Skip to main content
Erschienen in: Cancer and Metastasis Reviews 3/2020

23.06.2020

Regulation of breast cancer metastasis signaling by miRNAs

verfasst von: Belinda J. Petri, Carolyn M. Klinge

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 3/2020

Einloggen, um Zugang zu erhalten

Abstract

Despite the decline in death rate from breast cancer and recent advances in targeted therapies and combinations for the treatment of metastatic disease, metastatic breast cancer remains the second leading cause of cancer-associated death in U.S. women. The invasion–metastasis cascade involves a number of steps and multitudes of proteins and signaling molecules. The pathways include invasion, intravasation, circulation, extravasation, infiltration into a distant site to form a metastatic niche, and micrometastasis formation in a new environment. Each of these processes is regulated by changes in gene expression. Noncoding RNAs including microRNAs (miRNAs) are involved in breast cancer tumorigenesis, progression, and metastasis by post-transcriptional regulation of target gene expression. miRNAs can stimulate oncogenesis (oncomiRs), inhibit tumor growth (tumor suppressors or miRsupps), and regulate gene targets in metastasis (metastamiRs). The goal of this review is to summarize some of the key miRNAs that regulate genes and pathways involved in metastatic breast cancer with an emphasis on estrogen receptor α (ERα+) breast cancer. We reviewed the identity, regulation, human breast tumor expression, and reported prognostic significance of miRNAs that have been documented to directly target key genes in pathways, including epithelial-to-mesenchymal transition (EMT) contributing to the metastatic cascade. We critically evaluated the evidence for metastamiRs and their targets and miRNA regulation of metastasis suppressor genes in breast cancer progression and metastasis. It is clear that our understanding of miRNA regulation of targets in metastasis is incomplete.
Literatur
6.
Zurück zum Zitat Burstein, H. J., Lacchetti, C., Anderson, H., Buchholz, T. A., Davidson, N. E., Gelmon, K. E., et al. (2016). Adjuvant endocrine therapy for women with hormone receptor–positive breast cancer: American Society of Clinical Oncology clinical practice guideline update on ovarian suppression. J Clin Oncol, 34(14), 1689–1701. https://doi.org/10.1200/JCO.2015.65.9573.CrossRefPubMed Burstein, H. J., Lacchetti, C., Anderson, H., Buchholz, T. A., Davidson, N. E., Gelmon, K. E., et al. (2016). Adjuvant endocrine therapy for women with hormone receptor–positive breast cancer: American Society of Clinical Oncology clinical practice guideline update on ovarian suppression. J Clin Oncol, 34(14), 1689–1701. https://​doi.​org/​10.​1200/​JCO.​2015.​65.​9573.CrossRefPubMed
19.
Zurück zum Zitat Kornblum, N., Zhao, F., Manola, J., Klein, P., Ramaswamy, B., Brufsky, A., et al. (2018). Randomized phase II trial of fulvestrant plus everolimus or placebo in postmenopausal women with hormone receptor–positive, human epidermal growth factor receptor 2–negative metastatic breast cancer resistant to aromatase inhibitor therapy: results of PrE0102. J Clin Oncol. https://doi.org/10.1200/JCO.2017.76.9331. Kornblum, N., Zhao, F., Manola, J., Klein, P., Ramaswamy, B., Brufsky, A., et al. (2018). Randomized phase II trial of fulvestrant plus everolimus or placebo in postmenopausal women with hormone receptor–positive, human epidermal growth factor receptor 2–negative metastatic breast cancer resistant to aromatase inhibitor therapy: results of PrE0102. J Clin Oncol. https://​doi.​org/​10.​1200/​JCO.​2017.​76.​9331.
21.
Zurück zum Zitat Giuliano, M., Schettini, F., Rognoni, C., Milani, M., Jerusalem, G., Bachelot, T., et al. (2019). Endocrine treatment versus chemotherapy in postmenopausal women with hormone receptor-positive, HER2-negative, metastatic breast cancer: a systematic review and network meta-analysis. Lancet Oncol, 20(10), 1360–1369. https://doi.org/10.1016/s1470-2045(19)30420-6.CrossRefPubMed Giuliano, M., Schettini, F., Rognoni, C., Milani, M., Jerusalem, G., Bachelot, T., et al. (2019). Endocrine treatment versus chemotherapy in postmenopausal women with hormone receptor-positive, HER2-negative, metastatic breast cancer: a systematic review and network meta-analysis. Lancet Oncol, 20(10), 1360–1369. https://​doi.​org/​10.​1016/​s1470-2045(19)30420-6.CrossRefPubMed
25.
Zurück zum Zitat Schmid, P., Zaiss, M., Harper-Wynne, C., Ferreira, M., Dubey, S., Chan, S., et al. (2019). Fulvestrant plus vistusertib vs fulvestrant plus everolimus vs fulvestrant alone for women with hormone receptor-positive metastatic breast cancer: the MANTA phase 2 randomized clinical trial. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2019.2526. Schmid, P., Zaiss, M., Harper-Wynne, C., Ferreira, M., Dubey, S., Chan, S., et al. (2019). Fulvestrant plus vistusertib vs fulvestrant plus everolimus vs fulvestrant alone for women with hormone receptor-positive metastatic breast cancer: the MANTA phase 2 randomized clinical trial. JAMA Oncol. https://​doi.​org/​10.​1001/​jamaoncol.​2019.​2526.
39.
Zurück zum Zitat Drusco, A., & Croce, C. M. (2017). Chapter one - microRNAs and cancer: a long story for short RNAs. In C. M. Croce & P. B. Fisher (Eds.), Advances in cancer research (135th ed., pp. 1–24). Cambridge: Academic. Drusco, A., & Croce, C. M. (2017). Chapter one - microRNAs and cancer: a long story for short RNAs. In C. M. Croce & P. B. Fisher (Eds.), Advances in cancer research (135th ed., pp. 1–24). Cambridge: Academic.
43.
Zurück zum Zitat Almeida, M. I., Reis, R. M., & Calin, G. A. (2010). MYC-microRNA-9-metastasis connection in breast cancer. Cell Res, 20(6), 603–604.PubMed Almeida, M. I., Reis, R. M., & Calin, G. A. (2010). MYC-microRNA-9-metastasis connection in breast cancer. Cell Res, 20(6), 603–604.PubMed
58.
Zurück zum Zitat Zhou, J., Allred, D. C., Avis, I., Martinez, A., Vos, M. D., Smith, L., et al. (2001). Differential expression of the early lung cancer detection marker, heterogeneous nuclear ribonucleoprotein-A2/B1 (hnRNP-A2/B1) in normal breast and neoplastic breast cancer. Breast Cancer Res Treat, 66(3), 217–224. https://doi.org/10.1023/a:1010631915831.CrossRefPubMed Zhou, J., Allred, D. C., Avis, I., Martinez, A., Vos, M. D., Smith, L., et al. (2001). Differential expression of the early lung cancer detection marker, heterogeneous nuclear ribonucleoprotein-A2/B1 (hnRNP-A2/B1) in normal breast and neoplastic breast cancer. Breast Cancer Res Treat, 66(3), 217–224. https://​doi.​org/​10.​1023/​a:​1010631915831.CrossRefPubMed
60.
67.
Zurück zum Zitat Nagpal, N., Ahmad, H. M., Chameettachal, S., Sundar, D., Ghosh, S., & Kulshreshtha, R. (2015). HIF-inducible miR-191 promotes migration in breast cancer through complex regulation of TGFβ-signaling in hypoxic microenvironment. Sci Rep, 13(5), 9650. https://doi.org/10.1038/srep09650.CrossRef Nagpal, N., Ahmad, H. M., Chameettachal, S., Sundar, D., Ghosh, S., & Kulshreshtha, R. (2015). HIF-inducible miR-191 promotes migration in breast cancer through complex regulation of TGFβ-signaling in hypoxic microenvironment. Sci Rep, 13(5), 9650. https://​doi.​org/​10.​1038/​srep09650.CrossRef
82.
