Skip to main content
Erschienen in: Inflammation 3/2015

01.06.2015

Recombinant TB9.8 of Mycobacterium bovis Triggers the Production of IL-12 p40 and IL-6 in RAW264.7 Macrophages via Activation of the p38, ERK, and NF-κB Signaling Pathways

Erschienen in: Inflammation | Ausgabe 3/2015

Einloggen, um Zugang zu erhalten

Abstract

The TB9.8 of Mycobacterium bovis can induce strong antigen-specific T-cell responses in proliferation assays and IFN-γ assays. However, whether and how TB9.8 activates innate immune cells remain unclear. Therefore, recombinant protein TB9.8 (rTB9.8)-induced proinflammatory cytokine profile by RAW264.7 cells was investigated and the related signaling pathway was studied. Stimulation with rTB9.8 triggered RAW264.7 cells to produce IL-6 and IL-12 p40. In addition, rTB9.8 activated the mitogen-activated protein kinase (MAPK) cascade in RAW264.7 cells by inducing the phosphorylation of extracellular signal-regulated kinase (ERK) and p38 kinase (p38) and also promoted nuclear translocation of phosphorylated p38 and ERK1/2. Furthermore, rTB9.8 activated nuclear factor κB (NF-κB) signaling pathway by inducing p65 translocation into the nucleus and the phosphorylation of IκBα in the cytosol. Blocking assays showed that specific inhibitors of ERK1/2, p38, and IκBα can significantly reduce the expression of IL-6 and IL-12 p40, which demonstrated that rTB9.8-mediated cytokine production is dependent on the activation of these kinases. Thus, this study demonstrates that rTB9.8 can activate RAW264.7 and trigger IL-6 and IL-12 p40 production via the ERK, p38, and NF-κB signaling pathways.
Literatur
1.
Zurück zum Zitat Smith, N.H., S.V. Gordon, R. de la Rua-Domenech, R.S. Clifton-Hadley, and R.G. Hewinson. 2006. Bottlenecks and broomsticks: the molecular evolution of Mycobacterium bovis. Nature Reviews Microbiology 4: 670–681.CrossRefPubMed Smith, N.H., S.V. Gordon, R. de la Rua-Domenech, R.S. Clifton-Hadley, and R.G. Hewinson. 2006. Bottlenecks and broomsticks: the molecular evolution of Mycobacterium bovis. Nature Reviews Microbiology 4: 670–681.CrossRefPubMed
2.
Zurück zum Zitat Michel, A.L., B. Muller, and P.D. van Helden. 2010. Mycobacterium bovis at the animal-human interface: a problem, or not? Veterinary Microbiology 140: 371–381.CrossRefPubMed Michel, A.L., B. Muller, and P.D. van Helden. 2010. Mycobacterium bovis at the animal-human interface: a problem, or not? Veterinary Microbiology 140: 371–381.CrossRefPubMed
3.
Zurück zum Zitat Corner, L.A., D. Murphy, and E. Gormley. 2011. Mycobacterium bovis infection in the Eurasian badger (Meles meles): the disease, pathogenesis, epidemiology and control. Journal of Comparative Pathology 144: 1–24.CrossRefPubMed Corner, L.A., D. Murphy, and E. Gormley. 2011. Mycobacterium bovis infection in the Eurasian badger (Meles meles): the disease, pathogenesis, epidemiology and control. Journal of Comparative Pathology 144: 1–24.CrossRefPubMed
4.
Zurück zum Zitat Cosivi, O., F.X. Meslin, C.J. Daborn, and J.M. Grange. 1995. Epidemiology of Mycobacterium bovis infection in animals and humans, with particular reference to Africa. Revue Scientifique et Technique 14: 733–746.PubMed Cosivi, O., F.X. Meslin, C.J. Daborn, and J.M. Grange. 1995. Epidemiology of Mycobacterium bovis infection in animals and humans, with particular reference to Africa. Revue Scientifique et Technique 14: 733–746.PubMed
5.
Zurück zum Zitat Flynn, J.L., and J. Chan. 2001. Immunology of tuberculosis. Annual Review of Immunology 19: 93–129.CrossRefPubMed Flynn, J.L., and J. Chan. 2001. Immunology of tuberculosis. Annual Review of Immunology 19: 93–129.CrossRefPubMed
6.
