Skip to main content
Erschienen in:

01.01.2018 | Systems-Level Quality Improvement

Reducing Bottlenecks to Improve the Efficiency of the Lung Cancer Care Delivery Process: A Process Engineering Modeling Approach to Patient-Centered Care

verfasst von: Feng Ju, Hyo Kyung Lee, Xinhua Yu, Nicholas R. Faris, Fedoria Rugless, Shan Jiang, Jingshan Li, Raymond U. Osarogiagbon

Erschienen in: Journal of Medical Systems | Ausgabe 1/2018

Einloggen, um Zugang zu erhalten

Abstract

The process of lung cancer care from initial lesion detection to treatment is complex, involving multiple steps, each introducing the potential for substantial delays. Identifying the steps with the greatest delays enables a focused effort to improve the timeliness of care-delivery, without sacrificing quality. We retrospectively reviewed clinical events from initial detection, through histologic diagnosis, radiologic and invasive staging, and medical clearance, to surgery for all patients who had an attempted resection of a suspected lung cancer in a community healthcare system. We used a computer process modeling approach to evaluate delays in care delivery, in order to identify potential ‘bottlenecks’ in waiting time, the reduction of which could produce greater care efficiency. We also conducted ‘what-if’ analyses to predict the relative impact of simulated changes in the care delivery process to determine the most efficient pathways to surgery. The waiting time between radiologic lesion detection and diagnostic biopsy, and the waiting time from radiologic staging to surgery were the two most critical bottlenecks impeding efficient care delivery (more than 3 times larger compared to reducing other waiting times). Additionally, instituting surgical consultation prior to cardiac consultation for medical clearance and decreasing the waiting time between CT scans and diagnostic biopsies, were potentially the most impactful measures to reduce care delays before surgery. Rigorous computer simulation modeling, using clinical data, can provide useful information to identify areas for improving the efficiency of care delivery by process engineering, for patients who receive surgery for lung cancer.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat American Cancer Society, Cancer facts & figures 2016. Atlanta: American Cancer Society, 2016. American Cancer Society, Cancer facts & figures 2016. Atlanta: American Cancer Society, 2016.
3.
Zurück zum Zitat Little, A.G., Rusch, V.W., Bonner, J.A., et al., Patterns of surgical care of lung cancer patients. Ann Thorac Surg. 80:2051–2056; discussion 2056, 2005.CrossRefPubMed Little, A.G., Rusch, V.W., Bonner, J.A., et al., Patterns of surgical care of lung cancer patients. Ann Thorac Surg. 80:2051–2056; discussion 2056, 2005.CrossRefPubMed
4.
Zurück zum Zitat Singh, H., Hirani, K., Kadiyala, H., et al., Characteristics and predictors of missed opportunities in lung cancer diagnosis: An electronic health record-based study. J Clin Oncol. 28:3307–3315, 2010.CrossRefPubMedPubMedCentral Singh, H., Hirani, K., Kadiyala, H., et al., Characteristics and predictors of missed opportunities in lung cancer diagnosis: An electronic health record-based study. J Clin Oncol. 28:3307–3315, 2010.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Gould, M.K., Delays in lung cancer care: Time to improve. J Thorac Oncol. 4:1303–1304, 2009.CrossRefPubMed Gould, M.K., Delays in lung cancer care: Time to improve. J Thorac Oncol. 4:1303–1304, 2009.CrossRefPubMed
6.
