Skip to main content
Erschienen in: Brain Structure and Function 6/2004

01.09.2004 | Original Article

Regulation of external genitalia development by concerted actions of FGF ligands and FGF receptors

verfasst von: Yoshihiko Satoh, Ryuma Haraguchi, Tracy J. Wright, Suzanne L. Mansour, Juha Partanen, Mohammad K. Hajihosseini, Veraragavan P. Eswarakumar, Peter Lonai, Gen Yamada

Erschienen in: Brain Structure and Function | Ausgabe 6/2004

Einloggen, um Zugang zu erhalten

Abstract

Members of the fibroblast growth factor (FGF) family play diverse roles during the development and patterning of various organs. In human and mice, 22 FGFs and four receptors derived from several splice variants are present. Redundant expression and function of FGF genes in organogenesis have been reported, but their roles in embryonic external genitalia, genital tubercle (GT), development have not been studied in detail. To address the role of FGF during external genitalia development, we have analyzed the expression of FGF genes (Fgf8, 9, 10) and receptor genes (Fgfr1, r2IIIb, r2IIIc) in GT of mice. Furthermore, Fgf10 and Fgfr2IIIb mutant mice were analyzed to elucidate their roles in embryonic external genitalia development. Fgfr2IIIb was expressed in urethral plate epithelium during GT development. Fgfr2IIIb mutant mice display urethral dysmorphogenesis. Marker gene analysis for urethral plate and bilateral mesenchymal formation suggests the existence of epithelial-mesenchymal interaction during urethral morphogenesis. Therefore, FGF10/FGFR2IIIb signals seem to constitute a developmental cascade for such morphogenesis.
Literatur
Zurück zum Zitat Arman E, Haffner-Krausz R, Gorivodsky M, Lonai P (1999) Fgfr2 is required for limb outgrowth and lung-branching morphogenesis. Proc Natl Acad Sci USA 96:11895–11899CrossRefPubMed Arman E, Haffner-Krausz R, Gorivodsky M, Lonai P (1999) Fgfr2 is required for limb outgrowth and lung-branching morphogenesis. Proc Natl Acad Sci USA 96:11895–11899CrossRefPubMed
Zurück zum Zitat Barlow AJ, Francis-West PH (1997) Ectopic application of recombinant BMP-2 and BMP-4 can change patterning of developing chick facial primordia. Development 124:391–398PubMed Barlow AJ, Francis-West PH (1997) Ectopic application of recombinant BMP-2 and BMP-4 can change patterning of developing chick facial primordia. Development 124:391–398PubMed
Zurück zum Zitat Baskin LS, Liu W, Bastacky J, Yucel S (2004) Anatomical studies of the mouse genital tubercle. Adv Exp Med Biol 545:103–121PubMed Baskin LS, Liu W, Bastacky J, Yucel S (2004) Anatomical studies of the mouse genital tubercle. Adv Exp Med Biol 545:103–121PubMed
Zurück zum Zitat Dassule HR, McMahon AP (1998) Analysis of epithelial-mesenchymal interactions in the initial morphogenesis of the mammalian tooth. Dev Biol 202:215–227CrossRefPubMed Dassule HR, McMahon AP (1998) Analysis of epithelial-mesenchymal interactions in the initial morphogenesis of the mammalian tooth. Dev Biol 202:215–227CrossRefPubMed
Zurück zum Zitat De Moerlooze L, Spencer-Dene B, Revest J, Hajihosseini M, Rosewell I, Dickson C (2000) An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development 127:483–492PubMed De Moerlooze L, Spencer-Dene B, Revest J, Hajihosseini M, Rosewell I, Dickson C (2000) An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development 127:483–492PubMed
Zurück zum Zitat Dolle P, Izpisua-Belmonte JC, Brown JM, Tickle C, Duboule D (1991) HOX-4 genes and the morphogenesis of mammalian genitalia. Genes Dev 5:1767–7PubMed Dolle P, Izpisua-Belmonte JC, Brown JM, Tickle C, Duboule D (1991) HOX-4 genes and the morphogenesis of mammalian genitalia. Genes Dev 5:1767–7PubMed
