Skip to main content
Erschienen in: Journal of Cardiovascular Translational Research 5/2018

09.05.2018 | Review Paper

Regenerative Therapy for Cardiomyopathies

verfasst von: Zi Wang, Xuan Su, Muhammad Ashraf, Il-man Kim, Neal L. Weintraub, Meng Jiang, Yaoliang Tang

Erschienen in: Journal of Cardiovascular Translational Research | Ausgabe 5/2018

Einloggen, um Zugang zu erhalten

Abstract

Despite substantial advances in the development of medical and interventional strategies in ischemic and non-ischemic heart diseases, cardiovascular diseases (CVDs) remain the leading cause of mortality and morbidity worldwide. Stem cell therapy for heart disease has gained traction over the past two decades and is an emerging option for the treatment of myocardial dysfunction. In this review, we summarize the current literature on different types of stem cells and their potential usage in ischemic and non-ischemic heart diseases. We emphasize the clinical utility of stem cells to improve myocardial structural and function, promote microvascular angiogenesis, and diminish scar size and major adverse cardiovascular events. We also discuss the therapeutic potential of microvesicles, such as exosomes, in the treatment of CVDs, which may open novel avenues for further clinical studies.
Literatur
1.
Zurück zum Zitat Sun, R., Li, X., Liu, M., Zeng, Y., Chen, S., & Zhang, P. (2016). Advances in stem cell therapy for cardiovascular disease (review). International Journal of Molecular Medicine, 38(1), 23–29.PubMedPubMedCentral Sun, R., Li, X., Liu, M., Zeng, Y., Chen, S., & Zhang, P. (2016). Advances in stem cell therapy for cardiovascular disease (review). International Journal of Molecular Medicine, 38(1), 23–29.PubMedPubMedCentral
2.
Zurück zum Zitat Trindade, F., Leite-Moreira, A., Ferreira-Martins, J., Ferreira, R., Falcao-Pires, I., & Vitorino, R. (2017). Towards the standardization of stem cell therapy studies for ischemic heart diseases: bridging the gap between animal models and the clinical setting. International Journal of Cardiology, 228, 465–480.PubMed Trindade, F., Leite-Moreira, A., Ferreira-Martins, J., Ferreira, R., Falcao-Pires, I., & Vitorino, R. (2017). Towards the standardization of stem cell therapy studies for ischemic heart diseases: bridging the gap between animal models and the clinical setting. International Journal of Cardiology, 228, 465–480.PubMed
3.
Zurück zum Zitat Bernstein, H. S., & Srivastava, D. (2012). Stem cell therapy for cardiac disease. Pediatric Research, 71(4 Pt 2), 491–499.PubMed Bernstein, H. S., & Srivastava, D. (2012). Stem cell therapy for cardiac disease. Pediatric Research, 71(4 Pt 2), 491–499.PubMed
4.
Zurück zum Zitat Moreira, M. L., da Costa Medeiros, P., de Souza, S. A., Gutfilen, B., & Rosado-de-Castro, P. H. (2016). In vivo tracking of cell therapies for cardiac diseases with nuclear medicine. Stem Cells International, 2016, 3140120.PubMedPubMedCentral Moreira, M. L., da Costa Medeiros, P., de Souza, S. A., Gutfilen, B., & Rosado-de-Castro, P. H. (2016). In vivo tracking of cell therapies for cardiac diseases with nuclear medicine. Stem Cells International, 2016, 3140120.PubMedPubMedCentral
5.
Zurück zum Zitat Silva, G. V., Litovsky, S., Assad, J. A., Sousa, A. L., Martin, B. J., Vela, D., et al. (2005). Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation, 111(2), 150–156.PubMed Silva, G. V., Litovsky, S., Assad, J. A., Sousa, A. L., Martin, B. J., Vela, D., et al. (2005). Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation, 111(2), 150–156.PubMed
6.
Zurück zum Zitat Nagaya, N., Kangawa, K., Itoh, T., Iwase, T., Murakami, S., Miyahara, Y., et al. (2005). Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation, 112(8), 1128–1135.PubMed Nagaya, N., Kangawa, K., Itoh, T., Iwase, T., Murakami, S., Miyahara, Y., et al. (2005). Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation, 112(8), 1128–1135.PubMed
7.
Zurück zum Zitat Fernandes, S., Chong, J. J., Paige, S. L., Iwata, M., Torok-Storb, B., Keller, G., et al. (2015). Comparison of human embryonic stem cell-derived cardiomyocytes, cardiovascular progenitors, and bone marrow mononuclear cells for cardiac repair. Stem Cell Reports, 5(5), 753–762.PubMedPubMedCentral Fernandes, S., Chong, J. J., Paige, S. L., Iwata, M., Torok-Storb, B., Keller, G., et al. (2015). Comparison of human embryonic stem cell-derived cardiomyocytes, cardiovascular progenitors, and bone marrow mononuclear cells for cardiac repair. Stem Cell Reports, 5(5), 753–762.PubMedPubMedCentral
8.
Zurück zum Zitat Jiang, M., Mao, J., & He, B. (2012). The effect of bone marrow-derived cells on diastolic function and exercise capacity in patients after acute myocardial infarction. Stem Cell Research, 9(1), 49–57.PubMed Jiang, M., Mao, J., & He, B. (2012). The effect of bone marrow-derived cells on diastolic function and exercise capacity in patients after acute myocardial infarction. Stem Cell Research, 9(1), 49–57.PubMed
9.
Zurück zum Zitat Bolli, R., Chugh, A. R., D'Amario, D., Loughran, J. H., Stoddard, M. F., Ikram, S., et al. (2011). Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet, 378(9806), 1847–1857.PubMedPubMedCentral Bolli, R., Chugh, A. R., D'Amario, D., Loughran, J. H., Stoddard, M. F., Ikram, S., et al. (2011). Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet, 378(9806), 1847–1857.PubMedPubMedCentral
10.
Zurück zum Zitat Hare, J. M., Fishman, J. E., Gerstenblith, G., DiFede Velazquez, D. L., Zambrano, J. P., Suncion, V. Y., et al. (2012). Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. Journal of the American Medical Association, 308(22), 2369–2379.PubMed Hare, J. M., Fishman, J. E., Gerstenblith, G., DiFede Velazquez, D. L., Zambrano, J. P., Suncion, V. Y., et al. (2012). Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. Journal of the American Medical Association, 308(22), 2369–2379.PubMed
11.
Zurück zum Zitat Lee, C. Y., Kim, R., Ham, O., Lee, J., Kim, P., Lee, S., et al. (2016). Therapeutic potential of stem cells strategy for cardiovascular diseases. Stem Cells International, 2016, 4285938.PubMedPubMedCentral Lee, C. Y., Kim, R., Ham, O., Lee, J., Kim, P., Lee, S., et al. (2016). Therapeutic potential of stem cells strategy for cardiovascular diseases. Stem Cells International, 2016, 4285938.PubMedPubMedCentral
12.
Zurück zum Zitat Geng, Y. J. (2003). Molecular mechanisms for cardiovascular stem cell apoptosis and growth in the hearts with atherosclerotic coronary disease and ischemic heart failure. Annals of the New York Academy of Sciences., 1010, 687–697.PubMed Geng, Y. J. (2003). Molecular mechanisms for cardiovascular stem cell apoptosis and growth in the hearts with atherosclerotic coronary disease and ischemic heart failure. Annals of the New York Academy of Sciences., 1010, 687–697.PubMed
13.
Zurück zum Zitat Yu, H., Lu, K., Zhu, J., & Wang, J. (2017). Stem cell therapy for ischemic heart diseases. British Medical Bulletin, 121(1), 135–154.PubMed Yu, H., Lu, K., Zhu, J., & Wang, J. (2017). Stem cell therapy for ischemic heart diseases. British Medical Bulletin, 121(1), 135–154.PubMed
14.