Zurück zum Zitat Faris, N., Yu, X., Sareen, S., et al., Preoperative evaluation of lung cancer in a community health care setting. Ann Thorac Surg. 100(2):394–400, 2015.CrossRefPubMed Faris, N., Yu, X., Sareen, S., et al., Preoperative evaluation of lung cancer in a community health care setting. Ann Thorac Surg. 100(2):394–400, 2015.CrossRefPubMed
7.
Zurück zum Zitat Nadpara, P., Madhavan, S.S., and Tworek, C., Guideline-concordant timely lung cancer care and prognosis among elderly patients in the United States: A population –based study. Cancer Epidemiol. 39:1136–1144, 2015.CrossRefPubMedPubMedCentral Nadpara, P., Madhavan, S.S., and Tworek, C., Guideline-concordant timely lung cancer care and prognosis among elderly patients in the United States: A population –based study. Cancer Epidemiol. 39:1136–1144, 2015.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Koo, M.M., Zhou, Y., and Lyratzopoulos, G., Delays in diagnosis and treatment of lung cancer: Lessons from US healthcare settings. Cancer Epidemiol. 39:1145–1147, 2015.CrossRefPubMed Koo, M.M., Zhou, Y., and Lyratzopoulos, G., Delays in diagnosis and treatment of lung cancer: Lessons from US healthcare settings. Cancer Epidemiol. 39:1145–1147, 2015.CrossRefPubMed
9.
Zurück zum Zitat Kedia, S.K., Ward, K.D., Digney, S.A., et al., One-stop shop’: Lung cancer patients’ and caregivers’ perceptions of multidisciplinary care in a community healthcare setting. Transl Lung Cancer Res. 4:456–464, 2015.PubMedPubMedCentral Kedia, S.K., Ward, K.D., Digney, S.A., et al., One-stop shop’: Lung cancer patients’ and caregivers’ perceptions of multidisciplinary care in a community healthcare setting. Transl Lung Cancer Res. 4:456–464, 2015.PubMedPubMedCentral
10.
Zurück zum Zitat Ju, F., Lee, H.K., Osarogiabon, R., et al., Computer process modeling of lung cancer diagnosis-to-treatment process. Transl Lung Cancer Res. 4:404–414, 2015.PubMedPubMedCentral Ju, F., Lee, H.K., Osarogiabon, R., et al., Computer process modeling of lung cancer diagnosis-to-treatment process. Transl Lung Cancer Res. 4:404–414, 2015.PubMedPubMedCentral
11.
Zurück zum Zitat Shao, X., Zhong, X., Li, J., et al., Bottleneck analysis to reduce surgical flow disruptions: Theory and application. IEEE Trans Autom Sci Eng. 12:127–139, 2015.CrossRef Shao, X., Zhong, X., Li, J., et al., Bottleneck analysis to reduce surgical flow disruptions: Theory and application. IEEE Trans Autom Sci Eng. 12:127–139, 2015.CrossRef
12.
Zurück zum Zitat Li, J., and Meerkov, S.M., Production systems engineering. Springer, New York, NY, 2009.CrossRef Li, J., and Meerkov, S.M., Production systems engineering. Springer, New York, NY, 2009.CrossRef
13.
Zurück zum Zitat Li, J., Throughput analysis in automotive paint shops: A case study. IEEE Trans Autom Sci Eng. 1:90–98, 2004.CrossRef Li, J., Throughput analysis in automotive paint shops: A case study. IEEE Trans Autom Sci Eng. 1:90–98, 2004.CrossRef
14.
Zurück zum Zitat Biller, S., Li, J., Marin, S.P., et al., Bottlenecks in Bernoulli serial lines with rework. IEEE Trans Autom Sci Eng. 7:208–217, 2010.CrossRef Biller, S., Li, J., Marin, S.P., et al., Bottlenecks in Bernoulli serial lines with rework. IEEE Trans Autom Sci Eng. 7:208–217, 2010.CrossRef
15.
Zurück zum Zitat Wang, J., Li, J., Arinez, J., et al., Quality bottleneck transitions in flexible manufacturing systems with batch productions. IIE Trans. 45:190–205, 2013.CrossRef Wang, J., Li, J., Arinez, J., et al., Quality bottleneck transitions in flexible manufacturing systems with batch productions. IIE Trans. 45:190–205, 2013.CrossRef
16.