Zurück zum Zitat Dravis C, Yokoyama N, Chumley MJ, Cowan CA, Silvany RE, Shay J, Baker LA, Henkemeyer M (2004) Bidirectional signaling mediated by ephrin-B2 and EphB2 controls urorectal development. Dev Biol 271:272–290CrossRefPubMed Dravis C, Yokoyama N, Chumley MJ, Cowan CA, Silvany RE, Shay J, Baker LA, Henkemeyer M (2004) Bidirectional signaling mediated by ephrin-B2 and EphB2 controls urorectal development. Dev Biol 271:272–290CrossRefPubMed
Zurück zum Zitat Eswarakumar VP, Monsonego-Ornan E, Pines M, Antonopoulou I, Morriss-Kay GM, Lonai P (2002) The IIIc alternative of Fgfr2 is a positive regulator of bone formation. Development 129:3783–3793PubMed Eswarakumar VP, Monsonego-Ornan E, Pines M, Antonopoulou I, Morriss-Kay GM, Lonai P (2002) The IIIc alternative of Fgfr2 is a positive regulator of bone formation. Development 129:3783–3793PubMed
Zurück zum Zitat Ganan Y, Macias D, Duterque-Coquillaud M, Ros MA, Hurle JM (1996) Role of TGF beta s and BMPs as signals controlling the position of the digits and the areas of interdigital cell death in the developing chick limb autopod. Development 122:2349–2357PubMed Ganan Y, Macias D, Duterque-Coquillaud M, Ros MA, Hurle JM (1996) Role of TGF beta s and BMPs as signals controlling the position of the digits and the areas of interdigital cell death in the developing chick limb autopod. Development 122:2349–2357PubMed
Zurück zum Zitat Grothe C, Brand-Saberi B, Wilting J, Christ B (1996) Fibroblast growth factor receptor 1 in skeletal and heart muscle cells: expression during early avian development and regulation after notochord transplantation. Dev Dyn 206:310–317CrossRefPubMed Grothe C, Brand-Saberi B, Wilting J, Christ B (1996) Fibroblast growth factor receptor 1 in skeletal and heart muscle cells: expression during early avian development and regulation after notochord transplantation. Dev Dyn 206:310–317CrossRefPubMed
Zurück zum Zitat Hajihosseini MK, Lalioti MD, Arthaud S, Burgar HR, Brown JM, Twigg SR, Wilkie AO, Heath JK (2004) Skeletal development is regulated by fibroblast growth factor receptor 1 signalling dynamics. Development 131:325–335CrossRefPubMed Hajihosseini MK, Lalioti MD, Arthaud S, Burgar HR, Brown JM, Twigg SR, Wilkie AO, Heath JK (2004) Skeletal development is regulated by fibroblast growth factor receptor 1 signalling dynamics. Development 131:325–335CrossRefPubMed
Zurück zum Zitat Haraguchi R, Mo R, Hui C, Motoyama J, Makino S, Shiroishi T, Gaffield W, Yamada G (2001) Unique functions of Sonic hedgehog signaling during external genitalia development. Development 128:4241–4250PubMed Haraguchi R, Mo R, Hui C, Motoyama J, Makino S, Shiroishi T, Gaffield W, Yamada G (2001) Unique functions of Sonic hedgehog signaling during external genitalia development. Development 128:4241–4250PubMed
Zurück zum Zitat Haraguchi R, Suzuki K, Murakami R, Sakai M, Kamikawa M, Kengaku M, Sekine K, Kawano H, Kato S, Ueno N, Yamada G (2000) Molecular analysis of external genitalia formation: the role of fibroblast growth factor (Fgf) genes during genital tubercle formation. Development 127:2471–2479PubMed Haraguchi R, Suzuki K, Murakami R, Sakai M, Kamikawa M, Kengaku M, Sekine K, Kawano H, Kato S, Ueno N, Yamada G (2000) Molecular analysis of external genitalia formation: the role of fibroblast growth factor (Fgf) genes during genital tubercle formation. Development 127:2471–2479PubMed
Zurück zum Zitat Hsu TY, Chang SY, Wang TJ, Ou CY, Chen ZH, Hsu PH (2001) Prenatal sonographic appearance of Beare-Stevenson cutis gyrata syndrome: two- and three-dimensional ultrasonographic findings. Prenat Diagn 21:665–667CrossRefPubMed Hsu TY, Chang SY, Wang TJ, Ou CY, Chen ZH, Hsu PH (2001) Prenatal sonographic appearance of Beare-Stevenson cutis gyrata syndrome: two- and three-dimensional ultrasonographic findings. Prenat Diagn 21:665–667CrossRefPubMed