Zurück zum Zitat Xu, G., J. Wang, G.F. Gao, and C.H. Liu. 2014. Insights into battles between Mycobacterium tuberculosis and macrophages. Protein Cell 5(10): 728–736.CrossRefPubMedCentralPubMed Xu, G., J. Wang, G.F. Gao, and C.H. Liu. 2014. Insights into battles between Mycobacterium tuberculosis and macrophages. Protein Cell 5(10): 728–736.CrossRefPubMedCentralPubMed
7.
Zurück zum Zitat Jo, E.K., C.S. Yang, C.H. Choi, and C.V. Harding. 2007. Intracellular signalling cascades regulating innate immune responses to Mycobacteria: branching out from Toll-like receptors. Cellular Microbiology 9: 1087–1098.CrossRefPubMed Jo, E.K., C.S. Yang, C.H. Choi, and C.V. Harding. 2007. Intracellular signalling cascades regulating innate immune responses to Mycobacteria: branching out from Toll-like receptors. Cellular Microbiology 9: 1087–1098.CrossRefPubMed
8.
Zurück zum Zitat Magee, D.A., K.M. Conlon, N.C. Nalpas, J.A. Browne, C. Pirson, C. Healy, et al. 2014. Innate cytokine profiling of bovine alveolar macrophages reveals commonalities and divergence in the response to Mycobacterium bovis and Mycobacterium tuberculosis infection. Tuberculosis (Edinburgh, Scotland) 94: 441–450.CrossRef Magee, D.A., K.M. Conlon, N.C. Nalpas, J.A. Browne, C. Pirson, C. Healy, et al. 2014. Innate cytokine profiling of bovine alveolar macrophages reveals commonalities and divergence in the response to Mycobacterium bovis and Mycobacterium tuberculosis infection. Tuberculosis (Edinburgh, Scotland) 94: 441–450.CrossRef
9.
Zurück zum Zitat Petursdottir, D.H., O.D. Chuquimia, R. Freidl, and C. Fernandez. 2014. Macrophage control of phagocytosed mycobacteria is increased by factors secreted by alveolar epithelial cells through nitric oxide independent mechanisms. PLoS ONE 9: e103411.CrossRefPubMedCentralPubMed Petursdottir, D.H., O.D. Chuquimia, R. Freidl, and C. Fernandez. 2014. Macrophage control of phagocytosed mycobacteria is increased by factors secreted by alveolar epithelial cells through nitric oxide independent mechanisms. PLoS ONE 9: e103411.CrossRefPubMedCentralPubMed
10.
Zurück zum Zitat Madhani, H.D., and G.R. Fink. 1998. The riddle of MAP kinase signaling specificity. Trends in Genetics 14: 151–155.CrossRefPubMed Madhani, H.D., and G.R. Fink. 1998. The riddle of MAP kinase signaling specificity. Trends in Genetics 14: 151–155.CrossRefPubMed
11.
Zurück zum Zitat Dong, C., R.J. Davis, and R.A. Flavell. 2002. MAP kinases in the immune response. Annual Review of Immunology 20: 55–72.CrossRefPubMed Dong, C., R.J. Davis, and R.A. Flavell. 2002. MAP kinases in the immune response. Annual Review of Immunology 20: 55–72.CrossRefPubMed
12.
Zurück zum Zitat Maiti, D., A. Bhattacharyya, and J. Basu. 2001. Lipoarabinomannan from Mycobacterium tuberculosis promotes macrophage survival by phosphorylating Bad through a phosphatidylinositol 3-kinase/Akt pathway. Journal of Biological Chemistry 276: 329–333.CrossRefPubMed Maiti, D., A. Bhattacharyya, and J. Basu. 2001. Lipoarabinomannan from Mycobacterium tuberculosis promotes macrophage survival by phosphorylating Bad through a phosphatidylinositol 3-kinase/Akt pathway. Journal of Biological Chemistry 276: 329–333.CrossRefPubMed
13.