Zurück zum Zitat Han, B., Nakamura, M., Mori, I., Nakamura, Y., & Kakudo, K. (2005). Urokinase-type plasminogen activator system and breast cancer (review). Oncol Rep, 14(1), 105–112.PubMed Han, B., Nakamura, M., Mori, I., Nakamura, Y., & Kakudo, K. (2005). Urokinase-type plasminogen activator system and breast cancer (review). Oncol Rep, 14(1), 105–112.PubMed
100.
110.
Zurück zum Zitat Chiodoni C, Cancila V, Renzi TA, Perrone M, Tomirotti AM, Sangaletti S, et al. (2019). Transcriptional profiles and stromal changes reveal bone marrow adaptation to early breast cancer in association with deregulated circulating microRNAs. Cancer Res, canres.1425.2019, doi:https://doi.org/10.1158/0008-5472.CAN-19-1425. Chiodoni C, Cancila V, Renzi TA, Perrone M, Tomirotti AM, Sangaletti S, et al. (2019). Transcriptional profiles and stromal changes reveal bone marrow adaptation to early breast cancer in association with deregulated circulating microRNAs. Cancer Res, canres.1425.2019, doi:https://​doi.​org/​10.​1158/​0008-5472.​CAN-19-1425.
111.
112.
Zurück zum Zitat Wang, L., & Wang, J. (2012). MicroRNA-mediated breast cancer metastasis: from primary site to distant organs. Oncogene, 31(20), 2499–2511.PubMed Wang, L., & Wang, J. (2012). MicroRNA-mediated breast cancer metastasis: from primary site to distant organs. Oncogene, 31(20), 2499–2511.PubMed
113.
Zurück zum Zitat Zhang, H., Li, Y., & Lai, M. (2010). The microRNA network and tumor metastasis. Oncogene, 29(7), 937–948.PubMed Zhang, H., Li, Y., & Lai, M. (2010). The microRNA network and tumor metastasis. Oncogene, 29(7), 937–948.PubMed
114.
122.
Zurück zum Zitat Cheng, C. W., Yu, J. C., Hsieh, Y. H., Liao, W. L., Shieh, J. C., Yao, C. C., et al. (2018). Increased cellular levels of microRNA-9 and microRNA-221 correlate with cancer stemness and predict poor outcome in human breast cancer. Cell Physiol Biochem, 48(5), 2205–2218.PubMed Cheng, C. W., Yu, J. C., Hsieh, Y. H., Liao, W. L., Shieh, J. C., Yao, C. C., et al. (2018). Increased cellular levels of microRNA-9 and microRNA-221 correlate with cancer stemness and predict poor outcome in human breast cancer. Cell Physiol Biochem, 48(5), 2205–2218.PubMed
127.
Zurück zum Zitat Kim, J., Siverly, A. N., Chen, D., Wang, M., Yuan, Y., Wang, Y., et al. (2016). Ablation of miR-10b suppresses oncogene-induced mammary tumorigenesis and metastasis and reactivates tumor-suppressive pathways. Cancer Res, 76(21), 6424.PubMedPubMedCentral Kim, J., Siverly, A. N., Chen, D., Wang, M., Yuan, Y., Wang, Y., et al. (2016). Ablation of miR-10b suppresses oncogene-induced mammary tumorigenesis and metastasis and reactivates tumor-suppressive pathways. Cancer Res, 76(21), 6424.PubMedPubMedCentral
129.
Zurück zum Zitat Lu, Z., Liu, M., Stribinskis, V., Klinge, C. M., Ramos, K. S., Colburn, N. H., et al. (2008). MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene, 27(31), 4373–4379.PubMed Lu, Z., Liu, M., Stribinskis, V., Klinge, C. M., Ramos, K. S., Colburn, N. H., et al. (2008). MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene, 27(31), 4373–4379.PubMed
130.
Zurück zum Zitat Wickramasinghe, N., Manavalan, T., Dougherty, S., Riggs, K., Li, Y., & Klinge, C. (2009). Estradiol downregulates miR-21 expression and increases miR-21 target gene expression in MCF-7 breast cancer cells. Nucleic Acids Res, 37(8), 2584–2595.PubMedPubMedCentral Wickramasinghe, N., Manavalan, T., Dougherty, S., Riggs, K., Li, Y., & Klinge, C. (2009). Estradiol downregulates miR-21 expression and increases miR-21 target gene expression in MCF-7 breast cancer cells. Nucleic Acids Res, 37(8), 2584–2595.PubMedPubMedCentral
131.
Zurück zum Zitat Hannafon, B., Sebastiani, P., de las Morenas, A., Lu, J., & Rosenberg, C. (2011). Expression of microRNAs and their gene targets are dysregulated in pre-invasive breast cancer. Breast Cancer Res, 13(2), R24.PubMedPubMedCentral Hannafon, B., Sebastiani, P., de las Morenas, A., Lu, J., & Rosenberg, C. (2011). Expression of microRNAs and their gene targets are dysregulated in pre-invasive breast cancer. Breast Cancer Res, 13(2), R24.PubMedPubMedCentral
139.
Zurück zum Zitat Iorio, M. V., Ferracin, M., Liu, C.-G., Veronese, A., Spizzo, R., Sabbioni, S., et al. (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Res, 65(16), 7065–7070.PubMed Iorio, M. V., Ferracin, M., Liu, C.-G., Veronese, A., Spizzo, R., Sabbioni, S., et al. (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Res, 65(16), 7065–7070.PubMed
141.
142.
Zurück zum Zitat Chang, L., Zhang, D., Shi, H., Bian, Y., & Guo, R. (2017). MiR-143 inhibits endometrial cancer cell proliferation and metastasis by targeting MAPK1. Oncotarget, 8(48), 84384-84395, doi:10.18632/oncotarget.21037. Chang, L., Zhang, D., Shi, H., Bian, Y., & Guo, R. (2017). MiR-143 inhibits endometrial cancer cell proliferation and metastasis by targeting MAPK1. Oncotarget, 8(48), 84384-84395, doi:10.18632/oncotarget.21037.
145.
Zurück zum Zitat Ma, Z., Luo, Y., & Qiu, M. (2017). miR-143 induces the apoptosis of prostate cancer LNCap cells by suppressing Bcl-2 expression. Med Sci Monit, 23, 359–365.PubMedPubMedCentral Ma, Z., Luo, Y., & Qiu, M. (2017). miR-143 induces the apoptosis of prostate cancer LNCap cells by suppressing Bcl-2 expression. Med Sci Monit, 23, 359–365.PubMedPubMedCentral
148.
153.
Zurück zum Zitat Eichelser, C., Stuckrath, I., Muller, V., Milde-Langosch, K., Wikman, H., Pantel, K., et al. (2014). Increased serum levels of circulating exosomal microRNA-373 in receptor-negative breast cancer patients. Oncotarget, 5(20), 9650–9663.PubMedPubMedCentral Eichelser, C., Stuckrath, I., Muller, V., Milde-Langosch, K., Wikman, H., Pantel, K., et al. (2014). Increased serum levels of circulating exosomal microRNA-373 in receptor-negative breast cancer patients. Oncotarget, 5(20), 9650–9663.PubMedPubMedCentral
154.
Zurück zum Zitat Huang, Q., Gumireddy, K., Schrier, M., le Sage, C., Nagel, R., Nair, S., et al. (2008). The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol, 10(2), 202–210.PubMed Huang, Q., Gumireddy, K., Schrier, M., le Sage, C., Nagel, R., Nair, S., et al. (2008). The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol, 10(2), 202–210.PubMed
156.