Zurück zum Zitat Johnson RL, Tabin CJ (1997) Molecular models for vertebrate limb development. Cell 90:979–990CrossRefPubMed Johnson RL, Tabin CJ (1997) Molecular models for vertebrate limb development. Cell 90:979–990CrossRefPubMed
Zurück zum Zitat Kawakami Y, Capdevila J, Buscher D, Itoh T, Rodriguez Esteban C, Izpisua Belmonte JC (2001) WNT signals control FGF-dependent limb initiation and AER induction in the chick embryo. Cell 104:891–900CrossRefPubMed Kawakami Y, Capdevila J, Buscher D, Itoh T, Rodriguez Esteban C, Izpisua Belmonte JC (2001) WNT signals control FGF-dependent limb initiation and AER induction in the chick embryo. Cell 104:891–900CrossRefPubMed
Zurück zum Zitat Kurzrock EA, Baskin LS, Li Y, Cunha GR (1999) Epithelial-mesenchymal interactions in development of the mouse fetal genital tubercle. Cells Tissues Organs 164:125–130CrossRefPubMed Kurzrock EA, Baskin LS, Li Y, Cunha GR (1999) Epithelial-mesenchymal interactions in development of the mouse fetal genital tubercle. Cells Tissues Organs 164:125–130CrossRefPubMed
Zurück zum Zitat Macatee TL, Hammond BP, Arenkiel BR, Francis L, Frank DU, Moon AM (2003) Ablation of specific expression domains reveals discrete functions of ectoderm- and endoderm-derived FGF8 during cardiovascular and pharyngeal development. Development 130:6361–6374CrossRefPubMed Macatee TL, Hammond BP, Arenkiel BR, Francis L, Frank DU, Moon AM (2003) Ablation of specific expression domains reveals discrete functions of ectoderm- and endoderm-derived FGF8 during cardiovascular and pharyngeal development. Development 130:6361–6374CrossRefPubMed
Zurück zum Zitat Min H, Danilenko DM, Scully SA, Bolon B, Ring BD, Tarpley JE, DeRose M, Simonet WS (1998) Fgf-10 is required for both limb and lung development and exhibits striking functional similarity to Drosophila branchless. Genes Dev 12:3156–3161PubMed Min H, Danilenko DM, Scully SA, Bolon B, Ring BD, Tarpley JE, DeRose M, Simonet WS (1998) Fgf-10 is required for both limb and lung development and exhibits striking functional similarity to Drosophila branchless. Genes Dev 12:3156–3161PubMed
Zurück zum Zitat Morgan EA, Nguyen SB, Scott V, Stadler HS (2003) Loss of Bmp7 and Fgf8 signaling in Hoxa13-mutant mice causes hypospadia. Development 130:3095–3109CrossRefPubMed Morgan EA, Nguyen SB, Scott V, Stadler HS (2003) Loss of Bmp7 and Fgf8 signaling in Hoxa13-mutant mice causes hypospadia. Development 130:3095–3109CrossRefPubMed
Zurück zum Zitat Murakami R, Mizuno T (1986) Proximal-distal sequence of development of the skeletal tissues in the penis of rat and the inductive effect of epithelium. J Embryol Exp Morphol 92:133–143PubMed Murakami R, Mizuno T (1986) Proximal-distal sequence of development of the skeletal tissues in the penis of rat and the inductive effect of epithelium. J Embryol Exp Morphol 92:133–143PubMed
Zurück zum Zitat Naiche LA, Papaioannou VE (2003) Loss of Tbx4 blocks hindlimb development and affects vascularization and fusion of the allantois. Development 130:2681–2693CrossRefPubMed Naiche LA, Papaioannou VE (2003) Loss of Tbx4 blocks hindlimb development and affects vascularization and fusion of the allantois. Development 130:2681–2693CrossRefPubMed
Zurück zum Zitat Ng JK, Kawakami Y, Buscher D, Raya A, Itoh T, Koth CM, Rodriguez Esteban C, Rodriguez-Leon J, Garrity DM, Fishman MC, Izpisua Belmonte JC (2002) The limb identity gene Tbx5 promotes limb initiation by interacting with Wnt2b and Fgf10. Development 129:5161–5170PubMed Ng JK, Kawakami Y, Buscher D, Raya A, Itoh T, Koth CM, Rodriguez Esteban C, Rodriguez-Leon J, Garrity DM, Fishman MC, Izpisua Belmonte JC (2002) The limb identity gene Tbx5 promotes limb initiation by interacting with Wnt2b and Fgf10. Development 129:5161–5170PubMed