Zurück zum Zitat Shen, H., Wang, Y., Zhang, Z., Yang, J., Hu, S., & Shen, Z. (2015). Mesenchymal stem cells for cardiac regenerative therapy: optimization of cell differentiation strategy. Stem Cells International, 2015, 524756.PubMedPubMedCentral Shen, H., Wang, Y., Zhang, Z., Yang, J., Hu, S., & Shen, Z. (2015). Mesenchymal stem cells for cardiac regenerative therapy: optimization of cell differentiation strategy. Stem Cells International, 2015, 524756.PubMedPubMedCentral
15.
Zurück zum Zitat Strauer, B. E., Brehm, M., Zeus, T., Gattermann, N., Hernandez, A., Sorg, R. V., et al. (2001). [Intracoronary, human autologous stem cell transplantation for myocardial regeneration following myocardial infarction]. Deutsche Medizinische Wochenschrift, 126(34–35), 932–938.PubMed Strauer, B. E., Brehm, M., Zeus, T., Gattermann, N., Hernandez, A., Sorg, R. V., et al. (2001). [Intracoronary, human autologous stem cell transplantation for myocardial regeneration following myocardial infarction]. Deutsche Medizinische Wochenschrift, 126(34–35), 932–938.PubMed
16.
Zurück zum Zitat Schachinger, V., Erbs, S., Elsasser, A., Haberbosch, W., Hambrecht, R., Holschermann, H., et al. (2006). Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. The New England Journal of Medicine, 355(12), 1210–1221.PubMed Schachinger, V., Erbs, S., Elsasser, A., Haberbosch, W., Hambrecht, R., Holschermann, H., et al. (2006). Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. The New England Journal of Medicine, 355(12), 1210–1221.PubMed
17.
Zurück zum Zitat Shiba, Y., Fernandes, S., Zhu, W. Z., Filice, D., Muskheli, V., Kim, J., et al. (2012). Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature, 489(7415), 322–325.PubMedPubMedCentral Shiba, Y., Fernandes, S., Zhu, W. Z., Filice, D., Muskheli, V., Kim, J., et al. (2012). Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature, 489(7415), 322–325.PubMedPubMedCentral
18.
Zurück zum Zitat Jin, P., Li, T., Li, X., Shen, X., & Zhao, Y. (2016). Suppression of oxidative stress in endothelial progenitor cells promotes angiogenesis and improves cardiac function following myocardial infarction in diabetic mice. Experimental and Therapeutic Medicine, 11(6), 2163–2170.PubMedPubMedCentral Jin, P., Li, T., Li, X., Shen, X., & Zhao, Y. (2016). Suppression of oxidative stress in endothelial progenitor cells promotes angiogenesis and improves cardiac function following myocardial infarction in diabetic mice. Experimental and Therapeutic Medicine, 11(6), 2163–2170.PubMedPubMedCentral
19.
Zurück zum Zitat Wu, Y., Ip, J. E., Huang, J., Zhang, L., Matsushita, K., Liew, C. C., et al. (2006). Essential role of ICAM-1/CD18 in mediating EPC recruitment, angiogenesis, and repair to the infarcted myocardium. Circulation Research, 99(3), 315–322.PubMed Wu, Y., Ip, J. E., Huang, J., Zhang, L., Matsushita, K., Liew, C. C., et al. (2006). Essential role of ICAM-1/CD18 in mediating EPC recruitment, angiogenesis, and repair to the infarcted myocardium. Circulation Research, 99(3), 315–322.PubMed
20.
Zurück zum Zitat Kawamura, M., Miyagawa, S., Fukushima, S., Saito, A., Miki, K., Ito, E., et al. (2013). Enhanced survival of transplanted human induced pluripotent stem cell-derived cardiomyocytes by the combination of cell sheets with the pedicled omental flap technique in a porcine heart. Circulation, 128(11 Suppl 1), S87–S94.PubMed Kawamura, M., Miyagawa, S., Fukushima, S., Saito, A., Miki, K., Ito, E., et al. (2013). Enhanced survival of transplanted human induced pluripotent stem cell-derived cardiomyocytes by the combination of cell sheets with the pedicled omental flap technique in a porcine heart. Circulation, 128(11 Suppl 1), S87–S94.PubMed
21.
Zurück zum Zitat Tang, Y. L., Zhu, W., Cheng, M., Chen, L., Zhang, J., Sun, T., et al. (2009). Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression. Circulation Research, 104(10), 1209–1216.PubMedPubMedCentral Tang, Y. L., Zhu, W., Cheng, M., Chen, L., Zhang, J., Sun, T., et al. (2009). Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression. Circulation Research, 104(10), 1209–1216.PubMedPubMedCentral
22.
Zurück zum Zitat Afzal, M. R., Samanta, A., Shah, Z. I., Jeevanantham, V., Abdel-Latif, A., Zuba-Surma, E. K., et al. (2015). Adult bone marrow cell therapy for ischemic heart disease: evidence and insights from randomized controlled trials. Circulation Research, 117(6), 558–575.PubMedPubMedCentral Afzal, M. R., Samanta, A., Shah, Z. I., Jeevanantham, V., Abdel-Latif, A., Zuba-Surma, E. K., et al. (2015). Adult bone marrow cell therapy for ischemic heart disease: evidence and insights from randomized controlled trials. Circulation Research, 117(6), 558–575.PubMedPubMedCentral
23.
Zurück zum Zitat Mangi, A. A., Noiseux, N., Kong, D., He, H., Rezvani, M., Ingwall, J. S., et al. (2003). Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nature Medicine, 9(9), 1195–1201.PubMed Mangi, A. A., Noiseux, N., Kong, D., He, H., Rezvani, M., Ingwall, J. S., et al. (2003). Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nature Medicine, 9(9), 1195–1201.PubMed
24.
Zurück zum Zitat Matsui, T., Tao, J., del Monte, F., Lee, K. H., Li, L., Picard, M., et al. (2001). Akt activation preserves cardiac function and prevents injury after transient cardiac ischemia in vivo. Circulation, 104(3), 330–335.PubMed Matsui, T., Tao, J., del Monte, F., Lee, K. H., Li, L., Picard, M., et al. (2001). Akt activation preserves cardiac function and prevents injury after transient cardiac ischemia in vivo. Circulation, 104(3), 330–335.PubMed
25.
Zurück zum Zitat Huang, J., Guo, J., Beigi, F., Hodgkinson, C. P., Facundo, H. T., Zhang, Z., et al. (2014). HASF is a stem cell paracrine factor that activates PKC epsilon mediated cytoprotection. Journal of Molecular and Cellular Cardiology, 66, 157–164.PubMed Huang, J., Guo, J., Beigi, F., Hodgkinson, C. P., Facundo, H. T., Zhang, Z., et al. (2014). HASF is a stem cell paracrine factor that activates PKC epsilon mediated cytoprotection. Journal of Molecular and Cellular Cardiology, 66, 157–164.PubMed
26.
Zurück zum Zitat Aonuma, T., Takehara, N., Maruyama, K., Kabara, M., Matsuki, M., Yamauchi, A., et al. (2016). Apoptosis-resistant cardiac progenitor cells modified with apurinic/apyrimidinic endonuclease/redox factor 1 gene overexpression regulate cardiac repair after myocardial infarction. Stem Cells Translational Medicine, 5(8), 1067–1078.PubMedPubMedCentral Aonuma, T., Takehara, N., Maruyama, K., Kabara, M., Matsuki, M., Yamauchi, A., et al. (2016). Apoptosis-resistant cardiac progenitor cells modified with apurinic/apyrimidinic endonuclease/redox factor 1 gene overexpression regulate cardiac repair after myocardial infarction. Stem Cells Translational Medicine, 5(8), 1067–1078.PubMedPubMedCentral
27.