Zurück zum Zitat Mendez-Samperio, P., A. Perez, and L. Rivera. 2009. Mycobacterium bovis Bacillus Calmette-Guerin (BCG)-induced activation of PI3K/Akt and NF-kB signaling pathways regulates expression of CXCL10 in epithelial cells. Cellular Immunology 256: 12–18.CrossRefPubMed Mendez-Samperio, P., A. Perez, and L. Rivera. 2009. Mycobacterium bovis Bacillus Calmette-Guerin (BCG)-induced activation of PI3K/Akt and NF-kB signaling pathways regulates expression of CXCL10 in epithelial cells. Cellular Immunology 256: 12–18.CrossRefPubMed
14.
Zurück zum Zitat Chan, E.D., K.R. Morris, J.T. Belisle, P. Hill, L.K. Remigio, P.J. Brennan, et al. 2001. Induction of inducible nitric oxide synthase-NO by lipoarabinomannan of Mycobacterium tuberculosis is mediated by MEK1-ERK, MKK7-JNK, and NF-κB signaling pathways. Infection and Immunity 69: 2001–2010.CrossRefPubMedCentralPubMed Chan, E.D., K.R. Morris, J.T. Belisle, P. Hill, L.K. Remigio, P.J. Brennan, et al. 2001. Induction of inducible nitric oxide synthase-NO by lipoarabinomannan of Mycobacterium tuberculosis is mediated by MEK1-ERK, MKK7-JNK, and NF-κB signaling pathways. Infection and Immunity 69: 2001–2010.CrossRefPubMedCentralPubMed
15.
Zurück zum Zitat Jones, B.W., T.K. Means, K.A. Heldwein, M.A. Keen, P.J. Hill, J.T. Belisle, et al. 2001. Different Toll-like receptor agonists induce distinct macrophage responses. Journal of Leukocyte Biology 69: 1036–1044.PubMed Jones, B.W., T.K. Means, K.A. Heldwein, M.A. Keen, P.J. Hill, J.T. Belisle, et al. 2001. Different Toll-like receptor agonists induce distinct macrophage responses. Journal of Leukocyte Biology 69: 1036–1044.PubMed
16.
Zurück zum Zitat Pearson, G., F. Robinson, T.B. Gibson, B.-E. Xu, M. Karandikar, K. Berman, et al. 2001. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocrine Reviews 22: 153–183.PubMed Pearson, G., F. Robinson, T.B. Gibson, B.-E. Xu, M. Karandikar, K. Berman, et al. 2001. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocrine Reviews 22: 153–183.PubMed
17.
Zurück zum Zitat Johnson, G.L., and R. Lapadat. 2002. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298: 1911–1912.CrossRefPubMed Johnson, G.L., and R. Lapadat. 2002. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298: 1911–1912.CrossRefPubMed
18.
Zurück zum Zitat Kang S.R., Han D.Y, Park K.I., Park H.S., Cho Y.B., Lee H.J., et al. 2011. Suppressive effect on lipopolysaccharide-induced proinflammatory mediators by Citrus aurantium L. in macrophage RAW 264.7 cells via NF-kappaB signal pathway. Evidence-based complementary and alternative medicine: eCAM 2011 Kang S.R., Han D.Y, Park K.I., Park H.S., Cho Y.B., Lee H.J., et al. 2011. Suppressive effect on lipopolysaccharide-induced proinflammatory mediators by Citrus aurantium L. in macrophage RAW 264.7 cells via NF-kappaB signal pathway. Evidence-based complementary and alternative medicine: eCAM 2011
19.
Zurück zum Zitat Oh, Y.C., Y.H. Jeong, J.H. Ha, W.K. Cho, and J.Y. Ma. 2014. Oryeongsan inhibits LPS-induced production of inflammatory mediators via blockade of the NF-kappaB, MAPK pathways and leads to HO-1 induction in macrophage cells. BMC Complementary and Alternative Medicine 14: 242.CrossRefPubMedCentralPubMed Oh, Y.C., Y.H. Jeong, J.H. Ha, W.K. Cho, and J.Y. Ma. 2014. Oryeongsan inhibits LPS-induced production of inflammatory mediators via blockade of the NF-kappaB, MAPK pathways and leads to HO-1 induction in macrophage cells. BMC Complementary and Alternative Medicine 14: 242.CrossRefPubMedCentralPubMed
20.