Zurück zum Zitat Keklikoglou, I., Koerner, C., Schmidt, C., Zhang, J. D., Heckmann, D., Shavinskaya, A., et al. (2012). MicroRNA-520/373 family functions as a tumor suppressor in estrogen receptor negative breast cancer by targeting NF-[kappa]B and TGF-[beta] signaling pathways. Oncogene, 31(37), 4150–4163. https://doi.org/10.1038/onc.2011.571.CrossRefPubMed Keklikoglou, I., Koerner, C., Schmidt, C., Zhang, J. D., Heckmann, D., Shavinskaya, A., et al. (2012). MicroRNA-520/373 family functions as a tumor suppressor in estrogen receptor negative breast cancer by targeting NF-[kappa]B and TGF-[beta] signaling pathways. Oncogene, 31(37), 4150–4163. https://​doi.​org/​10.​1038/​onc.​2011.​571.CrossRefPubMed
164.
Zurück zum Zitat Scott, G. K., Mattie, M. D., Berger, C. E., Benz, S. C., & Benz, C. C. (2006). Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res, 66(3), 1277–1281.PubMed Scott, G. K., Mattie, M. D., Berger, C. E., Benz, S. C., & Benz, C. C. (2006). Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res, 66(3), 1277–1281.PubMed
176.
Zurück zum Zitat Thorne, J. L., Battaglia, S., Baxter, D. E., Hayes, J. L., Hutchinson, S. A., Jana, S., et al. (2018). MiR-19b non-canonical binding is directed by HuR and confers chemosensitivity through regulation of P-glycoprotein in breast cancer. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1861(11), 996–1006. https://doi.org/10.1016/j.bbagrm.2018.08.005.CrossRef Thorne, J. L., Battaglia, S., Baxter, D. E., Hayes, J. L., Hutchinson, S. A., Jana, S., et al. (2018). MiR-19b non-canonical binding is directed by HuR and confers chemosensitivity through regulation of P-glycoprotein in breast cancer. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1861(11), 996–1006. https://​doi.​org/​10.​1016/​j.​bbagrm.​2018.​08.​005.CrossRef
188.
Zurück zum Zitat Mattie, M. D., Benz, C. C., Bowers, J., Sensinger, K., Wong, L., Scott, G. K., et al. (2006). Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol Cancer, 5(24), 24.PubMedPubMedCentral Mattie, M. D., Benz, C. C., Bowers, J., Sensinger, K., Wong, L., Scott, G. K., et al. (2006). Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol Cancer, 5(24), 24.PubMedPubMedCentral
189.
Zurück zum Zitat Blenkiron, C., Goldstein, L. D., Thorne, N. P., Spiteri, I., Chin, S. F., Dunning, M. J., et al. (2007). MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol, 8(10), R214.PubMedPubMedCentral Blenkiron, C., Goldstein, L. D., Thorne, N. P., Spiteri, I., Chin, S. F., Dunning, M. J., et al. (2007). MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol, 8(10), R214.PubMedPubMedCentral
192.
Zurück zum Zitat Burk, U., Schubert, J., Wellner, U., Schmalhofer, O., Vincan, E., Spaderna, S., et al. (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep, 9(6), 582–589.PubMedPubMedCentral Burk, U., Schubert, J., Wellner, U., Schmalhofer, O., Vincan, E., Spaderna, S., et al. (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep, 9(6), 582–589.PubMedPubMedCentral
193.
Zurück zum Zitat Gregory, P. A., Bert, A. G., Paterson, E. L., Barry, S. C., Tsykin, A., Farshid, G., et al. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol, 10(5), 593–601.PubMed Gregory, P. A., Bert, A. G., Paterson, E. L., Barry, S. C., Tsykin, A., Farshid, G., et al. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol, 10(5), 593–601.PubMed
203.
Zurück zum Zitat Finlay-Schultz, J., Cittelly, D. M., Hendricks, P., Patel, P., Kabos, P., Jacobsen, B. M., et al. (2015). Progesterone downregulation of miR-141 contributes to expansion of stem-like breast cancer cells through maintenance of progesterone receptor and Stat5a. [Original article]. Oncogene, 34(28), 3676–3687. https://doi.org/10.1038/onc.2014.298.CrossRefPubMed Finlay-Schultz, J., Cittelly, D. M., Hendricks, P., Patel, P., Kabos, P., Jacobsen, B. M., et al. (2015). Progesterone downregulation of miR-141 contributes to expansion of stem-like breast cancer cells through maintenance of progesterone receptor and Stat5a. [Original article]. Oncogene, 34(28), 3676–3687. https://​doi.​org/​10.​1038/​onc.​2014.​298.CrossRefPubMed
214.
Zurück zum Zitat Greene, S. B., Herschkowitz, J. I., & Rosen, J. M. (2010). The ups and downs of miR-205: identifying the roles of miR-205 in mammary gland development and breast cancer. RNA Biol, 7(3), 300–304.PubMed Greene, S. B., Herschkowitz, J. I., & Rosen, J. M. (2010). The ups and downs of miR-205: identifying the roles of miR-205 in mammary gland development and breast cancer. RNA Biol, 7(3), 300–304.PubMed
218.
Zurück zum Zitat Zhang, H., Li, B., Zhao, H., & Chang, J. (2015). The expression and clinical significance of serum miR-205 for breast cancer and its role in detection of human cancers. Int J Clin Exp Med, 8(2), 3034–3043.PubMedPubMedCentral Zhang, H., Li, B., Zhao, H., & Chang, J. (2015). The expression and clinical significance of serum miR-205 for breast cancer and its role in detection of human cancers. Int J Clin Exp Med, 8(2), 3034–3043.PubMedPubMedCentral
220.
Zurück zum Zitat Uhlmann, S., Zhang, J. D., Schwager, A., Mannsperger, H., Riazalhosseini, Y., Burmester, S., et al. (2010). miR-200bc/429 cluster targets PLC[gamma]1 and differentially regulates proliferation and EGF-driven invasion than miR-200a/141 in breast cancer. Oncogene, 29(30), 4297–4306. https://doi.org/10.1038/onc.2010.201.CrossRefPubMed Uhlmann, S., Zhang, J. D., Schwager, A., Mannsperger, H., Riazalhosseini, Y., Burmester, S., et al. (2010). miR-200bc/429 cluster targets PLC[gamma]1 and differentially regulates proliferation and EGF-driven invasion than miR-200a/141 in breast cancer. Oncogene, 29(30), 4297–4306. https://​doi.​org/​10.​1038/​onc.​2010.​201.CrossRefPubMed
224.
Zurück zum Zitat Tavazoie, S. F., Alarcon, C., Oskarsson, T., Padua, D., Wang, Q., Bos, P. D., et al. (2008). Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 451(7175), 147–152.PubMedPubMedCentral Tavazoie, S. F., Alarcon, C., Oskarsson, T., Padua, D., Wang, Q., Bos, P. D., et al. (2008). Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 451(7175), 147–152.PubMedPubMedCentral
226.
Zurück zum Zitat Kasinski, A. L., & Slack, F. J. (2011). MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer, 11(12), 849–864.PubMedPubMedCentral Kasinski, A. L., & Slack, F. J. (2011). MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer, 11(12), 849–864.PubMedPubMedCentral
232.
235.
Zurück zum Zitat Viré, E., Curtis, C., Davalos, V., Git, A., Robson, S., Villanueva, A., et al. (2014). The breast cancer oncogene EMSY represses transcription of antimetastatic microRNA miR-31. Mol Cell, 53(5), 806–818.PubMedPubMedCentral Viré, E., Curtis, C., Davalos, V., Git, A., Robson, S., Villanueva, A., et al. (2014). The breast cancer oncogene EMSY represses transcription of antimetastatic microRNA miR-31. Mol Cell, 53(5), 806–818.PubMedPubMedCentral
272.
Zurück zum Zitat Donnarumma E, Fiore D, Nappa M, Roscigno G, Adamo A, Iaboni M, et al. (2017). Cancer-associated fibroblasts release exosomal microRNAs that dictate an aggressive phenotype in breast cancer. Oncotarget. Donnarumma E, Fiore D, Nappa M, Roscigno G, Adamo A, Iaboni M, et al. (2017). Cancer-associated fibroblasts release exosomal microRNAs that dictate an aggressive phenotype in breast cancer. Oncotarget.
286.