Zurück zum Zitat Wang, J., Li, J., Arinez, J., et al., Indicators for quality improvability and bottleneck sequence in flexible manufacturing systems with batch productions. Int J Prod Res. 50:6388–6402, 2012.CrossRef Wang, J., Li, J., Arinez, J., et al., Indicators for quality improvability and bottleneck sequence in flexible manufacturing systems with batch productions. Int J Prod Res. 50:6388–6402, 2012.CrossRef
17.
Zurück zum Zitat Wang, J., Quan, S., Li, J., et al., Modeling and analysis of work flow and staffing level in a computed tomography division of University of Wisconsin Medical Foundation. Health Care Manag Sci. 15:108–120, 2012.CrossRefPubMed Wang, J., Quan, S., Li, J., et al., Modeling and analysis of work flow and staffing level in a computed tomography division of University of Wisconsin Medical Foundation. Health Care Manag Sci. 15:108–120, 2012.CrossRefPubMed
18.
Zurück zum Zitat Xie, X., Li, J., Swartz, C.H., et al., Modeling and analysis of rapid response process to improve patient safety in acute care. IEEE Trans Autom Sci Eng. 9:215–225, 2012.CrossRef Xie, X., Li, J., Swartz, C.H., et al., Modeling and analysis of rapid response process to improve patient safety in acute care. IEEE Trans Autom Sci Eng. 9:215–225, 2012.CrossRef
19.
Zurück zum Zitat Xie, X., Li, J., Swartz, C.H., et al., Improving response-time performance in acute care delivery: A systems approach. IEEE Trans Autom Sci Eng. 11:1240–1249, 2015.CrossRef Xie, X., Li, J., Swartz, C.H., et al., Improving response-time performance in acute care delivery: A systems approach. IEEE Trans Autom Sci Eng. 11:1240–1249, 2015.CrossRef
20.
Zurück zum Zitat Potosky, A.L., Saxman, S., Wallace, R.B., and Lynch, C.F., Population variations in the initial treatment of non-small-cell lung cancer. J Clin Oncol. 22:3261–3268, 2004.CrossRefPubMed Potosky, A.L., Saxman, S., Wallace, R.B., and Lynch, C.F., Population variations in the initial treatment of non-small-cell lung cancer. J Clin Oncol. 22:3261–3268, 2004.CrossRefPubMed
21.
Zurück zum Zitat Vinod, S.K., O’Connell, D.L., Simonella, L., et al., Gaps in optimal care for lung cancer. J Thorac Oncol. 3:871–879, 2008.CrossRefPubMed Vinod, S.K., O’Connell, D.L., Simonella, L., et al., Gaps in optimal care for lung cancer. J Thorac Oncol. 3:871–879, 2008.CrossRefPubMed
22.
Zurück zum Zitat Ost, D.E., Niu, J., Elting, L.S., Buchholz, T.A., and Griordano, S.H., Quality gaps and comparative effectiveness in lung cancer staging and diagnosis. Chest. 145:331–345, 2014.CrossRefPubMed Ost, D.E., Niu, J., Elting, L.S., Buchholz, T.A., and Griordano, S.H., Quality gaps and comparative effectiveness in lung cancer staging and diagnosis. Chest. 145:331–345, 2014.CrossRefPubMed
23.
Zurück zum Zitat Backhus, L.M., Farjah, F., Varghese, T.K., et al., Appropriateness of imaging for lung cancer staging in a national cohort. J Clin Oncol. 32:3428–3435, 2014.CrossRefPubMedPubMedCentral Backhus, L.M., Farjah, F., Varghese, T.K., et al., Appropriateness of imaging for lung cancer staging in a national cohort. J Clin Oncol. 32:3428–3435, 2014.CrossRefPubMedPubMedCentral
Metadaten
Titel
Reducing Bottlenecks to Improve the Efficiency of the Lung Cancer Care Delivery Process: A Process Engineering Modeling Approach to Patient-Centered Care
verfasst von
Feng Ju
Hyo Kyung Lee
Xinhua Yu
Nicholas R. Faris
Fedoria Rugless
Shan Jiang
Jingshan Li
Raymond U. Osarogiagbon
Publikationsdatum
01.01.2018
Verlag
Springer US
Erschienen in
Journal of Medical Systems / Ausgabe 1/2018
Print ISSN: 0148-5598
Elektronische ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-017-0873-6