. 2016;8(358):358ra127-358ra127 This study assessed the bone regenerative capacity of Hyperelastic Bone® in bothin vitroandin vivomodels. The material was assessed in several models, including a mouse subcutaneous implant model, a rat posterolateral lumbar fusion (PLF) model, and a non-human primate, calvarial defect model. The material was found to quickly integrate with nearby tissue without a negative immune response, vascularize, ossify and facilitate bone growth without the need for growth factors. CrossRef • Jakus AE, Rutz AL, Jordan SW, Kannan A, Mitchell SM, Yun C, et al. Hyperelastic “bone”: a highly versatile, growth factor–free, osteoregenerative, scalable, and surgically friendly biomaterial. Sci Transl Med. 2016;8(358):358ra127-358ra127 This study assessed the bone regenerative capacity of Hyperelastic Bone® in bothin vitroandin vivomodels. The material was assessed in several models, including a mouse subcutaneous implant model, a rat posterolateral lumbar fusion (PLF) model, and a non-human primate, calvarial defect model. The material was found to quickly integrate with nearby tissue without a negative immune response, vascularize, ossify and facilitate bone growth without the need for growth factors. CrossRef
47.
Zurück zum Zitat • Alluri R, Jakus A, Bougioukli S, Pannell W, Sugiyama O, Tang A, et al. 3D printed hyperelastic “bone” scaffolds and regional gene therapy: a novel approach to bone healing. J Biomed Mater Res A. 2018;106(4):1104–10 This study evaluated the osteogenic potential of Hyperelastic Bone® loaded with human adipose-derived stem cells (ADSCs) transduced with lentiviral (LV) vector to overexpress bone morphogenetic protein-2 (BMP-2). This combination therapy was assessed in bothin vitroandin vivo(hindlimb muscle pouch model) models. The Hyperelastic Bone® group loaded with transduced ADSCs demonstrated ectopic bone formationin vivo, which was not evident in the other groups [Hyperelastic Bone® loaded with a) LV-green fluorescent protein, b) ADSCs alone, and c) scaffold alone]. This study demonstrated that combining gene therapy with materials engineering is a promising new area of research with regards to bone graft design. PubMedPubMedCentralCrossRef • Alluri R, Jakus A, Bougioukli S, Pannell W, Sugiyama O, Tang A, et al. 3D printed hyperelastic “bone” scaffolds and regional gene therapy: a novel approach to bone healing. J Biomed Mater Res A. 2018;106(4):1104–10 This study evaluated the osteogenic potential of Hyperelastic Bone® loaded with human adipose-derived stem cells (ADSCs) transduced with lentiviral (LV) vector to overexpress bone morphogenetic protein-2 (BMP-2). This combination therapy was assessed in bothin vitroandin vivo(hindlimb muscle pouch model) models. The Hyperelastic Bone® group loaded with transduced ADSCs demonstrated ectopic bone formationin vivo, which was not evident in the other groups [Hyperelastic Bone® loaded with a) LV-green fluorescent protein, b) ADSCs alone, and c) scaffold alone]. This study demonstrated that combining gene therapy with materials engineering is a promising new area of research with regards to bone graft design. PubMedPubMedCentralCrossRef
Metadaten
Titel
Recent Research Advances in Biologic Bone Graft Materials for Spine Surgery
verfasst von
Mark A. Plantz
Wellington K. Hsu
Publikationsdatum
23.04.2020
Verlag
Springer US
Erschienen in
Current Reviews in Musculoskeletal Medicine / Ausgabe 3/2020
Elektronische ISSN: 1935-9748
DOI
https://doi.org/10.1007/s12178-020-09620-4

Weitere Artikel der Ausgabe 3/2020

Current Reviews in Musculoskeletal Medicine 3/2020 Zur Ausgabe

The Use of Technology in Orthopaedic Surgery—Intraoperative and Post-Operative Management (C Krueger and S Bini, Section Editors)

Robots in the Operating Room During Hip and Knee Arthroplasty

Outcomes Research in Orthopedics (O Ayeni, Section Editor)

Survivorship Following Hip Arthroscopy: Lessons Learned from a Comprehensive Database

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.