Zurück zum Zitat Karantalis, V., Suncion-Loescher, V. Y., Bagno, L., Golpanian, S., Wolf, A., Sanina, C., et al. (2015). Synergistic effects of combined cell therapy for chronic ischemic cardiomyopathy. Journal of the American College of Cardiology, 66(18), 1990–1999.PubMedPubMedCentral Karantalis, V., Suncion-Loescher, V. Y., Bagno, L., Golpanian, S., Wolf, A., Sanina, C., et al. (2015). Synergistic effects of combined cell therapy for chronic ischemic cardiomyopathy. Journal of the American College of Cardiology, 66(18), 1990–1999.PubMedPubMedCentral
28.
Zurück zum Zitat Williams, A. R., Hatzistergos, K. E., Addicott, B., McCall, F., Carvalho, D., Suncion, V., et al. (2013). Enhanced effect of combining human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore cardiac function after myocardial infarction. Circulation, 127(2), 213–223.PubMed Williams, A. R., Hatzistergos, K. E., Addicott, B., McCall, F., Carvalho, D., Suncion, V., et al. (2013). Enhanced effect of combining human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore cardiac function after myocardial infarction. Circulation, 127(2), 213–223.PubMed
29.
Zurück zum Zitat Avolio, E., Meloni, M., Spencer, H. L., Riu, F., Katare, R., Mangialardi, G., et al. (2015). Combined intramyocardial delivery of human pericytes and cardiac stem cells additively improves the healing of mouse infarcted hearts through stimulation of vascular and muscular repair. Circulation Research, 116(10), e81–e94.PubMed Avolio, E., Meloni, M., Spencer, H. L., Riu, F., Katare, R., Mangialardi, G., et al. (2015). Combined intramyocardial delivery of human pericytes and cardiac stem cells additively improves the healing of mouse infarcted hearts through stimulation of vascular and muscular repair. Circulation Research, 116(10), e81–e94.PubMed
30.
Zurück zum Zitat Quijada, P., Salunga, H. T., Hariharan, N., Cubillo, J. D., El-Sayed, F. G., Moshref, M., et al. (2015). Cardiac stem cell hybrids enhance myocardial repair. Circulation Research, 117(8), 695–706.PubMedPubMedCentral Quijada, P., Salunga, H. T., Hariharan, N., Cubillo, J. D., El-Sayed, F. G., Moshref, M., et al. (2015). Cardiac stem cell hybrids enhance myocardial repair. Circulation Research, 117(8), 695–706.PubMedPubMedCentral
31.
Zurück zum Zitat Arena, R., Myers, J., Abella, J., Pinkstaff, S., Brubaker, P., Kitzman, D., et al. (2010). Defining the optimal prognostic window for cardiopulmonary exercise testing in patients with heart failure. Circulation Heart Failure, 3(3), 405–411.PubMedPubMedCentral Arena, R., Myers, J., Abella, J., Pinkstaff, S., Brubaker, P., Kitzman, D., et al. (2010). Defining the optimal prognostic window for cardiopulmonary exercise testing in patients with heart failure. Circulation Heart Failure, 3(3), 405–411.PubMedPubMedCentral
32.
Zurück zum Zitat Balady, G. J., Arena, R., Sietsema, K., Myers, J., Coke, L., Fletcher, G. F., et al. (2010). Clinician’s guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association. Circulation, 122(2), 191–225.PubMed Balady, G. J., Arena, R., Sietsema, K., Myers, J., Coke, L., Fletcher, G. F., et al. (2010). Clinician’s guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association. Circulation, 122(2), 191–225.PubMed
33.
Zurück zum Zitat Mancini, D. M., Eisen, H., Kussmaul, W., Mull, R., Edmunds Jr., L. H., & Wilson, J. R. (1991). Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure. Circulation, 83(3), 778–786.PubMed Mancini, D. M., Eisen, H., Kussmaul, W., Mull, R., Edmunds Jr., L. H., & Wilson, J. R. (1991). Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure. Circulation, 83(3), 778–786.PubMed
34.
Zurück zum Zitat Honold, J., Fischer-Rasokat, U., Seeger, F. H., Leistner, D., Lotz, S., Dimmeler, S., et al. (2013). Impact of intracoronary reinfusion of bone marrow-derived mononuclear progenitor cells on cardiopulmonary exercise capacity in patients with chronic postinfarction heart failure. Clinical Research in Cardiology: Official Journal of the German Cardiac Society, 102(9), 619–625. Honold, J., Fischer-Rasokat, U., Seeger, F. H., Leistner, D., Lotz, S., Dimmeler, S., et al. (2013). Impact of intracoronary reinfusion of bone marrow-derived mononuclear progenitor cells on cardiopulmonary exercise capacity in patients with chronic postinfarction heart failure. Clinical Research in Cardiology: Official Journal of the German Cardiac Society, 102(9), 619–625.
35.
Zurück zum Zitat Nir, S. G., David, R., Zaruba, M., Franz, W. M., & Itskovitz-Eldor, J. (2003). Human embryonic stem cells for cardiovascular repair. Cardiovascular Research, 58(2), 313–323.PubMed Nir, S. G., David, R., Zaruba, M., Franz, W. M., & Itskovitz-Eldor, J. (2003). Human embryonic stem cells for cardiovascular repair. Cardiovascular Research, 58(2), 313–323.PubMed
36.
Zurück zum Zitat Wong, S. S., & Bernstein, H. S. (2010). Cardiac regeneration using human embryonic stem cells: producing cells for future therapy. Regenerative Medicine, 5(5), 763–775.PubMed Wong, S. S., & Bernstein, H. S. (2010). Cardiac regeneration using human embryonic stem cells: producing cells for future therapy. Regenerative Medicine, 5(5), 763–775.PubMed
37.
Zurück zum Zitat Rajasingh, J., Thangavel, J., Siddiqui, M. R., Gomes, I., Gao, X. P., Kishore, R., et al. (2011). Improvement of cardiac function in mouse myocardial infarction after transplantation of epigenetically-modified bone marrow progenitor cells. PLoS One, 6(7), e22550.PubMedPubMedCentral Rajasingh, J., Thangavel, J., Siddiqui, M. R., Gomes, I., Gao, X. P., Kishore, R., et al. (2011). Improvement of cardiac function in mouse myocardial infarction after transplantation of epigenetically-modified bone marrow progenitor cells. PLoS One, 6(7), e22550.PubMedPubMedCentral
38.
Zurück zum Zitat Rajasingh, J., Bord, E., Hamada, H., Lambers, E., Qin, G., Losordo, D. W., et al. (2007). STAT3-dependent mouse embryonic stem cell differentiation into cardiomyocytes: analysis of molecular signaling and therapeutic efficacy of cardiomyocyte precommitted mES transplantation in a mouse model of myocardial infarction. Circulation Research, 101(9), 910–918.PubMed Rajasingh, J., Bord, E., Hamada, H., Lambers, E., Qin, G., Losordo, D. W., et al. (2007). STAT3-dependent mouse embryonic stem cell differentiation into cardiomyocytes: analysis of molecular signaling and therapeutic efficacy of cardiomyocyte precommitted mES transplantation in a mouse model of myocardial infarction. Circulation Research, 101(9), 910–918.PubMed
39.
Zurück zum Zitat Kawamura, M., Miyagawa, S., Miki, K., Saito, A., Fukushima, S., Higuchi, T., et al. (2012). Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation, 126(11 Suppl 1), S29–S37.PubMed Kawamura, M., Miyagawa, S., Miki, K., Saito, A., Fukushima, S., Higuchi, T., et al. (2012). Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation, 126(11 Suppl 1), S29–S37.PubMed
40.