Zurück zum Zitat Mishmar, D., Rahat, A., Scherer, S. W., Nyakatura, G., Hinzmann, B., Kohwi, Y., et al. (1998). Molecular characterization of a common fragile site (FRA7H) on human chromosome 7 by the cloning of a simian virus 40 integration site. Proc Natl Acad Sci U S A, 95(14), 8141–8146.PubMedPubMedCentral Mishmar, D., Rahat, A., Scherer, S. W., Nyakatura, G., Hinzmann, B., Kohwi, Y., et al. (1998). Molecular characterization of a common fragile site (FRA7H) on human chromosome 7 by the cloning of a simian virus 40 integration site. Proc Natl Acad Sci U S A, 95(14), 8141–8146.PubMedPubMedCentral
295.
Zurück zum Zitat Qiu, R., Shi, H., Wang, S., Leng, S., Liu, R., Zheng, Y., et al. (2018). BRMS1 coordinates with LSD1 and suppresses breast cancer cell metastasis. Am J Cancer Res, 8(10), 2030–2045.PubMedPubMedCentral Qiu, R., Shi, H., Wang, S., Leng, S., Liu, R., Zheng, Y., et al. (2018). BRMS1 coordinates with LSD1 and suppresses breast cancer cell metastasis. Am J Cancer Res, 8(10), 2030–2045.PubMedPubMedCentral
304.
Zurück zum Zitat Lee, J. H., & Welch, D. R. (1997). Suppression of metastasis in human breast carcinoma MDA-MB-435 cells after transfection with the metastasis suppressor gene, KiSS-1. Cancer Res, 57(12), 2384–2387.PubMed Lee, J. H., & Welch, D. R. (1997). Suppression of metastasis in human breast carcinoma MDA-MB-435 cells after transfection with the metastasis suppressor gene, KiSS-1. Cancer Res, 57(12), 2384–2387.PubMed
305.
Zurück zum Zitat Yoshida, B. A., Sokoloff, M. M., Welch, D. R., & Rinker-Schaeffer, C. W. (2000). Metastasis-suppressor genes: a review and perspective on an emerging field. J Natl Cancer Inst, 92(21), 1717–1730.PubMed Yoshida, B. A., Sokoloff, M. M., Welch, D. R., & Rinker-Schaeffer, C. W. (2000). Metastasis-suppressor genes: a review and perspective on an emerging field. J Natl Cancer Inst, 92(21), 1717–1730.PubMed
306.
Zurück zum Zitat Hurst DR, & Welch DR (2011). Chapter three - metastasis suppressor genes: at the interface between the environment and tumor cell growth. In K. W. Jeon (Ed.), International review of cell and molecular biology (Vol. 286, pp. 107-180): Academic. Hurst DR, & Welch DR (2011). Chapter three - metastasis suppressor genes: at the interface between the environment and tumor cell growth. In K. W. Jeon (Ed.), International review of cell and molecular biology (Vol. 286, pp. 107-180): Academic.
309.
Zurück zum Zitat Meehan, W. J., Samant, R. S., Hopper, J. E., Carrozza, M. J., Shevde, L. A., Workman, J. L., et al. (2004). breast cancer metastasis suppressor 1 (BRMS1) FORMS COMPLEXES WITH RETINOBLASTOMA-BINDING Protein 1 (RBP1) and the mSin3 histone deacetylase complex and represses transcription. J Biol Chem, 279(2), 1562–1569.PubMed Meehan, W. J., Samant, R. S., Hopper, J. E., Carrozza, M. J., Shevde, L. A., Workman, J. L., et al. (2004). breast cancer metastasis suppressor 1 (BRMS1) FORMS COMPLEXES WITH RETINOBLASTOMA-BINDING Protein 1 (RBP1) and the mSin3 histone deacetylase complex and represses transcription. J Biol Chem, 279(2), 1562–1569.PubMed
313.
321.
Zurück zum Zitat Garcia, M., Thirouard, L., Sedès, L., Monrose, M., Holota, H., Caira, F., et al. (2018). Nuclear receptor metabolism of bile acids and xenobiotics: a coordinated detoxification system with impact on health and diseases. Int J Mol Sci, 19(11), 3630.PubMedCentral Garcia, M., Thirouard, L., Sedès, L., Monrose, M., Holota, H., Caira, F., et al. (2018). Nuclear receptor metabolism of bile acids and xenobiotics: a coordinated detoxification system with impact on health and diseases. Int J Mol Sci, 19(11), 3630.PubMedCentral
329.
Zurück zum Zitat Yang, X., Wei, L., Tang, C., Slack, R., Montgomery, E., & Lippman, M. (2000). KAI1 protein is down-regulated during the progression of human breast cancer. Clin Cancer Res, 6(9), 3424–3429.PubMed Yang, X., Wei, L., Tang, C., Slack, R., Montgomery, E., & Lippman, M. (2000). KAI1 protein is down-regulated during the progression of human breast cancer. Clin Cancer Res, 6(9), 3424–3429.PubMed
336.
350.
Zurück zum Zitat Hartsough, M. T., Clare, S. E., Mair, M., Elkahloun, A. G., Sgroi, D., Osborne, C. K., et al. (2001). Elevation of breast carcinoma Nm23-H1 metastasis suppressor gene expression and reduced motility by DNA methylation inhibition. Cancer Res, 61(5), 2320–1878.PubMed Hartsough, M. T., Clare, S. E., Mair, M., Elkahloun, A. G., Sgroi, D., Osborne, C. K., et al. (2001). Elevation of breast carcinoma Nm23-H1 metastasis suppressor gene expression and reduced motility by DNA methylation inhibition. Cancer Res, 61(5), 2320–1878.PubMed
351.
Zurück zum Zitat Radpour, R., Kohler, C., Haghighi, M. M., Fan, A. X. C., Holzgreve, W., & Zhong, X. Y. (2009). Methylation profiles of 22 candidate genes in breast cancer using high-throughput MALDI-TOF mass array. Oncogene, 28(33), 2969–2978.PubMed Radpour, R., Kohler, C., Haghighi, M. M., Fan, A. X. C., Holzgreve, W., & Zhong, X. Y. (2009). Methylation profiles of 22 candidate genes in breast cancer using high-throughput MALDI-TOF mass array. Oncogene, 28(33), 2969–2978.PubMed
368.
371.
Zurück zum Zitat Li, Q., Zheng, Z.-C., Ni, C.-J., Jin, W.-X., Jin, Y.-X., Chen, Y., et al. (2018). Correlation of cystatin E/M with clinicopathological features and prognosis in triple-negative breast cancer. Ann Clin Lab Sci, 48(1), 40–44.PubMed Li, Q., Zheng, Z.-C., Ni, C.-J., Jin, W.-X., Jin, Y.-X., Chen, Y., et al. (2018). Correlation of cystatin E/M with clinicopathological features and prognosis in triple-negative breast cancer. Ann Clin Lab Sci, 48(1), 40–44.PubMed
377.
Zurück zum Zitat Bachman, K. E., Herman, J. G., Corn, P. G., Merlo, A., Costello, J. F., Cavenee, W. K., et al. (1999). Methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene suggests a suppressor role in kidney, brain, and other human cancers. Cancer Res, 59(4), 798–802.PubMed Bachman, K. E., Herman, J. G., Corn, P. G., Merlo, A., Costello, J. F., Cavenee, W. K., et al. (1999). Methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene suggests a suppressor role in kidney, brain, and other human cancers. Cancer Res, 59(4), 798–802.PubMed
383.
Zurück zum Zitat Journe, F., Durbecq, V., Chaboteaux, C., Rouas, G., Laurent, G., Nonclercq, D., et al. (2009). Association between farnesoid X receptor expression and cell proliferation in estrogen receptor-positive luminal-like breast cancer from postmenopausal patients. Breast Cancer Res Treat, 115(3), 523–535. https://doi.org/10.1007/s10549-008-0094-2.CrossRefPubMed Journe, F., Durbecq, V., Chaboteaux, C., Rouas, G., Laurent, G., Nonclercq, D., et al. (2009). Association between farnesoid X receptor expression and cell proliferation in estrogen receptor-positive luminal-like breast cancer from postmenopausal patients. Breast Cancer Res Treat, 115(3), 523–535. https://​doi.​org/​10.​1007/​s10549-008-0094-2.CrossRefPubMed
392.