Zurück zum Zitat Kumar, A., R. Murphy, P. Robinson, L. Wei, and A.M. Boriek. 2004. Cyclic mechanical strain inhibits skeletal myogenesis through activation of focal adhesion kinase, Rac-1 GTPase, and NF-kappaB transcription factor. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology 18: 1524–1535.CrossRef Kumar, A., R. Murphy, P. Robinson, L. Wei, and A.M. Boriek. 2004. Cyclic mechanical strain inhibits skeletal myogenesis through activation of focal adhesion kinase, Rac-1 GTPase, and NF-kappaB transcription factor. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology 18: 1524–1535.CrossRef
21.
Zurück zum Zitat Li, W., Q. Zhao, W. Deng, T. Chen, M. Liu, and J. Xie. 2014. Mycobacterium tuberculosis Rv3402c enhances mycobacterial survival within macrophages and modulates the host pro-inflammatory cytokines production via NF-kappa B/ERK/p38 signaling. PLoS ONE 9: e94418.CrossRefPubMedCentralPubMed Li, W., Q. Zhao, W. Deng, T. Chen, M. Liu, and J. Xie. 2014. Mycobacterium tuberculosis Rv3402c enhances mycobacterial survival within macrophages and modulates the host pro-inflammatory cytokines production via NF-kappa B/ERK/p38 signaling. PLoS ONE 9: e94418.CrossRefPubMedCentralPubMed
22.
Zurück zum Zitat Liu, S., H. Jia, S. Hou, G. Zhang, T. Xin, H. Li, et al. 2014. Recombinant TB10.4 of Mycobacterium bovis induces cytokine production in RAW264.7 macrophages through activation of the MAPK and NF-kappaB pathways via TLR2. Molecular Immunology 62: 227–234.CrossRefPubMed Liu, S., H. Jia, S. Hou, G. Zhang, T. Xin, H. Li, et al. 2014. Recombinant TB10.4 of Mycobacterium bovis induces cytokine production in RAW264.7 macrophages through activation of the MAPK and NF-kappaB pathways via TLR2. Molecular Immunology 62: 227–234.CrossRefPubMed
23.
Zurück zum Zitat Ilghari, D., K.L. Lightbody, V. Veverka, L.C. Waters, F.W. Muskett, P.S. Renshaw, et al. 2011. Solution structure of the Mycobacterium tuberculosis EsxG⋅EsxH complex: functional implications and comparisons with other M. tuberculosis Esx family complexes. Journal of Biological Chemistry 286: 29993–30002.CrossRefPubMedCentralPubMed Ilghari, D., K.L. Lightbody, V. Veverka, L.C. Waters, F.W. Muskett, P.S. Renshaw, et al. 2011. Solution structure of the Mycobacterium tuberculosis EsxG⋅EsxH complex: functional implications and comparisons with other M. tuberculosis Esx family complexes. Journal of Biological Chemistry 286: 29993–30002.CrossRefPubMedCentralPubMed
24.
Zurück zum Zitat Billeskov, R., C. Vingsbo-Lundberg, P. Andersen, and J. Dietrich. 2007. Induction of CD8 T cells against a novel epitope in TB10.4: correlation with mycobacterial virulence and the presence of a functional region of difference-1. Molecular Immunology 179: 3973–3981. Billeskov, R., C. Vingsbo-Lundberg, P. Andersen, and J. Dietrich. 2007. Induction of CD8 T cells against a novel epitope in TB10.4: correlation with mycobacterial virulence and the presence of a functional region of difference-1. Molecular Immunology 179: 3973–3981.
25.
Zurück zum Zitat Skjot, R.L., I. Brock, S.M. Arend, M.E. Munk, M. Theisen, T.H. Ottenhoff, et al. 2002. Epitope mapping of the immunodominant antigen TB10.4 and the two homologous proteins TB10.3 and TB12.9, which constitute a subfamily of the esat-6 gene family. Infection and Immunity 70: 5446–5453.CrossRefPubMedCentralPubMed Skjot, R.L., I. Brock, S.M. Arend, M.E. Munk, M. Theisen, T.H. Ottenhoff, et al. 2002. Epitope mapping of the immunodominant antigen TB10.4 and the two homologous proteins TB10.3 and TB12.9, which constitute a subfamily of the esat-6 gene family. Infection and Immunity 70: 5446–5453.CrossRefPubMedCentralPubMed
26.