Zurück zum Zitat Traverse, J. H., Henry, T. D., Pepine, C. J., Willerson, J. T., Zhao, D. X., Ellis, S. G., et al. (2012). Effect of the use and timing of bone marrow mononuclear cell delivery on left ventricular function after acute myocardial infarction: the TIME randomized trial. Journal of the American Medical Association, 308(22), 2380–2389.PubMed Traverse, J. H., Henry, T. D., Pepine, C. J., Willerson, J. T., Zhao, D. X., Ellis, S. G., et al. (2012). Effect of the use and timing of bone marrow mononuclear cell delivery on left ventricular function after acute myocardial infarction: the TIME randomized trial. Journal of the American Medical Association, 308(22), 2380–2389.PubMed
41.
Zurück zum Zitat Strauer, B. E., Brehm, M., Zeus, T., Kostering, M., Hernandez, A., Sorg, R. V., et al. (2002). Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation, 106(15), 1913–1918.PubMed Strauer, B. E., Brehm, M., Zeus, T., Kostering, M., Hernandez, A., Sorg, R. V., et al. (2002). Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation, 106(15), 1913–1918.PubMed
42.
Zurück zum Zitat Manginas, A., Goussetis, E., Koutelou, M., Karatasakis, G., Peristeri, I., Theodorakos, A., et al. (2007). Pilot study to evaluate the safety and feasibility of intracoronary CD133(+) and CD133(−) CD34(+) cell therapy in patients with nonviable anterior myocardial infarction. Catheterization and Cardiovascular Interventions: Official Journal of the Society for Cardiac Angiography & Interventions, 69(6), 773–781. Manginas, A., Goussetis, E., Koutelou, M., Karatasakis, G., Peristeri, I., Theodorakos, A., et al. (2007). Pilot study to evaluate the safety and feasibility of intracoronary CD133(+) and CD133(−) CD34(+) cell therapy in patients with nonviable anterior myocardial infarction. Catheterization and Cardiovascular Interventions: Official Journal of the Society for Cardiac Angiography & Interventions, 69(6), 773–781.
43.
Zurück zum Zitat Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., Li, B., et al. (2001). Bone marrow cells regenerate infarcted myocardium. Nature, 410(6829), 701–705.PubMed Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., Li, B., et al. (2001). Bone marrow cells regenerate infarcted myocardium. Nature, 410(6829), 701–705.PubMed
44.
Zurück zum Zitat Stamm, C., Kleine, H. D., Choi, Y. H., Dunkelmann, S., Lauffs, J. A., Lorenzen, B., et al. (2007). Intramyocardial delivery of CD133+ bone marrow cells and coronary artery bypass grafting for chronic ischemic heart disease: safety and efficacy studies. The Journal of Thoracic and Cardiovascular Surgery, 133(3), 717–725.PubMed Stamm, C., Kleine, H. D., Choi, Y. H., Dunkelmann, S., Lauffs, J. A., Lorenzen, B., et al. (2007). Intramyocardial delivery of CD133+ bone marrow cells and coronary artery bypass grafting for chronic ischemic heart disease: safety and efficacy studies. The Journal of Thoracic and Cardiovascular Surgery, 133(3), 717–725.PubMed
45.
Zurück zum Zitat Lader, J., Stachel, M., & Bu, L. (2017). Cardiac stem cells for myocardial regeneration: promising but not ready for prime time. Current Opinion in Biotechnology, 47, 30–35.PubMedPubMedCentral Lader, J., Stachel, M., & Bu, L. (2017). Cardiac stem cells for myocardial regeneration: promising but not ready for prime time. Current Opinion in Biotechnology, 47, 30–35.PubMedPubMedCentral
46.
Zurück zum Zitat Gao, L. R., Chen, Y., Zhang, N. K., Yang, X. L., Liu, H. L., Wang, Z. G., et al. (2015). Intracoronary infusion of Wharton’s jelly-derived mesenchymal stem cells in acute myocardial infarction: double-blind, randomized controlled trial. BMC Medicine, 13, 162.PubMedPubMedCentral Gao, L. R., Chen, Y., Zhang, N. K., Yang, X. L., Liu, H. L., Wang, Z. G., et al. (2015). Intracoronary infusion of Wharton’s jelly-derived mesenchymal stem cells in acute myocardial infarction: double-blind, randomized controlled trial. BMC Medicine, 13, 162.PubMedPubMedCentral
47.
Zurück zum Zitat Amado, L. C., Saliaris, A. P., Schuleri, K. H., St John, M., Xie, J. S., Cattaneo, S., et al. (2005). Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 102(32), 11474–11479.PubMedPubMedCentral Amado, L. C., Saliaris, A. P., Schuleri, K. H., St John, M., Xie, J. S., Cattaneo, S., et al. (2005). Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 102(32), 11474–11479.PubMedPubMedCentral
48.
Zurück zum Zitat Quevedo, H. C., Hatzistergos, K. E., Oskouei, B. N., Feigenbaum, G. S., Rodriguez, J. E., Valdes, D., et al. (2009). Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proceedings of the National Academy of Sciences of the United States of America, 106(33), 14022–14027.PubMedPubMedCentral Quevedo, H. C., Hatzistergos, K. E., Oskouei, B. N., Feigenbaum, G. S., Rodriguez, J. E., Valdes, D., et al. (2009). Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proceedings of the National Academy of Sciences of the United States of America, 106(33), 14022–14027.PubMedPubMedCentral
49.
Zurück zum Zitat Goretti, E., Wagner, D. R., & Devaux, Y. (2014). Role of MicroRNAs in endothelial progenitor cells: implication for cardiac repair. Journal of Stem Cells, 9(2), 107–115.PubMed Goretti, E., Wagner, D. R., & Devaux, Y. (2014). Role of MicroRNAs in endothelial progenitor cells: implication for cardiac repair. Journal of Stem Cells, 9(2), 107–115.PubMed
50.
Zurück zum Zitat Meneveau, N., Deschaseaux, F., Seronde, M. F., Chopard, R., Schiele, F., Jehl, J., et al. (2011). Presence of endothelial colony-forming cells is associated with reduced microvascular obstruction limiting infarct size and left ventricular remodelling in patients with acute myocardial infarction. Basic Research in Cardiology, 106(6), 1397–1410.PubMed Meneveau, N., Deschaseaux, F., Seronde, M. F., Chopard, R., Schiele, F., Jehl, J., et al. (2011). Presence of endothelial colony-forming cells is associated with reduced microvascular obstruction limiting infarct size and left ventricular remodelling in patients with acute myocardial infarction. Basic Research in Cardiology, 106(6), 1397–1410.PubMed
51.
Zurück zum Zitat Kanazawa, H., Tseliou, E., Malliaras, K., Yee, K., Dawkins, J. F., De Couto, G., et al. (2015). Cellular postconditioning: allogeneic cardiosphere-derived cells reduce infarct size and attenuate microvascular obstruction when administered after reperfusion in pigs with acute myocardial infarction. Circulation Heart Failure, 8(2), 322–332.PubMedPubMedCentral Kanazawa, H., Tseliou, E., Malliaras, K., Yee, K., Dawkins, J. F., De Couto, G., et al. (2015). Cellular postconditioning: allogeneic cardiosphere-derived cells reduce infarct size and attenuate microvascular obstruction when administered after reperfusion in pigs with acute myocardial infarction. Circulation Heart Failure, 8(2), 322–332.PubMedPubMedCentral
52.