Zurück zum Zitat Ohuchi H, Hori Y, Yamasaki M, Harada H, Sekine K, Kato S, Itoh N (2000) FGF10 acts as a major ligand for FGF receptor 2 IIIb in mouse multi-organ development. Biochem Biophys Res Commun 277:643–649CrossRefPubMed Ohuchi H, Hori Y, Yamasaki M, Harada H, Sekine K, Kato S, Itoh N (2000) FGF10 acts as a major ligand for FGF receptor 2 IIIb in mouse multi-organ development. Biochem Biophys Res Commun 277:643–649CrossRefPubMed
Zurück zum Zitat Ohuchi H, Nakagawa T, Yamamoto A, Araga A, Ohata T, Ishimaru Y, Yoshioka H, Kuwana T, Nohno T, Yamasaki M, Itoh N, Noji S (1997) The mesenchymal factor, FGF10, initiates and maintains the outgrowth of the chick limb bud through interaction with FGF8, an apical ectodermal factor. Development 124:2235–2244PubMed Ohuchi H, Nakagawa T, Yamamoto A, Araga A, Ohata T, Ishimaru Y, Yoshioka H, Kuwana T, Nohno T, Yamasaki M, Itoh N, Noji S (1997) The mesenchymal factor, FGF10, initiates and maintains the outgrowth of the chick limb bud through interaction with FGF8, an apical ectodermal factor. Development 124:2235–2244PubMed
Zurück zum Zitat Ornitz DM, Xu J, Colvin JS, McEwen DG, MacArthur CA, Coulier F, Gao G, Goldfarb M (1996) Receptor specificity of the fibroblast growth factor family. J Biol Chem 271:15292–15297CrossRefPubMed Ornitz DM, Xu J, Colvin JS, McEwen DG, MacArthur CA, Coulier F, Gao G, Goldfarb M (1996) Receptor specificity of the fibroblast growth factor family. J Biol Chem 271:15292–15297CrossRefPubMed
Zurück zum Zitat Orr-Urtreger A, Givol D, Yayon A, Yarden Y, Lonai P (1991) Developmental expression of two murine fibroblast growth factor receptors, flg and bek. Development 113:1419-1434PubMed Orr-Urtreger A, Givol D, Yayon A, Yarden Y, Lonai P (1991) Developmental expression of two murine fibroblast growth factor receptors, flg and bek. Development 113:1419-1434PubMed
Zurück zum Zitat Othman-Hassan K, Patel K, Papoutsi M, Rodriguez-Niedenfuhr M, Christ B, Wilting J (2001) Arterial identity of endothelial cells is controlled by local cues. Dev Biol 237:398–409CrossRefPubMed Othman-Hassan K, Patel K, Papoutsi M, Rodriguez-Niedenfuhr M, Christ B, Wilting J (2001) Arterial identity of endothelial cells is controlled by local cues. Dev Biol 237:398–409CrossRefPubMed
Zurück zum Zitat Partanen J, Schwartz L, Rossant J (1998) Opposite phenotypes of hypomorphic and Y766 phosphorylation site mutations reveal a function for Fgfr1 in anteroposterior patterning of mouse embryos. Genes Dev 12:2332–2344PubMed Partanen J, Schwartz L, Rossant J (1998) Opposite phenotypes of hypomorphic and Y766 phosphorylation site mutations reveal a function for Fgfr1 in anteroposterior patterning of mouse embryos. Genes Dev 12:2332–2344PubMed
Zurück zum Zitat Perriton CL, Powles N, Chiang C, Maconochie MK, Cohn MJ (2002) Sonic hedgehog signaling from the urethral epithelium controls external genital development. Dev Biol 247:26–46CrossRefPubMed Perriton CL, Powles N, Chiang C, Maconochie MK, Cohn MJ (2002) Sonic hedgehog signaling from the urethral epithelium controls external genital development. Dev Biol 247:26–46CrossRefPubMed
Zurück zum Zitat Peters KG, Werner S, Chen G, Williams LT (1992) Two FGF receptor genes are differentially expressed in epithelial and mesenchymal tissues during limb formation and organogenesis in the mouse. Development 114:233–243PubMed Peters KG, Werner S, Chen G, Williams LT (1992) Two FGF receptor genes are differentially expressed in epithelial and mesenchymal tissues during limb formation and organogenesis in the mouse. Development 114:233–243PubMed