Zurück zum Zitat Al-Attiyah, R., A.S. Mustafa, A.T. Abal, A.S. El-Shamy, W. Dalemans, and Y.A. Skeiky. 2004. In vitro cellular immune responses to complex and newly defined recombinant antigens of Mycobacterium tuberculosis. Clinical and Experimental Immunology 138: 139–144.CrossRefPubMedCentralPubMed Al-Attiyah, R., A.S. Mustafa, A.T. Abal, A.S. El-Shamy, W. Dalemans, and Y.A. Skeiky. 2004. In vitro cellular immune responses to complex and newly defined recombinant antigens of Mycobacterium tuberculosis. Clinical and Experimental Immunology 138: 139–144.CrossRefPubMedCentralPubMed
27.
Zurück zum Zitat Liu, S., R. Tobias, S. McClure, G. Styba, Q. Shi, and G. Jackowski. 1997. Removal of endotoxin from recombinant protein preparations. Clinical Biochemistry 30: 455–463.CrossRefPubMed Liu, S., R. Tobias, S. McClure, G. Styba, Q. Shi, and G. Jackowski. 1997. Removal of endotoxin from recombinant protein preparations. Clinical Biochemistry 30: 455–463.CrossRefPubMed
28.
Zurück zum Zitat George, T.C., S.L. Fanning, P. Fitzgerald-Bocarsly, R.B. Medeiros, S. Highfill, Y. Shimizu, et al. 2006. Quantitative measurement of nuclear translocation events using similarity analysis of multispectral cellular images obtained in flow. Journal of Immunological Methods 311: 117–129.CrossRefPubMed George, T.C., S.L. Fanning, P. Fitzgerald-Bocarsly, R.B. Medeiros, S. Highfill, Y. Shimizu, et al. 2006. Quantitative measurement of nuclear translocation events using similarity analysis of multispectral cellular images obtained in flow. Journal of Immunological Methods 311: 117–129.CrossRefPubMed
29.
Zurück zum Zitat Chen, S.-T., J.-Y. Li, Y. Zhang, X. Gao, and H. Cai. 2012. Recombinant MPT83 derived from Mycobacterium tuberculosis induces cytokine production and upregulates the function of mouse macrophages through TLR2. The Journal of Immunology 188: 668–677.CrossRefPubMed Chen, S.-T., J.-Y. Li, Y. Zhang, X. Gao, and H. Cai. 2012. Recombinant MPT83 derived from Mycobacterium tuberculosis induces cytokine production and upregulates the function of mouse macrophages through TLR2. The Journal of Immunology 188: 668–677.CrossRefPubMed
30.
Zurück zum Zitat Jung, S.-B., C.-S. Yang, J.-S. Lee, A.-R. Shin, S.-S. Jung, J.W. Son, et al. 2006. The mycobacterial 38-kDa glycolipoprotein antigen activates the mitogen-activated protein kinase pathway and release of proinflammatory cytokines through Toll-like receptors 2 and 4 in human monocytes. Infection and Immunity 74: 2686–2696.CrossRefPubMedCentralPubMed Jung, S.-B., C.-S. Yang, J.-S. Lee, A.-R. Shin, S.-S. Jung, J.W. Son, et al. 2006. The mycobacterial 38-kDa glycolipoprotein antigen activates the mitogen-activated protein kinase pathway and release of proinflammatory cytokines through Toll-like receptors 2 and 4 in human monocytes. Infection and Immunity 74: 2686–2696.CrossRefPubMedCentralPubMed
31.
Zurück zum Zitat López, M., L.M. Sly, Y. Luu, D. Young, H. Cooper, and N.E. Reiner. 2003. The 19-kDa Mycobacterium tuberculosis protein induces macrophage apoptosis through Toll-like receptor-2. The Journal of Immunology 170: 2409–2416.CrossRefPubMed López, M., L.M. Sly, Y. Luu, D. Young, H. Cooper, and N.E. Reiner. 2003. The 19-kDa Mycobacterium tuberculosis protein induces macrophage apoptosis through Toll-like receptor-2. The Journal of Immunology 170: 2409–2416.CrossRefPubMed
32.