Zurück zum Zitat Wohrle, J., von Scheidt, F., Schauwecker, P., Wiesneth, M., Markovic, S., Schrezenmeier, H., et al. (2013). Impact of cell number and microvascular obstruction in patients with bone-marrow derived cell therapy: final results from the randomized, double-blind, placebo controlled intracoronary Stem Cell therapy in Patients with Acute Myocardial Infarction (SCAMI) trial. Clinical Research in Cardiology: Official Journal of the German Cardiac Society, 102(10), 765–770. Wohrle, J., von Scheidt, F., Schauwecker, P., Wiesneth, M., Markovic, S., Schrezenmeier, H., et al. (2013). Impact of cell number and microvascular obstruction in patients with bone-marrow derived cell therapy: final results from the randomized, double-blind, placebo controlled intracoronary Stem Cell therapy in Patients with Acute Myocardial Infarction (SCAMI) trial. Clinical Research in Cardiology: Official Journal of the German Cardiac Society, 102(10), 765–770.
53.
Zurück zum Zitat Porto, I., De Maria, G. L., Leone, A. M., Dato, I., D'Amario, D., Burzotta, F., et al. (2013). Endothelial progenitor cells, microvascular obstruction, and left ventricular remodeling in patients with ST elevation myocardial infarction undergoing primary percutaneous coronary intervention. The American Journal of Cardiology, 112(6), 782–791.PubMed Porto, I., De Maria, G. L., Leone, A. M., Dato, I., D'Amario, D., Burzotta, F., et al. (2013). Endothelial progenitor cells, microvascular obstruction, and left ventricular remodeling in patients with ST elevation myocardial infarction undergoing primary percutaneous coronary intervention. The American Journal of Cardiology, 112(6), 782–791.PubMed
54.
Zurück zum Zitat Grieve, S. M., Bhindi, R., Seow, J., Doyle, A., Turner, A. J., Tomka, J., et al. (2010). Microvascular obstruction by intracoronary delivery of mesenchymal stem cells and quantification of resulting myocardial infarction by cardiac magnetic resonance. Circulation Heart Failure, 3(3), e5–e6.PubMed Grieve, S. M., Bhindi, R., Seow, J., Doyle, A., Turner, A. J., Tomka, J., et al. (2010). Microvascular obstruction by intracoronary delivery of mesenchymal stem cells and quantification of resulting myocardial infarction by cardiac magnetic resonance. Circulation Heart Failure, 3(3), e5–e6.PubMed
55.
Zurück zum Zitat Gleeson, B. M., Martin, K., Ali, M. T., Kumar, A. H., Pillai, M. G., Kumar, S. P., et al. (2015). Bone marrow-derived mesenchymal stem cells have innate procoagulant activity and cause microvascular obstruction following intracoronary delivery: amelioration by antithrombin therapy. Stem Cells (Dayton, Ohio), 33(9), 2726–2737. Gleeson, B. M., Martin, K., Ali, M. T., Kumar, A. H., Pillai, M. G., Kumar, S. P., et al. (2015). Bone marrow-derived mesenchymal stem cells have innate procoagulant activity and cause microvascular obstruction following intracoronary delivery: amelioration by antithrombin therapy. Stem Cells (Dayton, Ohio), 33(9), 2726–2737.
56.
Zurück zum Zitat Liu, B., Duan, C. Y., Luo, C. F., Ou, C. W., Sun, K., Wu, Z. Y., et al. (2014). Effectiveness and safety of selected bone marrow stem cells on left ventricular function in patients with acute myocardial infarction: a meta-analysis of randomized controlled trials. International Journal of Cardiology, 177(3), 764–770.PubMed Liu, B., Duan, C. Y., Luo, C. F., Ou, C. W., Sun, K., Wu, Z. Y., et al. (2014). Effectiveness and safety of selected bone marrow stem cells on left ventricular function in patients with acute myocardial infarction: a meta-analysis of randomized controlled trials. International Journal of Cardiology, 177(3), 764–770.PubMed
57.
Zurück zum Zitat Yu, C. W., Choi, S. C., Hong, S. J., Choi, J. H., Park, C. Y., Kim, J. H., et al. (2013). Cardiovascular event rates in patients with ST-elevation myocardial infarction were lower with early increases in mobilization of Oct4(high)Nanog(high) stem cells into the peripheral circulation during a 4-year follow-up. International Journal of Cardiology, 168(3), 2533–2539.PubMed Yu, C. W., Choi, S. C., Hong, S. J., Choi, J. H., Park, C. Y., Kim, J. H., et al. (2013). Cardiovascular event rates in patients with ST-elevation myocardial infarction were lower with early increases in mobilization of Oct4(high)Nanog(high) stem cells into the peripheral circulation during a 4-year follow-up. International Journal of Cardiology, 168(3), 2533–2539.PubMed
58.
Zurück zum Zitat Gyongyosi, M., Wojakowski, W., Lemarchand, P., Lunde, K., Tendera, M., Bartunek, J., et al. (2015). Meta-Analysis of Cell-based Cardiac Studies (ACCRUE) in patients with acute myocardial infarction based on individual patient data. Circulation Research, 116(8), 1346–1360.PubMedPubMedCentral Gyongyosi, M., Wojakowski, W., Lemarchand, P., Lunde, K., Tendera, M., Bartunek, J., et al. (2015). Meta-Analysis of Cell-based Cardiac Studies (ACCRUE) in patients with acute myocardial infarction based on individual patient data. Circulation Research, 116(8), 1346–1360.PubMedPubMedCentral
59.
Zurück zum Zitat Heldman, A. W., DiFede, D. L., Fishman, J. E., Zambrano, J. P., Trachtenberg, B. H., Karantalis, V., et al. (2014). Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: the TAC-HFT randomized trial. Journal of the American Medical Association, 311(1), 62–73.PubMed Heldman, A. W., DiFede, D. L., Fishman, J. E., Zambrano, J. P., Trachtenberg, B. H., Karantalis, V., et al. (2014). Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: the TAC-HFT randomized trial. Journal of the American Medical Association, 311(1), 62–73.PubMed
60.
Zurück zum Zitat Nasseri, B. A., Ebell, W., Dandel, M., Kukucka, M., Gebker, R., Doltra, A., et al. (2014). Autologous CD133+ bone marrow cells and bypass grafting for regeneration of ischaemic myocardium: the Cardio133 trial. European Heart Journal, 35(19), 1263–1274.PubMed Nasseri, B. A., Ebell, W., Dandel, M., Kukucka, M., Gebker, R., Doltra, A., et al. (2014). Autologous CD133+ bone marrow cells and bypass grafting for regeneration of ischaemic myocardium: the Cardio133 trial. European Heart Journal, 35(19), 1263–1274.PubMed
61.
Zurück zum Zitat Honold, J., DeRosa, S., Spyridopoulos, I., Fischer-Rasokat, U., Seeger, F. H., Leistner, D., et al. (2013). Comparison of the Seattle heart failure model and cardiopulmonary exercise capacity for prediction of death in patients with chronic ischemic heart failure and intracoronary progenitor cell application. Clinical Cardiology, 36(3), 153–159.PubMedPubMedCentral Honold, J., DeRosa, S., Spyridopoulos, I., Fischer-Rasokat, U., Seeger, F. H., Leistner, D., et al. (2013). Comparison of the Seattle heart failure model and cardiopulmonary exercise capacity for prediction of death in patients with chronic ischemic heart failure and intracoronary progenitor cell application. Clinical Cardiology, 36(3), 153–159.PubMedPubMedCentral
62.
Zurück zum Zitat Bartunek, J., Behfar, A., Dolatabadi, D., Vanderheyden, M., Ostojic, M., Dens, J., et al. (2013). Cardiopoietic stem cell therapy in heart failure: the C-CURE (Cardiopoietic Stem Cell Therapy in Heart Failure) multicenter randomized trial with lineage-specified biologics. Journal of the American College of Cardiology, 61(23), 2329–2338.PubMed Bartunek, J., Behfar, A., Dolatabadi, D., Vanderheyden, M., Ostojic, M., Dens, J., et al. (2013). Cardiopoietic stem cell therapy in heart failure: the C-CURE (Cardiopoietic Stem Cell Therapy in Heart Failure) multicenter randomized trial with lineage-specified biologics. Journal of the American College of Cardiology, 61(23), 2329–2338.PubMed
63.