Zurück zum Zitat Plikus M, Wang WP, Liu J, Wang X, Jiang TX, Chuong CM (2004) Morpho-regulation of ectodermal organs: integument pathology and phenotypic variations in K14-Noggin engineered mice through modulation of bone morphogenic protein pathway. Am J Pathol 164:1099–1114PubMed Plikus M, Wang WP, Liu J, Wang X, Jiang TX, Chuong CM (2004) Morpho-regulation of ectodermal organs: integument pathology and phenotypic variations in K14-Noggin engineered mice through modulation of bone morphogenic protein pathway. Am J Pathol 164:1099–1114PubMed
Zurück zum Zitat Powers CJ, McLeskey SW, Wellstein A (2000) Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer 7:165–197PubMed Powers CJ, McLeskey SW, Wellstein A (2000) Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer 7:165–197PubMed
Zurück zum Zitat Revest JM, Spencer-Dene B, Kerr K, De Moerlooze L, Rosewell I, Dickson C (2001) Fibroblast growth factor receptor 2-IIIb acts upstream of Shh and Fgf4 and is required for limb bud maintenance but not for the induction of Fgf8, Fgf10, Msx1, or Bmp4. Dev Biol 231:47–62CrossRefPubMed Revest JM, Spencer-Dene B, Kerr K, De Moerlooze L, Rosewell I, Dickson C (2001) Fibroblast growth factor receptor 2-IIIb acts upstream of Shh and Fgf4 and is required for limb bud maintenance but not for the induction of Fgf8, Fgf10, Msx1, or Bmp4. Dev Biol 231:47–62CrossRefPubMed
Zurück zum Zitat Sekine K, Ohuchi H, Fujiwara M, Yamasaki M, Yoshizawa T, Sato T, Yagishita N, Matsui D, Koga Y, Itoh N, Kato S (1999) Fgf10 is essential for limb and lung formation. Nat Genet 21:138–141CrossRefPubMed Sekine K, Ohuchi H, Fujiwara M, Yamasaki M, Yoshizawa T, Sato T, Yagishita N, Matsui D, Koga Y, Itoh N, Kato S (1999) Fgf10 is essential for limb and lung formation. Nat Genet 21:138–141CrossRefPubMed
Zurück zum Zitat Suzuki K, Bachiller D, Chen YP, Kamikawa M, Ogi H, Haraguchi R, Ogino Y, Minami Y, Mishina Y, Ahn K, Crenshaw EB, III, Yamada G (2003) Regulation of outgrowth and apoptosis for the terminal appendage: external genitalia: development by concerted actions of BMP signaling. Development 130:6209–6220CrossRefPubMed Suzuki K, Bachiller D, Chen YP, Kamikawa M, Ogi H, Haraguchi R, Ogino Y, Minami Y, Mishina Y, Ahn K, Crenshaw EB, III, Yamada G (2003) Regulation of outgrowth and apoptosis for the terminal appendage: external genitalia: development by concerted actions of BMP signaling. Development 130:6209–6220CrossRefPubMed
Zurück zum Zitat Suzuki K, Ogino Y, Murakami R, Satoh Y, Bachiller D, Yamada G (2002) Embryonic development of mouse external genitalia: insights into a unique mode of organogenesis. Evol Dev 4:133–141CrossRefPubMed Suzuki K, Ogino Y, Murakami R, Satoh Y, Bachiller D, Yamada G (2002) Embryonic development of mouse external genitalia: insights into a unique mode of organogenesis. Evol Dev 4:133–141CrossRefPubMed
Zurück zum Zitat Thesleff I, Partanen AM, Vainio S (1991) Epithelial-mesenchymal interactions in tooth morphogenesis: the roles of extracellular matrix, growth factors, and cell surface receptors. J Craniofac Genet Dev Biol 11:229–237PubMed Thesleff I, Partanen AM, Vainio S (1991) Epithelial-mesenchymal interactions in tooth morphogenesis: the roles of extracellular matrix, growth factors, and cell surface receptors. J Craniofac Genet Dev Biol 11:229–237PubMed
Zurück zum Zitat Tickle C, Eichele G (1994) Vertebrate limb development. Ann Rev Cell Biol 10:121–152PubMed Tickle C, Eichele G (1994) Vertebrate limb development. Ann Rev Cell Biol 10:121–152PubMed