Zurück zum Zitat Ottenhoff, T.H., F.A. Verreck, E.G. Lichtenauer-Kaligis, M.A. Hoeve, O. Sanal, and J.T. van Dissel. 2002. Genetics, cytokines and human infectious disease: lessons from weakly pathogenic mycobacteria and salmonellae. Nature Genetics 32: 97–105.CrossRefPubMed Ottenhoff, T.H., F.A. Verreck, E.G. Lichtenauer-Kaligis, M.A. Hoeve, O. Sanal, and J.T. van Dissel. 2002. Genetics, cytokines and human infectious disease: lessons from weakly pathogenic mycobacteria and salmonellae. Nature Genetics 32: 97–105.CrossRefPubMed
33.
Zurück zum Zitat Beltan, E., L. Horgen, and N. Rastogi. 2000. Secretion of cytokines by human macrophages upon infection by pathogenic and non-pathogenic mycobacteria. Microbial Pathogenesis 28: 313–318.CrossRefPubMed Beltan, E., L. Horgen, and N. Rastogi. 2000. Secretion of cytokines by human macrophages upon infection by pathogenic and non-pathogenic mycobacteria. Microbial Pathogenesis 28: 313–318.CrossRefPubMed
34.
Zurück zum Zitat Prins, J.M., E.J. Kuijper, M. Mevissen, P. Speelman, and S. Van Deventer. 1995. Release of tumor necrosis factor alpha and interleukin 6 during antibiotic killing of Escherichia coli in whole blood: influence of antibiotic class, antibiotic concentration, and presence of septic serum. Infection and Immunity 63: 2236–2242.PubMedCentralPubMed Prins, J.M., E.J. Kuijper, M. Mevissen, P. Speelman, and S. Van Deventer. 1995. Release of tumor necrosis factor alpha and interleukin 6 during antibiotic killing of Escherichia coli in whole blood: influence of antibiotic class, antibiotic concentration, and presence of septic serum. Infection and Immunity 63: 2236–2242.PubMedCentralPubMed
35.
Zurück zum Zitat Sieling, P.A., X.-H. Wang, M.K. Gately, J.L. Oliveros, T. McHugh, P.F. Barnes, et al. 1994. IL-12 regulates T helper type 1 cytokine responses in human infectious disease. The Journal of Immunology 153: 3639–3647.PubMed Sieling, P.A., X.-H. Wang, M.K. Gately, J.L. Oliveros, T. McHugh, P.F. Barnes, et al. 1994. IL-12 regulates T helper type 1 cytokine responses in human infectious disease. The Journal of Immunology 153: 3639–3647.PubMed
36.
Zurück zum Zitat Trinchieri, G. 1995. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annual Review of Immunology 13: 251–276.CrossRefPubMed Trinchieri, G. 1995. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annual Review of Immunology 13: 251–276.CrossRefPubMed
37.
Zurück zum Zitat Mendez-Samperio, P. 2010. Role of interleukin-12 family cytokines in the cellular response to mycobacterial disease. International Journal of Infectious Diseases : IJID : Official Publication of the International Society for Infectious Diseases 14: e366–e371.CrossRef Mendez-Samperio, P. 2010. Role of interleukin-12 family cytokines in the cellular response to mycobacterial disease. International Journal of Infectious Diseases : IJID : Official Publication of the International Society for Infectious Diseases 14: e366–e371.CrossRef
38.
Zurück zum Zitat Cooper, A.M., J. Magram, J. Ferrante, and I.M. Orme. 1997. Interleukin 12 (IL-12) is crucial to the development of protective immunity in mice intravenously infected with Mycobacterium tuberculosis. The Journal of Experimental Medicine 186: 39–45.CrossRefPubMedCentralPubMed Cooper, A.M., J. Magram, J. Ferrante, and I.M. Orme. 1997. Interleukin 12 (IL-12) is crucial to the development of protective immunity in mice intravenously infected with Mycobacterium tuberculosis. The Journal of Experimental Medicine 186: 39–45.CrossRefPubMedCentralPubMed
39.