Zurück zum Zitat Xiong, Q., Ye, L., Zhang, P., Lepley, M., Swingen, C., Zhang, L., et al. (2012). Bioenergetic and functional consequences of cellular therapy: activation of endogenous cardiovascular progenitor cells. Circulation Research, 111(4), 455–468.PubMedPubMedCentral Xiong, Q., Ye, L., Zhang, P., Lepley, M., Swingen, C., Zhang, L., et al. (2012). Bioenergetic and functional consequences of cellular therapy: activation of endogenous cardiovascular progenitor cells. Circulation Research, 111(4), 455–468.PubMedPubMedCentral
64.
Zurück zum Zitat Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.PubMed Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.PubMed
65.
Zurück zum Zitat Wang, Z., Wang, L., Su, X., Pu, J., Jiang, M., & He, B. (2017). Rational transplant timing and dose of mesenchymal stromal cells in patients with acute myocardial infarction: a meta-analysis of randomized controlled trials. Stem cell research & therapy, 8(1), 21. Wang, Z., Wang, L., Su, X., Pu, J., Jiang, M., & He, B. (2017). Rational transplant timing and dose of mesenchymal stromal cells in patients with acute myocardial infarction: a meta-analysis of randomized controlled trials. Stem cell research & therapy, 8(1), 21.
66.
Zurück zum Zitat Wei, X., Yang, X., Han, Z. P., Qu, F. F., Shao, L., & Shi, Y. F. (2013). Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacologica Sinica, 34(6), 747–754.PubMedPubMedCentral Wei, X., Yang, X., Han, Z. P., Qu, F. F., Shao, L., & Shi, Y. F. (2013). Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacologica Sinica, 34(6), 747–754.PubMedPubMedCentral
67.
Zurück zum Zitat Noiseux, N., Gnecchi, M., Lopez-Ilasaca, M., Zhang, L., Solomon, S. D., Deb, A., et al. (2006). Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Molecular Therapy: the Journal of the American Society of Gene Therapy, 14(6), 840–850. Noiseux, N., Gnecchi, M., Lopez-Ilasaca, M., Zhang, L., Solomon, S. D., Deb, A., et al. (2006). Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Molecular Therapy: the Journal of the American Society of Gene Therapy, 14(6), 840–850.
68.
Zurück zum Zitat Gnecchi, M., Zhang, Z., Ni, A., & Dzau, V. J. (2008). Paracrine mechanisms in adult stem cell signaling and therapy. Circulation Research, 103(11), 1204–1219.PubMedPubMedCentral Gnecchi, M., Zhang, Z., Ni, A., & Dzau, V. J. (2008). Paracrine mechanisms in adult stem cell signaling and therapy. Circulation Research, 103(11), 1204–1219.PubMedPubMedCentral
69.
Zurück zum Zitat Chou, S. H., Lin, S. Z., Kuo, W. W., Pai, P., Lin, J. Y., Lai, C. H., et al. (2014). Mesenchymal stem cell insights: prospects in cardiovascular therapy. Cell Transplantation, 23(4–5), 513–529.PubMed Chou, S. H., Lin, S. Z., Kuo, W. W., Pai, P., Lin, J. Y., Lai, C. H., et al. (2014). Mesenchymal stem cell insights: prospects in cardiovascular therapy. Cell Transplantation, 23(4–5), 513–529.PubMed
70.
Zurück zum Zitat Karantalis, V., & Hare, J. M. (2015). Use of mesenchymal stem cells for therapy of cardiac disease. Circulation Research, 116(8), 1413–1430.PubMedPubMedCentral Karantalis, V., & Hare, J. M. (2015). Use of mesenchymal stem cells for therapy of cardiac disease. Circulation Research, 116(8), 1413–1430.PubMedPubMedCentral
71.
Zurück zum Zitat Oh, J. Y., Kim, M. K., Shin, M. S., Lee, H. J., Ko, J. H., Wee, W. R., et al. (2008). The anti-inflammatory and anti-angiogenic role of mesenchymal stem cells in corneal wound healing following chemical injury. Stem cells (Dayton, Ohio), 26(4), 1047–1055. Oh, J. Y., Kim, M. K., Shin, M. S., Lee, H. J., Ko, J. H., Wee, W. R., et al. (2008). The anti-inflammatory and anti-angiogenic role of mesenchymal stem cells in corneal wound healing following chemical injury. Stem cells (Dayton, Ohio), 26(4), 1047–1055.
72.
Zurück zum Zitat Lee, R. H., Pulin, A. A., Seo, M. J., Kota, D. J., Ylostalo, J., Larson, B. L., et al. (2009). Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell, 5(1), 54–63.PubMedPubMedCentral Lee, R. H., Pulin, A. A., Seo, M. J., Kota, D. J., Ylostalo, J., Larson, B. L., et al. (2009). Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell, 5(1), 54–63.PubMedPubMedCentral
73.
Zurück zum Zitat Forte, A., Finicelli, M., Mattia, M., Berrino, L., Rossi, F., De Feo, M., et al. (2008). Mesenchymal stem cells effectively reduce surgically induced stenosis in rat carotids. Journal of Cellular Physiology, 217(3), 789–799.PubMed Forte, A., Finicelli, M., Mattia, M., Berrino, L., Rossi, F., De Feo, M., et al. (2008). Mesenchymal stem cells effectively reduce surgically induced stenosis in rat carotids. Journal of Cellular Physiology, 217(3), 789–799.PubMed
74.
Zurück zum Zitat Chen, L., Tredget, E. E., Wu, P. Y., & Wu, Y. (2008). Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One, 3(4), e1886.PubMedPubMedCentral Chen, L., Tredget, E. E., Wu, P. Y., & Wu, Y. (2008). Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One, 3(4), e1886.PubMedPubMedCentral
75.
Zurück zum Zitat Khan, M., Nickoloff, E., Abramova, T., Johnson, J., Verma, S. K., Krishnamurthy, P., et al. (2015). Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circulation Research, 117(1), 52–64.PubMedPubMedCentral Khan, M., Nickoloff, E., Abramova, T., Johnson, J., Verma, S. K., Krishnamurthy, P., et al. (2015). Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circulation Research, 117(1), 52–64.PubMedPubMedCentral
76.
Zurück zum Zitat Barile, L., Lionetti, V., Cervio, E., Matteucci, M., Gherghiceanu, M., Popescu, L. M., et al. (2014). Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovascular Research, 103(4), 530–541.PubMed Barile, L., Lionetti, V., Cervio, E., Matteucci, M., Gherghiceanu, M., Popescu, L. M., et al. (2014). Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovascular Research, 103(4), 530–541.PubMed
77.
Zurück zum Zitat Singla, D. K. (2016). Stem cells and exosomes in cardiac repair. Current Opinion in Pharmacology, 27, 19–23.PubMed Singla, D. K. (2016). Stem cells and exosomes in cardiac repair. Current Opinion in Pharmacology, 27, 19–23.PubMed
78.
Zurück zum Zitat Lyu, L., Wang, H., Li, B., Qin, Q., Qi, L., Nagarkatti, M., et al. (2015). A critical role of cardiac fibroblast-derived exosomes in activating renin angiotensin system in cardiomyocytes. Journal of Molecular and Cellular Cardiology, 89(Pt B), 268–279.PubMedPubMedCentral Lyu, L., Wang, H., Li, B., Qin, Q., Qi, L., Nagarkatti, M., et al. (2015). A critical role of cardiac fibroblast-derived exosomes in activating renin angiotensin system in cardiomyocytes. Journal of Molecular and Cellular Cardiology, 89(Pt B), 268–279.PubMedPubMedCentral
79.