Zurück zum Zitat Tucker AS, Yamada G, Grigoriou M, Pachnis V, Sharpe PT (1999) Fgf-8 determines rostral-caudal polarity in the first branchial arch. Development 126:51–61PubMed Tucker AS, Yamada G, Grigoriou M, Pachnis V, Sharpe PT (1999) Fgf-8 determines rostral-caudal polarity in the first branchial arch. Development 126:51–61PubMed
Zurück zum Zitat van der Werff JF, Nievelstein RA, Brands E, Luijsterburg AJ, Vermeij-Keers C (2000) Normal development of the male anterior urethra. Teratology 61:172–183CrossRefPubMed van der Werff JF, Nievelstein RA, Brands E, Luijsterburg AJ, Vermeij-Keers C (2000) Normal development of the male anterior urethra. Teratology 61:172–183CrossRefPubMed
Zurück zum Zitat Vargas RA, Maegawa GH, Taucher SC, Leite JC, Sanz P, Cifuentes J, Parra M, Munoz H, Maranduba CM, Passos-Bueno MR (2003) Beare-Stevenson syndrome: Two South American patients with FGFR2 analysis. Am J Med Genet 121:41–46CrossRef Vargas RA, Maegawa GH, Taucher SC, Leite JC, Sanz P, Cifuentes J, Parra M, Munoz H, Maranduba CM, Passos-Bueno MR (2003) Beare-Stevenson syndrome: Two South American patients with FGFR2 analysis. Am J Med Genet 121:41–46CrossRef
Zurück zum Zitat Wilkinson DG (1995) RNA detection using non-radioactive in situ hybridization. Curr Opin Biotechnol 6:20–23CrossRefPubMed Wilkinson DG (1995) RNA detection using non-radioactive in situ hybridization. Curr Opin Biotechnol 6:20–23CrossRefPubMed
Zurück zum Zitat Wright TJ, Mansour SL (2003) Fgf3 and Fgf10 are required for mouse otic placode induction. Development 130:3379–3390CrossRefPubMed Wright TJ, Mansour SL (2003) Fgf3 and Fgf10 are required for mouse otic placode induction. Development 130:3379–3390CrossRefPubMed
Zurück zum Zitat Xu X, Weinstein M, Li C, Naski M, Cohen RI, Ornitz DM, Leder P, Deng C (1998) Fibroblast growth factor receptor 2 (FGFR2)-mediated reciprocal regulation loop between FGF8 and FGF10 is essential for limb induction. Development 125:753–765PubMed Xu X, Weinstein M, Li C, Naski M, Cohen RI, Ornitz DM, Leder P, Deng C (1998) Fibroblast growth factor receptor 2 (FGFR2)-mediated reciprocal regulation loop between FGF8 and FGF10 is essential for limb induction. Development 125:753–765PubMed
Zurück zum Zitat Yamada G, Satoh Y, Baskin LS, Cunha GR (2003) Cellular and molecular mechanisms of development of the external genitalia. Differentiation 71:445–460CrossRefPubMed Yamada G, Satoh Y, Baskin LS, Cunha GR (2003) Cellular and molecular mechanisms of development of the external genitalia. Differentiation 71:445–460CrossRefPubMed
Zurück zum Zitat Yamaguchi TP, Bradley A, McMahon AP, Jones S (1999) A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development 126:1211–1223PubMed Yamaguchi TP, Bradley A, McMahon AP, Jones S (1999) A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development 126:1211–1223PubMed
Zurück zum Zitat Yonei-Tamura S, Endo T, Yajima H, Ohuchi H, Ide H, Tamura K (1999) FGF7 and FGF10 directly induce the apical ectodermal ridge in chick embryos. Dev Biol 211:133–143CrossRefPubMed Yonei-Tamura S, Endo T, Yajima H, Ohuchi H, Ide H, Tamura K (1999) FGF7 and FGF10 directly induce the apical ectodermal ridge in chick embryos. Dev Biol 211:133–143CrossRefPubMed
Metadaten
Titel
Regulation of external genitalia development by concerted actions of FGF ligands and FGF receptors
verfasst von
Yoshihiko Satoh
Ryuma Haraguchi
Tracy J. Wright
Suzanne L. Mansour
Juha Partanen
Mohammad K. Hajihosseini
Veraragavan P. Eswarakumar
Peter Lonai
Gen Yamada
Publikationsdatum
01.09.2004
Verlag
Springer-Verlag
Erschienen in
Brain Structure and Function / Ausgabe 6/2004
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-004-0419-9

Weitere Artikel der Ausgabe 6/2004

Brain Structure and Function 6/2004 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.