Zurück zum Zitat Fulton, S., J. Cross, Z. Toossi, and W. Boom. 1998. Regulation of interleukin-12 by interleukin-10, transforming growth factor-β, tumor necrosis factor-α, and interferon-γ in human monocytes infected with Mycobacterium tuberculosis H37Ra. Journal of Infectious Diseases 178: 1105–1114.CrossRefPubMed Fulton, S., J. Cross, Z. Toossi, and W. Boom. 1998. Regulation of interleukin-12 by interleukin-10, transforming growth factor-β, tumor necrosis factor-α, and interferon-γ in human monocytes infected with Mycobacterium tuberculosis H37Ra. Journal of Infectious Diseases 178: 1105–1114.CrossRefPubMed
40.
Zurück zum Zitat Isler, P., B.G. de Rochemonteix, F. Songeon, N. Boehringer, and L.P. Nicod. 1999. Interleukin-12 production by human alveolar macrophages is controlled by the autocrine production of interleukin-10. American Journal of Respiratory Cell and Molecular Biology 20: 270–278.CrossRefPubMed Isler, P., B.G. de Rochemonteix, F. Songeon, N. Boehringer, and L.P. Nicod. 1999. Interleukin-12 production by human alveolar macrophages is controlled by the autocrine production of interleukin-10. American Journal of Respiratory Cell and Molecular Biology 20: 270–278.CrossRefPubMed
41.
Zurück zum Zitat Lee, J.C., J.T. Laydon, P.C. McDonnell, T.F. Gallagher, S. Kumar, D. Green, et al. 1994. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372: 739–746.CrossRefPubMed Lee, J.C., J.T. Laydon, P.C. McDonnell, T.F. Gallagher, S. Kumar, D. Green, et al. 1994. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372: 739–746.CrossRefPubMed
42.
Zurück zum Zitat Luo, Y., M. Liu, Y. Dai, X. Yao, Y. Xia, G. Chou, et al. 2010. Norisoboldine inhibits the production of pro-inflammatory cytokines in lipopolysaccharide-stimulated RAW 264.7 cells by down-regulating the activation of MAPKs but not NF-kappaB. Inflammation 33: 389–397.CrossRefPubMed Luo, Y., M. Liu, Y. Dai, X. Yao, Y. Xia, G. Chou, et al. 2010. Norisoboldine inhibits the production of pro-inflammatory cytokines in lipopolysaccharide-stimulated RAW 264.7 cells by down-regulating the activation of MAPKs but not NF-kappaB. Inflammation 33: 389–397.CrossRefPubMed
43.
Zurück zum Zitat Reiling, N., A. Blumenthal, H.-D. Flad, M. Ernst, and S. Ehlers. 2001. Mycobacteria-induced TNF-α and IL-10 formation by human macrophages is differentially regulated at the level of mitogen-activated protein kinase activity. The Journal of Immunology 167: 3339–3345.CrossRefPubMed Reiling, N., A. Blumenthal, H.-D. Flad, M. Ernst, and S. Ehlers. 2001. Mycobacteria-induced TNF-α and IL-10 formation by human macrophages is differentially regulated at the level of mitogen-activated protein kinase activity. The Journal of Immunology 167: 3339–3345.CrossRefPubMed
44.
Zurück zum Zitat Denkers, E.Y., B.A. Butcher, L. Del Rio, and L. Kim. 2004. Manipulation of mitogen-activated protein kinase/nuclear factor-κB-signaling cascades during intracellular Toxoplasma gondii infection. Immunological Reviews 201: 191–205.CrossRefPubMed Denkers, E.Y., B.A. Butcher, L. Del Rio, and L. Kim. 2004. Manipulation of mitogen-activated protein kinase/nuclear factor-κB-signaling cascades during intracellular Toxoplasma gondii infection. Immunological Reviews 201: 191–205.CrossRefPubMed
45.
Zurück zum Zitat Alemán, M., P. Schierloh, S. Silvia, R.M. Musella, M.A. Saab, M. Baldini, et al. 2004. Mycobacterium tuberculosis triggers apoptosis in peripheral neutrophils involving toll-like receptor 2 and p38 mitogen protein kinase in tuberculosis patients. Infection and Immunity 72: 5150–5158.CrossRefPubMedCentralPubMed Alemán, M., P. Schierloh, S. Silvia, R.M. Musella, M.A. Saab, M. Baldini, et al. 2004. Mycobacterium tuberculosis triggers apoptosis in peripheral neutrophils involving toll-like receptor 2 and p38 mitogen protein kinase in tuberculosis patients. Infection and Immunity 72: 5150–5158.CrossRefPubMedCentralPubMed
46.