Zurück zum Zitat Cervio, E., Barile, L., Moccetti, T., & Vassalli, G. (2015). Exosomes for intramyocardial intercellular communication. Stem Cells International, 2015, 482171.PubMedPubMedCentral Cervio, E., Barile, L., Moccetti, T., & Vassalli, G. (2015). Exosomes for intramyocardial intercellular communication. Stem Cells International, 2015, 482171.PubMedPubMedCentral
80.
Zurück zum Zitat Zhou, R., Chen, K. K., Zhang, J., Xiao, B., Huang, Z., Ju, C., et al. (2018). The decade of exosomal long RNA species: an emerging cancer antagonist. Molecular Cancer, 17(1), 75.PubMedPubMedCentral Zhou, R., Chen, K. K., Zhang, J., Xiao, B., Huang, Z., Ju, C., et al. (2018). The decade of exosomal long RNA species: an emerging cancer antagonist. Molecular Cancer, 17(1), 75.PubMedPubMedCentral
81.
Zurück zum Zitat Chang, W., Lee, C. Y., Park, J. H., Park, M. S., Maeng, L. S., Yoon, C. S., et al. (2013). Survival of hypoxic human mesenchymal stem cells is enhanced by a positive feedback loop involving miR-210 and hypoxia-inducible factor 1. Journal of Veterinary Science, 14(1), 69–76.PubMedPubMedCentral Chang, W., Lee, C. Y., Park, J. H., Park, M. S., Maeng, L. S., Yoon, C. S., et al. (2013). Survival of hypoxic human mesenchymal stem cells is enhanced by a positive feedback loop involving miR-210 and hypoxia-inducible factor 1. Journal of Veterinary Science, 14(1), 69–76.PubMedPubMedCentral
82.
Zurück zum Zitat Chang, W., Kim, R., Park, S. I., Jung, Y. J., Ham, O., Lee, J., et al. (2015). Enhanced healing of rat calvarial bone defects with hypoxic conditioned medium from mesenchymal stem cells through increased endogenous stem cell migration via regulation of ICAM-1 targeted-microRNA-221. Molecules and Cells, 38(7), 643–650.PubMedPubMedCentral Chang, W., Kim, R., Park, S. I., Jung, Y. J., Ham, O., Lee, J., et al. (2015). Enhanced healing of rat calvarial bone defects with hypoxic conditioned medium from mesenchymal stem cells through increased endogenous stem cell migration via regulation of ICAM-1 targeted-microRNA-221. Molecules and Cells, 38(7), 643–650.PubMedPubMedCentral
83.
Zurück zum Zitat Sadek, H., Hannack, B., Choe, E., Wang, J., Latif, S., Garry, M. G., et al. (2008). Cardiogenic small molecules that enhance myocardial repair by stem cells. Proceedings of the National Academy of Sciences of the United States of America, 105(16), 6063–6068.PubMedPubMedCentral Sadek, H., Hannack, B., Choe, E., Wang, J., Latif, S., Garry, M. G., et al. (2008). Cardiogenic small molecules that enhance myocardial repair by stem cells. Proceedings of the National Academy of Sciences of the United States of America, 105(16), 6063–6068.PubMedPubMedCentral
84.
Zurück zum Zitat Prathipati, P., Nandi, S. S., & Mishra, P. K. (2017). Stem cell-derived exosomes, autophagy, extracellular matrix turnover, and miRNAs in cardiac regeneration during stem cell therapy. Stem Cell Reviews, 13(1), 79–91.PubMedCentral Prathipati, P., Nandi, S. S., & Mishra, P. K. (2017). Stem cell-derived exosomes, autophagy, extracellular matrix turnover, and miRNAs in cardiac regeneration during stem cell therapy. Stem Cell Reviews, 13(1), 79–91.PubMedCentral
85.
Zurück zum Zitat Nollet, E., Hoymans, V. Y., Van Craenenbroeck, A. H., Vrints, C. J., & Van Craenenbroeck, E. M. (2016). Improving stem cell therapy in cardiovascular diseases: the potential role of microRNA. American Journal of Physiology Heart and Circulatory Physiology, 311(1), H207–H218.PubMed Nollet, E., Hoymans, V. Y., Van Craenenbroeck, A. H., Vrints, C. J., & Van Craenenbroeck, E. M. (2016). Improving stem cell therapy in cardiovascular diseases: the potential role of microRNA. American Journal of Physiology Heart and Circulatory Physiology, 311(1), H207–H218.PubMed
86.
Zurück zum Zitat Marquis-Gravel, G., Stevens, L. M., Mansour, S., Avram, R., & Noiseux, N. (2014). Stem cell therapy for the treatment of nonischemic cardiomyopathy: a systematic review of the literature and meta-analysis of randomized controlled trials. Canadian Journal of Cardiology, 30(11), 1378–1384. Marquis-Gravel, G., Stevens, L. M., Mansour, S., Avram, R., & Noiseux, N. (2014). Stem cell therapy for the treatment of nonischemic cardiomyopathy: a systematic review of the literature and meta-analysis of randomized controlled trials. Canadian Journal of Cardiology, 30(11), 1378–1384.
87.
Zurück zum Zitat Stehlik, J., Edwards, L. B., Kucheryavaya, A. Y., Benden, C., Christie, J. D., Dobbels, F., et al. (2011). The registry of the International Society for Heart and Lung Transplantation: twenty-eighth adult heart transplant report—2011. Journal of Heart & Lung Transplantation the Official Publication of the International Society for Heart Transplantation, 30(10), 1078. Stehlik, J., Edwards, L. B., Kucheryavaya, A. Y., Benden, C., Christie, J. D., Dobbels, F., et al. (2011). The registry of the International Society for Heart and Lung Transplantation: twenty-eighth adult heart transplant report—2011. Journal of Heart & Lung Transplantation the Official Publication of the International Society for Heart Transplantation, 30(10), 1078.
88.
Zurück zum Zitat Fischerrasokat, U., Assmus, B., Seeger, F. H., Honold, J., Leistner, D., Fichtlscherer, S., et al. (2009). A pilot trial to assess potential effects of selective intracoronary bone marrow-derived progenitor cell infusion in patients with nonischemic dilated cardiomyopathy. Circulation Heart Failure, 2(5), 417. Fischerrasokat, U., Assmus, B., Seeger, F. H., Honold, J., Leistner, D., Fichtlscherer, S., et al. (2009). A pilot trial to assess potential effects of selective intracoronary bone marrow-derived progenitor cell infusion in patients with nonischemic dilated cardiomyopathy. Circulation Heart Failure, 2(5), 417.
89.
Zurück zum Zitat Seth, S., Bhargava, B., Narang, R., Ray, R., Mohanty, S., Gulati, G., et al. (2010). The ABCD (autologous bone marrow cells in dilated cardiomyopathy) trial : a long-term follow-up study. Journal of the American College of Cardiology, 55(15), 1643–1644.PubMed Seth, S., Bhargava, B., Narang, R., Ray, R., Mohanty, S., Gulati, G., et al. (2010). The ABCD (autologous bone marrow cells in dilated cardiomyopathy) trial : a long-term follow-up study. Journal of the American College of Cardiology, 55(15), 1643–1644.PubMed
90.
Zurück zum Zitat Vrtovec, B., Poglajen, G., Sever, M., Lezaic, L., Domanovic, D., Cernelc, P., et al. (2011). Effects of intracoronary stem cell transplantation in patients with dilated cardiomyopathy. Journal of Cardiac Failure, 17(4), 272.PubMed Vrtovec, B., Poglajen, G., Sever, M., Lezaic, L., Domanovic, D., Cernelc, P., et al. (2011). Effects of intracoronary stem cell transplantation in patients with dilated cardiomyopathy. Journal of Cardiac Failure, 17(4), 272.PubMed
91.