Zurück zum Zitat Wangpu, X., Lu, J., Xi, R., Yue, F., Sahni, S., Park, K. C., et al. (2016). Targeting the metastasis suppressor, N-Myc downstream regulated gene-1, with novel di-2-pyridylketone thiosemicarbazones: suppression of tumor cell migration and cell-collagen adhesion by inhibiting focal adhesion kinase/paxillin signaling. Mol Pharmacol, 89(5), 521. https://doi.org/10.1124/mol.115.103044.CrossRefPubMedPubMedCentral Wangpu, X., Lu, J., Xi, R., Yue, F., Sahni, S., Park, K. C., et al. (2016). Targeting the metastasis suppressor, N-Myc downstream regulated gene-1, with novel di-2-pyridylketone thiosemicarbazones: suppression of tumor cell migration and cell-collagen adhesion by inhibiting focal adhesion kinase/paxillin signaling. Mol Pharmacol, 89(5), 521. https://​doi.​org/​10.​1124/​mol.​115.​103044.CrossRefPubMedPubMedCentral
408.
414.
Zurück zum Zitat Bronisz, A., Godlewski, J., Wallace, J. A., Merchant, A. S., Nowicki, M. O., Mathsyaraja, H., et al. (2012). Reprogramming of the tumour microenvironment by stromal PTEN-regulated miR-320. Nat Cell Biol, 14(2), 159–167. https://doi.org/10.1038/ncb2396.CrossRef Bronisz, A., Godlewski, J., Wallace, J. A., Merchant, A. S., Nowicki, M. O., Mathsyaraja, H., et al. (2012). Reprogramming of the tumour microenvironment by stromal PTEN-regulated miR-320. Nat Cell Biol, 14(2), 159–167. https://​doi.​org/​10.​1038/​ncb2396.CrossRef
416.
433.
435.
Zurück zum Zitat Pronina, I. V., Loginov, V. I., Burdennyy, A. M., Fridman, M. V., Kazubskaya, T. P., Dmitriev, A. A., et al. (2016). Expression and DNA methylation alterations of seven cancer-associated 3p genes and their predicted regulator miRNAs (miR-129-2, miR-9-1) in breast and ovarian cancers. Gene, 576(1, Part 3), 483–491. https://doi.org/10.1016/j.gene.2015.10.059.CrossRefPubMed Pronina, I. V., Loginov, V. I., Burdennyy, A. M., Fridman, M. V., Kazubskaya, T. P., Dmitriev, A. A., et al. (2016). Expression and DNA methylation alterations of seven cancer-associated 3p genes and their predicted regulator miRNAs (miR-129-2, miR-9-1) in breast and ovarian cancers. Gene, 576(1, Part 3), 483–491. https://​doi.​org/​10.​1016/​j.​gene.​2015.​10.​059.CrossRefPubMed
437.
Zurück zum Zitat Gao, L., He, R. Q., Wu, H. Y., Zhang, T. T., Liang, H. W., Ye, Z. H., et al. (2018). Expression signature and role of miR-30d-5p in non-small cell lung cancer: a comprehensive study based on in silico analysis of public databases and in vitro experiments. Cell Physiol Biochem, 50(5), 1964–1987. https://doi.org/10.1159/000494875.CrossRefPubMed Gao, L., He, R. Q., Wu, H. Y., Zhang, T. T., Liang, H. W., Ye, Z. H., et al. (2018). Expression signature and role of miR-30d-5p in non-small cell lung cancer: a comprehensive study based on in silico analysis of public databases and in vitro experiments. Cell Physiol Biochem, 50(5), 1964–1987. https://​doi.​org/​10.​1159/​000494875.CrossRefPubMed
441.
446.
Zurück zum Zitat Ghayad, S. E., Vendrell, J. A., Bieche, I., Spyratos, F., Dumontet, C., Treilleux, I., et al. (2009). Identification of TACC1, NOV, and PTTG1 as new candidate genes associated with endocrine therapy resistance in breast cancer. J Mol Endocrinol, 42(2), 87–103. https://doi.org/10.1677/jme-08-0076.CrossRefPubMed Ghayad, S. E., Vendrell, J. A., Bieche, I., Spyratos, F., Dumontet, C., Treilleux, I., et al. (2009). Identification of TACC1, NOV, and PTTG1 as new candidate genes associated with endocrine therapy resistance in breast cancer. J Mol Endocrinol, 42(2), 87–103. https://​doi.​org/​10.​1677/​jme-08-0076.CrossRefPubMed
472.
474.
480.
494.
Zurück zum Zitat Coates, P. J., Nenutil, R., Holcakova, J., Nekulova, M., Podhorec, J., Svoboda, M., et al. (2018). p63 isoforms in triple-negative breast cancer: ΔNp63 associates with the basal phenotype whereas TAp63 associates with androgen receptor, lack of BRCA mutation, PTEN and improved survival. Virchows Arch, 472(3), 351–359. https://doi.org/10.1007/s00428-018-2324-2.CrossRefPubMed Coates, P. J., Nenutil, R., Holcakova, J., Nekulova, M., Podhorec, J., Svoboda, M., et al. (2018). p63 isoforms in triple-negative breast cancer: ΔNp63 associates with the basal phenotype whereas TAp63 associates with androgen receptor, lack of BRCA mutation, PTEN and improved survival. Virchows Arch, 472(3), 351–359. https://​doi.​org/​10.​1007/​s00428-018-2324-2.CrossRefPubMed
501.
Zurück zum Zitat Schöndorf, T., Göhring, U. J., Becker, M., Hoopmann, M., Schmidt, T., Rützel, S., et al. (2004). High apoptotic index correlates to p21 and p27 expression indicating a favorable outcome of primary breast cancer patients, but lacking prognostic significance in multivariate analysis. Pathobiology, 71(4), 217–222. https://doi.org/10.1159/000078676.CrossRefPubMed Schöndorf, T., Göhring, U. J., Becker, M., Hoopmann, M., Schmidt, T., Rützel, S., et al. (2004). High apoptotic index correlates to p21 and p27 expression indicating a favorable outcome of primary breast cancer patients, but lacking prognostic significance in multivariate analysis. Pathobiology, 71(4), 217–222. https://​doi.​org/​10.​1159/​000078676.CrossRefPubMed
502.
Zurück zum Zitat Kurozumi, S., Inoue, K., Takei, H., Matsumoto, H., Kurosumi, M., Horiguchi, J., et al. (2015). ER, PgR, Ki67, p27(Kip1), and histological grade as predictors of pathological complete response in patients with HER2-positive breast cancer receiving neoadjuvant chemotherapy using taxanes followed by fluorouracil, epirubicin, and cyclophosphamide concomitant with trastuzumab. BMC Cancer, 15, 622. https://doi.org/10.1186/s12885-015-1641-y.CrossRefPubMedPubMedCentral Kurozumi, S., Inoue, K., Takei, H., Matsumoto, H., Kurosumi, M., Horiguchi, J., et al. (2015). ER, PgR, Ki67, p27(Kip1), and histological grade as predictors of pathological complete response in patients with HER2-positive breast cancer receiving neoadjuvant chemotherapy using taxanes followed by fluorouracil, epirubicin, and cyclophosphamide concomitant with trastuzumab. BMC Cancer, 15, 622. https://​doi.​org/​10.​1186/​s12885-015-1641-y.CrossRefPubMedPubMedCentral
505.