Zurück zum Zitat Lee, J.S., J. Son, S.B. Jung, Y.M. Kwon, C.S. Yang, J.H. Oh, et al. 2006. Ex vivo responses for interferon-gamma and proinflammatory cytokine secretion to low-molecular-weight antigen MTB12 of Mycobacterium tuberculosis during human tuberculosis. Scandinavian Journal of Immunology 64: 145–154.CrossRefPubMed Lee, J.S., J. Son, S.B. Jung, Y.M. Kwon, C.S. Yang, J.H. Oh, et al. 2006. Ex vivo responses for interferon-gamma and proinflammatory cytokine secretion to low-molecular-weight antigen MTB12 of Mycobacterium tuberculosis during human tuberculosis. Scandinavian Journal of Immunology 64: 145–154.CrossRefPubMed
47.
Zurück zum Zitat Ashall, L., C.A. Horton, D.E. Nelson, P. Paszek, C.V. Harper, K. Sillitoe, et al. 2009. Pulsatile stimulation determines timing and specificity of NF-kappaB-dependent transcription. Science 324: 242–246.CrossRefPubMedCentralPubMed Ashall, L., C.A. Horton, D.E. Nelson, P. Paszek, C.V. Harper, K. Sillitoe, et al. 2009. Pulsatile stimulation determines timing and specificity of NF-kappaB-dependent transcription. Science 324: 242–246.CrossRefPubMedCentralPubMed
48.
Zurück zum Zitat Valentinis, B., A. Bianchi, D. Zhou, A. Cipponi, F. Catalanotti, V. Russo, et al. 2005. Direct effects of polymyxin B on human dendritic cells maturation. The role of IkappaB-alpha/NF-kappaB and ERK1/2 pathways and adhesion. The Journal of Biological Chemistry 280: 14264–14271.CrossRefPubMed Valentinis, B., A. Bianchi, D. Zhou, A. Cipponi, F. Catalanotti, V. Russo, et al. 2005. Direct effects of polymyxin B on human dendritic cells maturation. The role of IkappaB-alpha/NF-kappaB and ERK1/2 pathways and adhesion. The Journal of Biological Chemistry 280: 14264–14271.CrossRefPubMed
49.
Zurück zum Zitat Natarajan, P., and S. Narayanan. 2007. Mycobacterium tuberculosis H37Rv induces monocytic release of interleukin-6 via activation of mitogen-activated protein kinases: inhibition by N-acetyl-L-cysteine. FEMS Immunology and Medical Microbiology 50: 309–318.CrossRefPubMed Natarajan, P., and S. Narayanan. 2007. Mycobacterium tuberculosis H37Rv induces monocytic release of interleukin-6 via activation of mitogen-activated protein kinases: inhibition by N-acetyl-L-cysteine. FEMS Immunology and Medical Microbiology 50: 309–318.CrossRefPubMed
50.
Zurück zum Zitat Deng, W., W. Li, J. Zeng, Q. Zhao, C. Li, Y. Zhao, et al. 2014. Mycobacterium tuberculosis PPE family protein Rv1808 manipulates cytokines profile via co-activation of MAPK and NF-kappaB signaling pathways. Cellular Physiology and Biochemistry : International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology 33: 273–288.CrossRef Deng, W., W. Li, J. Zeng, Q. Zhao, C. Li, Y. Zhao, et al. 2014. Mycobacterium tuberculosis PPE family protein Rv1808 manipulates cytokines profile via co-activation of MAPK and NF-kappaB signaling pathways. Cellular Physiology and Biochemistry : International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology 33: 273–288.CrossRef
Metadaten
Titel
Recombinant TB9.8 of Mycobacterium bovis Triggers the Production of IL-12 p40 and IL-6 in RAW264.7 Macrophages via Activation of the p38, ERK, and NF-κB Signaling Pathways
Publikationsdatum
01.06.2015
Erschienen in
Inflammation / Ausgabe 3/2015
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-014-0105-x

Weitere Artikel der Ausgabe 3/2015

Inflammation 3/2015 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.