Zurück zum Zitat Vrtovec, B., Poglajen, G., Lezaic, L., Sever, M., Domanovic, D., Cernelc, P., et al. (2013). Effects of intracoronary CD34+ stem cell transplantation in nonischemic dilated cardiomyopathy patients 5-year follow-up. Circulation Research, 112(1), 165.PubMed Vrtovec, B., Poglajen, G., Lezaic, L., Sever, M., Domanovic, D., Cernelc, P., et al. (2013). Effects of intracoronary CD34+ stem cell transplantation in nonischemic dilated cardiomyopathy patients 5-year follow-up. Circulation Research, 112(1), 165.PubMed
92.
Zurück zum Zitat Sant'Anna, R. T., Fracasso, J., Valle, F. H., Castro, I., Nardi, N. B., Sant'Anna, J. R. M., et al. (2014). Direct intramyocardial transthoracic transplantation of bone marrow mononuclear cells for non-ischemic dilated cardiomyopathy: INTRACELL, a prospective randomized controlled trial. Revista Brasileira De Cirurgia Cardiovascular Órgão Oficial Da Sociedade Brasileira De Cirurgia Cardiovascular, 29(3), 437–447.PubMedPubMedCentral Sant'Anna, R. T., Fracasso, J., Valle, F. H., Castro, I., Nardi, N. B., Sant'Anna, J. R. M., et al. (2014). Direct intramyocardial transthoracic transplantation of bone marrow mononuclear cells for non-ischemic dilated cardiomyopathy: INTRACELL, a prospective randomized controlled trial. Revista Brasileira De Cirurgia Cardiovascular Órgão Oficial Da Sociedade Brasileira De Cirurgia Cardiovascular, 29(3), 437–447.PubMedPubMedCentral
93.
Zurück zum Zitat Martino, H., Brofman, P., Greco, O., Bueno, R., Bodanese, L., Clausell, N., et al. (2015). Multicentre, randomized, double-blind trial of intracoronary autologous mononuclear bone marrow cell injection in non-ischaemic dilated cardiomyopathy (the dilated cardiomyopathy arm of the MiHeart study). European Heart Journal, 36(42), 2898.PubMed Martino, H., Brofman, P., Greco, O., Bueno, R., Bodanese, L., Clausell, N., et al. (2015). Multicentre, randomized, double-blind trial of intracoronary autologous mononuclear bone marrow cell injection in non-ischaemic dilated cardiomyopathy (the dilated cardiomyopathy arm of the MiHeart study). European Heart Journal, 36(42), 2898.PubMed
94.
Zurück zum Zitat Lu, Y., Wang, Y., Lin, M., Zhou, J., Wang, Z., Jiang, M., et al. (2016). A systematic review of randomised controlled trials examining the therapeutic effects of adult bone marrow-derived stem cells for non-ischaemic dilated cardiomyopathy. Stem Cell Research & Therapy, 7(1), 186. Lu, Y., Wang, Y., Lin, M., Zhou, J., Wang, Z., Jiang, M., et al. (2016). A systematic review of randomised controlled trials examining the therapeutic effects of adult bone marrow-derived stem cells for non-ischaemic dilated cardiomyopathy. Stem Cell Research & Therapy, 7(1), 186.
95.
Zurück zum Zitat Maron, B. J. (2002). Hypertrophic cardiomyopathy: a systematic review. Journal of the American Medical Association, 287(10), 1308.PubMed Maron, B. J. (2002). Hypertrophic cardiomyopathy: a systematic review. Journal of the American Medical Association, 287(10), 1308.PubMed
96.
Zurück zum Zitat Maron, B. J., Maron, M. S., & Semsarian, C. (2012). Genetics of hypertrophic cardiomyopathy after 20 years : clinical perspectives. Journal of the American College of Cardiology, 60(8), 705–715.PubMed Maron, B. J., Maron, M. S., & Semsarian, C. (2012). Genetics of hypertrophic cardiomyopathy after 20 years : clinical perspectives. Journal of the American College of Cardiology, 60(8), 705–715.PubMed
97.
Zurück zum Zitat Han, L., Li, Y., Tchao, J., Kaplan, A. D., Lin, B., Li, Y., et al. (2014). Study familial hypertrophic cardiomyopathy using patient-specific induced pluripotent stem cells. Cardiovascular Research, 104(2), 258–269.PubMedPubMedCentral Han, L., Li, Y., Tchao, J., Kaplan, A. D., Lin, B., Li, Y., et al. (2014). Study familial hypertrophic cardiomyopathy using patient-specific induced pluripotent stem cells. Cardiovascular Research, 104(2), 258–269.PubMedPubMedCentral
98.
Zurück zum Zitat Suzuki, K., Murtuza, B., Beauchamp, J. R., Brand, N. J., Barton, P. J., Varela-Carver, A., et al. (2004). Role of interleukin-1beta in acute inflammation and graft death after cell transplantation to the heart. Circulation, 110(11 Suppl 1), Ii219–Ii224.PubMed Suzuki, K., Murtuza, B., Beauchamp, J. R., Brand, N. J., Barton, P. J., Varela-Carver, A., et al. (2004). Role of interleukin-1beta in acute inflammation and graft death after cell transplantation to the heart. Circulation, 110(11 Suppl 1), Ii219–Ii224.PubMed
99.
Zurück zum Zitat Narita, T., & Suzuki, K. (2015). Bone marrow-derived mesenchymal stem cells for the treatment of heart failure. Heart Failure Reviews, 20(1), 53–68.PubMed Narita, T., & Suzuki, K. (2015). Bone marrow-derived mesenchymal stem cells for the treatment of heart failure. Heart Failure Reviews, 20(1), 53–68.PubMed
100.
Zurück zum Zitat Lai, R. C., Chen, T. S., & Lim, S. K. (2011). Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease. Regenerative Medicine, 6(4), 481–492.PubMed Lai, R. C., Chen, T. S., & Lim, S. K. (2011). Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease. Regenerative Medicine, 6(4), 481–492.PubMed
101.
Zurück zum Zitat Giraud, M. N., Guex, A. G., & Tevaearai, H. T. (2012). Cell therapies for heart function recovery: focus on myocardial tissue engineering and nanotechnologies. Cardiology Research and Practice, 2012, 971614.PubMedPubMedCentral Giraud, M. N., Guex, A. G., & Tevaearai, H. T. (2012). Cell therapies for heart function recovery: focus on myocardial tissue engineering and nanotechnologies. Cardiology Research and Practice, 2012, 971614.PubMedPubMedCentral
102.
Zurück zum Zitat Bai, Y., Sun, T., & Ye, P. (2010). Age, gender and diabetic status are associated with effects of bone marrow cell therapy on recovery of left ventricular function after acute myocardial infarction: a systematic review and meta-analysis. Ageing Research Reviews, 9(4), 418–423.PubMed Bai, Y., Sun, T., & Ye, P. (2010). Age, gender and diabetic status are associated with effects of bone marrow cell therapy on recovery of left ventricular function after acute myocardial infarction: a systematic review and meta-analysis. Ageing Research Reviews, 9(4), 418–423.PubMed
Metadaten
Titel
Regenerative Therapy for Cardiomyopathies
verfasst von
Zi Wang
Xuan Su
Muhammad Ashraf
Il-man Kim
Neal L. Weintraub
Meng Jiang
Yaoliang Tang
Publikationsdatum
09.05.2018
Verlag
Springer US
Erschienen in
Journal of Cardiovascular Translational Research / Ausgabe 5/2018
Print ISSN: 1937-5387
Elektronische ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-018-9807-z

Weitere Artikel der Ausgabe 5/2018

Journal of Cardiovascular Translational Research 5/2018 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.