Zurück zum Zitat Silberstein, G. B., Van Horn, K., Strickland, P., Roberts Jr., C. T., & Daniel, C. W. (1997). Altered expression of the WT1 Wilms tumor suppressor gene in human breast cancer. Proc Natl Acad Sci U S A, 94(15), 8132–8137.PubMedPubMedCentral Silberstein, G. B., Van Horn, K., Strickland, P., Roberts Jr., C. T., & Daniel, C. W. (1997). Altered expression of the WT1 Wilms tumor suppressor gene in human breast cancer. Proc Natl Acad Sci U S A, 94(15), 8132–8137.PubMedPubMedCentral
506.
Zurück zum Zitat Miyoshi, Y., Ando, A., Egawa, C., Taguchi, T., Tamaki, Y., Tamaki, H., et al. (2002). High expression of Wilms’ tumor suppressor gene predicts poor prognosis in breast cancer patients. Clin Cancer Res, 8(5), 1167–1171.PubMed Miyoshi, Y., Ando, A., Egawa, C., Taguchi, T., Tamaki, Y., Tamaki, H., et al. (2002). High expression of Wilms’ tumor suppressor gene predicts poor prognosis in breast cancer patients. Clin Cancer Res, 8(5), 1167–1171.PubMed
520.
Zurück zum Zitat McCorkle, J. R., Leonard, M. K., Kraner, S. D., Blalock, E. M., Ma, D., Zimmer, S. G., et al. (2014). The metastasis suppressor NME1 regulates expression of genes linked to metastasis and patient outcome in melanoma and breast carcinoma. Cancer Genomics Proteomics, 11(4), 175–194.PubMed McCorkle, J. R., Leonard, M. K., Kraner, S. D., Blalock, E. M., Ma, D., Zimmer, S. G., et al. (2014). The metastasis suppressor NME1 regulates expression of genes linked to metastasis and patient outcome in melanoma and breast carcinoma. Cancer Genomics Proteomics, 11(4), 175–194.PubMed
530.
Zurück zum Zitat Rubin, G. L., Zhao, Y., Kalus, A. M., & Simpson, E. R. (2000). Peroxisome proliferator-activated receptor gamma ligands inhibit estrogen biosynthesis in human breast adipose tissue: possible implications for breast cancer therapy. Cancer Res, 60(6), 1604–1608.PubMed Rubin, G. L., Zhao, Y., Kalus, A. M., & Simpson, E. R. (2000). Peroxisome proliferator-activated receptor gamma ligands inhibit estrogen biosynthesis in human breast adipose tissue: possible implications for breast cancer therapy. Cancer Res, 60(6), 1604–1608.PubMed
531.
Zurück zum Zitat Qin, C., Burghardt, R., Smith, R., Wormke, M., Stewart, J., & Safe, S. (2003). Peroxisome proliferator-activated receptor gamma agonists induce proteasome-dependent degradation of cyclin D1 and estrogen receptor alpha in MCF-7 breast cancer cells. Cancer Res, 63(5), 958–964.PubMed Qin, C., Burghardt, R., Smith, R., Wormke, M., Stewart, J., & Safe, S. (2003). Peroxisome proliferator-activated receptor gamma agonists induce proteasome-dependent degradation of cyclin D1 and estrogen receptor alpha in MCF-7 breast cancer cells. Cancer Res, 63(5), 958–964.PubMed
532.
Zurück zum Zitat Jiang, W. G., Douglas-Jones, A., & Mansel, R. E. (2003). Expression of peroxisome-proliferator activated receptor-gamma (PPARgamma) and the PPARgamma co-activator, PGC-1, in human breast cancer correlates with clinical outcomes. Int J Cancer, 106(5), 752–757.PubMed Jiang, W. G., Douglas-Jones, A., & Mansel, R. E. (2003). Expression of peroxisome-proliferator activated receptor-gamma (PPARgamma) and the PPARgamma co-activator, PGC-1, in human breast cancer correlates with clinical outcomes. Int J Cancer, 106(5), 752–757.PubMed
543.
546.
551.
Zurück zum Zitat Minn, A. J., Gupta, G. P., Siegel, P. M., Bos, P. D., Shu, W., Giri, D. D., et al. (2005). Genes that mediate breast cancer metastasis to lung. Nature, 436(7050), 518–524.PubMedPubMedCentral Minn, A. J., Gupta, G. P., Siegel, P. M., Bos, P. D., Shu, W., Giri, D. D., et al. (2005). Genes that mediate breast cancer metastasis to lung. Nature, 436(7050), 518–524.PubMedPubMedCentral
575.
Zurück zum Zitat Ghellal, A., Li, C., Hayes, M., Byrne, G., Bundred, N., & Kumar, S. (2000). Prognostic significance of TGF beta 1 and TGF beta 3 in human breast carcinoma. Anticancer Res, 20(6b), 4413–4418.PubMed Ghellal, A., Li, C., Hayes, M., Byrne, G., Bundred, N., & Kumar, S. (2000). Prognostic significance of TGF beta 1 and TGF beta 3 in human breast carcinoma. Anticancer Res, 20(6b), 4413–4418.PubMed
587.
Zurück zum Zitat Lo, T. L., Yusoff, P., Fong, C. W., Guo, K., McCaw, B. J., Phillips, W. A., et al. (2004). The ras/mitogen-activated protein kinase pathway inhibitor and likely tumor suppressor proteins, sprouty 1 and sprouty 2 are deregulated in breast cancer. Cancer Res, 64(17), 6127–6136.PubMed Lo, T. L., Yusoff, P., Fong, C. W., Guo, K., McCaw, B. J., Phillips, W. A., et al. (2004). The ras/mitogen-activated protein kinase pathway inhibitor and likely tumor suppressor proteins, sprouty 1 and sprouty 2 are deregulated in breast cancer. Cancer Res, 64(17), 6127–6136.PubMed
593.
Zurück zum Zitat Zhang, P., Hong, H., Sun, X., Jiang, H., Ma, S., Zhao, S., et al. (2016). MicroRNA-10b regulates epithelial-mesenchymal transition by modulating KLF4/Notch1/E-cadherin in cisplatin-resistant nasopharyngeal carcinoma cells. Am J Cancer Res, 6(2), 141–156.PubMedPubMedCentral Zhang, P., Hong, H., Sun, X., Jiang, H., Ma, S., Zhao, S., et al. (2016). MicroRNA-10b regulates epithelial-mesenchymal transition by modulating KLF4/Notch1/E-cadherin in cisplatin-resistant nasopharyngeal carcinoma cells. Am J Cancer Res, 6(2), 141–156.PubMedPubMedCentral
598.
Zurück zum Zitat Reedijk, M., Odorcic, S., Chang, L., Zhang, H., Miller, N., McCready, D. R., et al. (2005). High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res, 65(18), 8530–8537.PubMed Reedijk, M., Odorcic, S., Chang, L., Zhang, H., Miller, N., McCready, D. R., et al. (2005). High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res, 65(18), 8530–8537.PubMed
606.
Zurück zum Zitat Lejeune, S., Huguet, E. L., Hamby, A., Poulsom, R., & Harris, A. L. (1995). Wnt5a cloning, expression, and up-regulation in human primary breast cancers. Clin Cancer Res, 1(2), 215.PubMed Lejeune, S., Huguet, E. L., Hamby, A., Poulsom, R., & Harris, A. L. (1995). Wnt5a cloning, expression, and up-regulation in human primary breast cancers. Clin Cancer Res, 1(2), 215.PubMed
607.
Zurück zum Zitat Leris, A. C. A., Roberts, T. R., Jiang, W. G., Newbold, R. F., & Mokbel, K. (2005). WNT5A expression in human breast cancer. Anticancer Res, 25(2A), 731–734.PubMed Leris, A. C. A., Roberts, T. R., Jiang, W. G., Newbold, R. F., & Mokbel, K. (2005). WNT5A expression in human breast cancer. Anticancer Res, 25(2A), 731–734.PubMed
608.
Zurück zum Zitat Dejmek, J., Leandersson, K., Manjer, J., Bjartell, A., Emdin, S. O., Vogel, W. F., et al. (2005). Expression and signaling activity of Wnt-5a/discoidin domain receptor-1 and Syk plays distinct but decisive roles in breast cancer patient survival. Clin Cancer Res, 11(2), 520.PubMed Dejmek, J., Leandersson, K., Manjer, J., Bjartell, A., Emdin, S. O., Vogel, W. F., et al. (2005). Expression and signaling activity of Wnt-5a/discoidin domain receptor-1 and Syk plays distinct but decisive roles in breast cancer patient survival. Clin Cancer Res, 11(2), 520.PubMed
617.
Zurück zum Zitat Linderholm, B. K., Lindahl, T., Holmberg, L., Klaar, S., Lennerstrand, J., Henriksson, R., et al. (2001). The expression of vascular endothelial growth factor correlates with mutant p53 and poor prognosis in human breast cancer. Cancer Res, 61(5), 2256–2260.PubMed Linderholm, B. K., Lindahl, T., Holmberg, L., Klaar, S., Lennerstrand, J., Henriksson, R., et al. (2001). The expression of vascular endothelial growth factor correlates with mutant p53 and poor prognosis in human breast cancer. Cancer Res, 61(5), 2256–2260.PubMed
618.
Zurück zum Zitat Linderholm, B. K., Hellborg, H., Johansson, U., Elmberger, G., Skoog, L., Lehtiö, J., et al. (2009). Significantly higher levels of vascular endothelial growth factor (VEGF) and shorter survival times for patients with primary operable triple-negative breast cancer. Ann Oncol, 20(10), 1639–1646. https://doi.org/10.1093/annonc/mdp062.CrossRefPubMed Linderholm, B. K., Hellborg, H., Johansson, U., Elmberger, G., Skoog, L., Lehtiö, J., et al. (2009). Significantly higher levels of vascular endothelial growth factor (VEGF) and shorter survival times for patients with primary operable triple-negative breast cancer. Ann Oncol, 20(10), 1639–1646. https://​doi.​org/​10.​1093/​annonc/​mdp062.CrossRefPubMed
620.
Zurück zum Zitat Yoo, J.-O., Kwak, S.-Y., An, H.-J., Bae, I.-H., Park, M.-J., & Han, Y.-H. (2016). miR-181b-3p promotes epithelial–mesenchymal transition in breast cancer cells through Snail stabilization by directly targeting YWHAG. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1863(7, Part A), 1601–1611. https://doi.org/10.1016/j.bbamcr.2016.04.016.CrossRef Yoo, J.-O., Kwak, S.-Y., An, H.-J., Bae, I.-H., Park, M.-J., & Han, Y.-H. (2016). miR-181b-3p promotes epithelial–mesenchymal transition in breast cancer cells through Snail stabilization by directly targeting YWHAG. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1863(7, Part A), 1601–1611. https://​doi.​org/​10.​1016/​j.​bbamcr.​2016.​04.​016.CrossRef
631.
Zurück zum Zitat Riaz, M., Sieuwerts, A. M., Look, M. P., Timmermans, M. A., Smid, M., Foekens, J. A., et al. (2012). High TWIST1 mRNA expression is associated with poor prognosis in lymph node-negative and estrogen receptor-positive human breast cancer and is co-expressed with stromal as well as ECM related genes. Breast Cancer Res, 14(5), R123. https://doi.org/10.1186/bcr3317.CrossRefPubMedPubMedCentral Riaz, M., Sieuwerts, A. M., Look, M. P., Timmermans, M. A., Smid, M., Foekens, J. A., et al. (2012). High TWIST1 mRNA expression is associated with poor prognosis in lymph node-negative and estrogen receptor-positive human breast cancer and is co-expressed with stromal as well as ECM related genes. Breast Cancer Res, 14(5), R123. https://​doi.​org/​10.​1186/​bcr3317.CrossRefPubMedPubMedCentral
632.
Zurück zum Zitat Martin, T. A., Goyal, A., Watkins, G., & Jiang, W. G. (2005). Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer. Ann Surg Oncol, 12(6), 488–496.PubMed Martin, T. A., Goyal, A., Watkins, G., & Jiang, W. G. (2005). Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer. Ann Surg Oncol, 12(6), 488–496.PubMed
636.
Zurück zum Zitat Martinez-Estrada, O. M., Culleres, A., Soriano, F. X., Peinado, H., Bolos, V., Martinez, F. O., et al. (2005). The transcription factors Slug and Snail act as repressors of Claudin-1 expression in epithelial cells. Biochem J, 394, 449–457. Martinez-Estrada, O. M., Culleres, A., Soriano, F. X., Peinado, H., Bolos, V., Martinez, F. O., et al. (2005). The transcription factors Slug and Snail act as repressors of Claudin-1 expression in epithelial cells. Biochem J, 394, 449–457.
637.
Zurück zum Zitat Dong, C., Yuan, T., Wu, Y., Wang, Y., Fan, T. W. M., Miriyala, S., et al. (2013). Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell, 23(3), 316–331.PubMedPubMedCentral Dong, C., Yuan, T., Wu, Y., Wang, Y., Fan, T. W. M., Miriyala, S., et al. (2013). Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell, 23(3), 316–331.PubMedPubMedCentral
643.
647.
Zurück zum Zitat Jin, C., Rajabi, H., & Kufe, D. (2010). miR-1226 targets expression of the mucin 1 oncoprotein and induces cell death. Int J Oncol, 37(1), 61–69.PubMed Jin, C., Rajabi, H., & Kufe, D. (2010). miR-1226 targets expression of the mucin 1 oncoprotein and induces cell death. Int J Oncol, 37(1), 61–69.PubMed
648.
Zurück zum Zitat Li, X. Y., Zhou, L. Y., Luo, H., Zhu, Q., Zuo, L., Liu, G. Y., et al. (2019). The long noncoding RNA MIR210HG promotes tumor metastasis by acting as a ceRNA of miR-1226-3p to regulate mucin-1c expression in invasive breast cancer. Aging (Albany NY), 11(15), 5646–5665. https://doi.org/10.18632/aging.102149.CrossRef Li, X. Y., Zhou, L. Y., Luo, H., Zhu, Q., Zuo, L., Liu, G. Y., et al. (2019). The long noncoding RNA MIR210HG promotes tumor metastasis by acting as a ceRNA of miR-1226-3p to regulate mucin-1c expression in invasive breast cancer. Aging (Albany NY), 11(15), 5646–5665. https://​doi.​org/​10.​18632/​aging.​102149.CrossRef
686.
Zurück zum Zitat Croset, M., Pantano, F., Kan, C. W. S., Bonnelye, E., Descotes, F., Alix-Panabières, C., et al. (2018). MicroRNA-30 family members inhibit breast cancer invasion, osteomimicry, and bone destruction by directly targeting multiple bone metastasis-associated genes. [10.1158/0008-5472.CAN-17-3058]. Cancer Res, 78(18), 5259–5273.PubMed Croset, M., Pantano, F., Kan, C. W. S., Bonnelye, E., Descotes, F., Alix-Panabières, C., et al. (2018). MicroRNA-30 family members inhibit breast cancer invasion, osteomimicry, and bone destruction by directly targeting multiple bone metastasis-associated genes. [10.1158/0008-5472.CAN-17-3058]. Cancer Res, 78(18), 5259–5273.PubMed
687.
Zurück zum Zitat Akaogi, K., Nakajima, Y., Ito, I., Kawasaki, S., Oie, S. h., Murayama, A., et al. (2009). KLF4 suppresses estrogen-dependent breast cancer growth by inhibiting the transcriptional activity of ER[alpha]. Oncogene, 28(32), 2894–2902.PubMed Akaogi, K., Nakajima, Y., Ito, I., Kawasaki, S., Oie, S. h., Murayama, A., et al. (2009). KLF4 suppresses estrogen-dependent breast cancer growth by inhibiting the transcriptional activity of ER[alpha]. Oncogene, 28(32), 2894–2902.PubMed
688.
Zurück zum Zitat Quintana, A., Liu, F., O'Rourke, J., & Ness, S. (2011). Identification and regulation of c-Myb target genes in MCF-7 cells. BMC Cancer, 11(1), 30.PubMedPubMedCentral Quintana, A., Liu, F., O'Rourke, J., & Ness, S. (2011). Identification and regulation of c-Myb target genes in MCF-7 cells. BMC Cancer, 11(1), 30.PubMedPubMedCentral
689.
Zurück zum Zitat Hilakivi-Clarke, L., Wärri, A., Bouker, K. B., Zhang, X., Cook, K. L., Jin, L., et al. (2017). Effects of in utero exposure to ethinyl estradiol on tamoxifen resistance and breast cancer recurrence in a preclinical model. JNCI: Journal of the National Cancer Institute, 109(1), 1–11. https://doi.org/10.1093/jnci/djw188.CrossRef Hilakivi-Clarke, L., Wärri, A., Bouker, K. B., Zhang, X., Cook, K. L., Jin, L., et al. (2017). Effects of in utero exposure to ethinyl estradiol on tamoxifen resistance and breast cancer recurrence in a preclinical model. JNCI: Journal of the National Cancer Institute, 109(1), 1–11. https://​doi.​org/​10.​1093/​jnci/​djw188.CrossRef
691.
Zurück zum Zitat Vafaizadeh, V., Graab, U., Darvishi, T., Machado, R., & Groner, B. (2012). Transforming growth factor beta signaling regulates the invasiveness of normal mammary epithelial cells and the metastasis formation of tumor cells. Horm Mol Biol Clin Invest, 10(1), 227–239. https://doi.org/10.1515/hmbci-2012-0016.CrossRef Vafaizadeh, V., Graab, U., Darvishi, T., Machado, R., & Groner, B. (2012). Transforming growth factor beta signaling regulates the invasiveness of normal mammary epithelial cells and the metastasis formation of tumor cells. Horm Mol Biol Clin Invest, 10(1), 227–239. https://​doi.​org/​10.​1515/​hmbci-2012-0016.CrossRef
702.
Zurück zum Zitat Ma, W., Xiao, G. G., Mao, J., Lu, Y., Song, B., Wang, L., et al. (2015). Dysregulation of the miR-34a-SIRT1 axis inhibits breast cancer stemness. Oncotarget, 6(12), 10432–10444 Ma, W., Xiao, G. G., Mao, J., Lu, Y., Song, B., Wang, L., et al. (2015). Dysregulation of the miR-34a-SIRT1 axis inhibits breast cancer stemness. Oncotarget, 6(12), 10432–10444
708.
Zurück zum Zitat de Kruijf, E. M., van Nes, J. G., van de Velde, C. J., Putter, H., Smit, V. T., Liefers, G. J., et al. (2011). Tumor-stroma ratio in the primary tumor is a prognostic factor in early breast cancer patients, especially in triple-negative carcinoma patients. Breast Cancer Res Treat, 125(3), 687–696. https://doi.org/10.1007/s10549-010-0855-6.CrossRefPubMed de Kruijf, E. M., van Nes, J. G., van de Velde, C. J., Putter, H., Smit, V. T., Liefers, G. J., et al. (2011). Tumor-stroma ratio in the primary tumor is a prognostic factor in early breast cancer patients, especially in triple-negative carcinoma patients. Breast Cancer Res Treat, 125(3), 687–696. https://​doi.​org/​10.​1007/​s10549-010-0855-6.CrossRefPubMed
716.
Zurück zum Zitat Reizner, N., Maor, S., Sarfstein, R., Abramovitch, S., Welshons, W. V., Curran, E. M., et al. (2005). The WT1 Wilms’ tumor suppressor gene product interacts with estrogen receptor-{alpha} and regulates IGF-I receptor gene transcription in breast cancer cells. J Mol Endocrinol, 35(1), 135–144.PubMed Reizner, N., Maor, S., Sarfstein, R., Abramovitch, S., Welshons, W. V., Curran, E. M., et al. (2005). The WT1 Wilms’ tumor suppressor gene product interacts with estrogen receptor-{alpha} and regulates IGF-I receptor gene transcription in breast cancer cells. J Mol Endocrinol, 35(1), 135–144.PubMed
718.
Zurück zum Zitat Markiewicz, A., Welnicka-Jaskiewicz, M., Seroczynska, B., Skokowski, J., Majewska, H., Szade, J., et al. (2014). Epithelial-mesenchymal transition markers in lymph node metastases and primary breast tumors - relation to dissemination and proliferation. Am J Transl Res, 6(6), 793–808.PubMedPubMedCentral Markiewicz, A., Welnicka-Jaskiewicz, M., Seroczynska, B., Skokowski, J., Majewska, H., Szade, J., et al. (2014). Epithelial-mesenchymal transition markers in lymph node metastases and primary breast tumors - relation to dissemination and proliferation. Am J Transl Res, 6(6), 793–808.PubMedPubMedCentral
719.
Zurück zum Zitat Evans, M. F., Vacek, P. M., Sprague, B. L., Stein, G. S., Stein, J. L., & Weaver, D. L. (2020). Microarray and RNA in situ hybridization assay for recurrence risk markers of breast carcinoma and ductal carcinoma in situ: Evidence supporting the use of diverse pathways panels. J Cell Biochem, 121(2), 1736–1746. https://doi.org/10.1002/jcb.29409.CrossRefPubMed Evans, M. F., Vacek, P. M., Sprague, B. L., Stein, G. S., Stein, J. L., & Weaver, D. L. (2020). Microarray and RNA in situ hybridization assay for recurrence risk markers of breast carcinoma and ductal carcinoma in situ: Evidence supporting the use of diverse pathways panels. J Cell Biochem, 121(2), 1736–1746. https://​doi.​org/​10.​1002/​jcb.​29409.CrossRefPubMed
723.
728.
Zurück zum Zitat Gendler, S. J. (2001). MUC1, the renaissance molecule. J Mammary Gland Biol Neoplasia, 6(3), 339–353.PubMed Gendler, S. J. (2001). MUC1, the renaissance molecule. J Mammary Gland Biol Neoplasia, 6(3), 339–353.PubMed
738.
Zurück zum Zitat Wang, J., Liang, S., & Duan, X. (2019). Molecular mechanism of miR-153 inhibiting migration, invasion and epithelial-mesenchymal transition of breast cancer by regulating transforming growth factor beta (TGF-β) signaling pathway. J Cell Biochem, 120(6), 9539–9546. https://doi.org/10.1002/jcb.28230.CrossRefPubMed Wang, J., Liang, S., & Duan, X. (2019). Molecular mechanism of miR-153 inhibiting migration, invasion and epithelial-mesenchymal transition of breast cancer by regulating transforming growth factor beta (TGF-β) signaling pathway. J Cell Biochem, 120(6), 9539–9546. https://​doi.​org/​10.​1002/​jcb.​28230.CrossRefPubMed
739.
Zurück zum Zitat Keklikoglou, I., Koerner, C., Schmidt, C., Zhang, J. D., Heckmann, D., Shavinskaya, A., et al. (2012). MicroRNA-520/373 family functions as a tumor suppressor in estrogen receptor negative breast cancer by targeting NF-κB and TGF-β signaling pathways. Oncogene, 31(37), 4150–4163. https://doi.org/10.1038/onc.2011.571.CrossRefPubMed Keklikoglou, I., Koerner, C., Schmidt, C., Zhang, J. D., Heckmann, D., Shavinskaya, A., et al. (2012). MicroRNA-520/373 family functions as a tumor suppressor in estrogen receptor negative breast cancer by targeting NF-κB and TGF-β signaling pathways. Oncogene, 31(37), 4150–4163. https://​doi.​org/​10.​1038/​onc.​2011.​571.CrossRefPubMed
746.
Metadaten
Titel
Regulation of breast cancer metastasis signaling by miRNAs
verfasst von
Belinda J. Petri
Carolyn M. Klinge
Publikationsdatum
23.06.2020
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 3/2020
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-020-09905-7

Weitere Artikel der Ausgabe 3/2020

Cancer and Metastasis Reviews 3/2020 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.