Skip to main content
Erschienen in: Seminars in Immunopathology 3/2019

08.04.2019 | Review

Regulation of T cell differentiation and function by epigenetic modification enzymes

verfasst von: Huicheng Liu, Pingfei Li, Zhengping Wei, Cai Zhang, Minghui Xia, Qiuyang Du, Yufei Chen, Na Liu, Huabin Li, Xiang-Ping Yang

Erschienen in: Seminars in Immunopathology | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten

Abstract

Peripheral naive CD4+ and CD8+ cells are developed in the thymus and proliferate and differentiate into various specialized T cell subsets upon activation by peptide-major histocompatibility complexes in periphery to execute different functions during immune responses. Cytokines, transcription factors, and a large number of intracellular molecules have been shown to affect T cell development, activation, and function. In addition, epigenetic modifications, such as histone modification and DNA methylation, regulate T cell biology. The epigenetic modifications are regulated by a range of DNA methyltransferases, DNA demethylation enzymes, and histone modification enzymes. Dysregulations of epigenetic modifications are closely associated with autoimmune diseases and tumorigenesis. Here, we review the current literature about the functions of DNA and histone modification enzymes in T cell development, activation, differentiation, and function.
Literatur
1.
Zurück zum Zitat Veiga-Fernandes H, Walter U, Bourgeois C, McLean A, Rocha B (2000) Response of naive and memory CD8(+) T cells to antigen stimulation in vivo. Nat Immunol 1(1):47–53CrossRefPubMed Veiga-Fernandes H, Walter U, Bourgeois C, McLean A, Rocha B (2000) Response of naive and memory CD8(+) T cells to antigen stimulation in vivo. Nat Immunol 1(1):47–53CrossRefPubMed
3.
4.
Zurück zum Zitat Doherty PC, Topham DJ, Tripp RA (1996) Establishment and persistence of virus-specific CD4+ and CD8+ T cell memory. Immunol Rev 150:23–44CrossRefPubMed Doherty PC, Topham DJ, Tripp RA (1996) Establishment and persistence of virus-specific CD4+ and CD8+ T cell memory. Immunol Rev 150:23–44CrossRefPubMed
5.
Zurück zum Zitat Agnello D, Lankford CSR, Bream J et al (2003) Cytokines and transcription factors that regulate T helper cell differentiation: new players and new insights. J Clin Immunol 23(3):147–161CrossRefPubMed Agnello D, Lankford CSR, Bream J et al (2003) Cytokines and transcription factors that regulate T helper cell differentiation: new players and new insights. J Clin Immunol 23(3):147–161CrossRefPubMed
6.
Zurück zum Zitat Kanno Y, Vahedi G, Hirahara K, Singleton K, O'Shea JJ (2012) Transcriptional and epigenetic control of T helper cell specification: molecular mechanisms underlying commitment and plasticity. Annu Rev Immunol 30:707–731CrossRefPubMedPubMedCentral Kanno Y, Vahedi G, Hirahara K, Singleton K, O'Shea JJ (2012) Transcriptional and epigenetic control of T helper cell specification: molecular mechanisms underlying commitment and plasticity. Annu Rev Immunol 30:707–731CrossRefPubMedPubMedCentral
8.
9.
Zurück zum Zitat Marmorstein R, Trievel RC (2009) Histone modifying enzymes: structures, mechanisms, and specificities. Biochim Biophys Acta 1789(1):58–68CrossRefPubMed Marmorstein R, Trievel RC (2009) Histone modifying enzymes: structures, mechanisms, and specificities. Biochim Biophys Acta 1789(1):58–68CrossRefPubMed
10.
Zurück zum Zitat Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, van Calcar S, Qu C, Ching KA, Wang W, Weng Z, Green RD, Crawford GE, Ren B (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39(3):311–318CrossRefPubMed Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, van Calcar S, Qu C, Ching KA, Wang W, Weng Z, Green RD, Crawford GE, Ren B (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39(3):311–318CrossRefPubMed
11.
Zurück zum Zitat Pekowska A, Benoukraf T, Zacarias-Cabeza J, Belhocine M, Koch F, Holota H, Imbert J, Andrau JC, Ferrier P, Spicuglia S (2011) H3K4 tri-methylation provides an epigenetic signature of active enhancers. EMBO J 30(20):4198–4210CrossRefPubMedPubMedCentral Pekowska A, Benoukraf T, Zacarias-Cabeza J, Belhocine M, Koch F, Holota H, Imbert J, Andrau JC, Ferrier P, Spicuglia S (2011) H3K4 tri-methylation provides an epigenetic signature of active enhancers. EMBO J 30(20):4198–4210CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C, Marinov GK, Khatun J, Williams BA, Zaleski C, Rozowsky J, Röder M, Kokocinski F, Abdelhamid RF, Alioto T, Antoshechkin I, Baer MT, Bar NS, Batut P, Bell K, Bell I, Chakrabortty S, Chen X, Chrast J, Curado J, Derrien T, Drenkow J, Dumais E, Dumais J, Duttagupta R, Falconnet E, Fastuca M, Fejes-Toth K, Ferreira P, Foissac S, Fullwood MJ, Gao H, Gonzalez D, Gordon A, Gunawardena H, Howald C, Jha S, Johnson R, Kapranov P, King B, Kingswood C, Luo OJ, Park E, Persaud K, Preall JB, Ribeca P, Risk B, Robyr D, Sammeth M, Schaffer L, See LH, Shahab A, Skancke J, Suzuki AM, Takahashi H, Tilgner H, Trout D, Walters N, Wang H, Wrobel J, Yu Y, Ruan X, Hayashizaki Y, Harrow J, Gerstein M, Hubbard T, Reymond A, Antonarakis SE, Hannon G, Giddings MC, Ruan Y, Wold B, Carninci P, Guigó R, Gingeras TR (2012) Landscape of transcription in human cells. Nature 489(7414):101–108CrossRefPubMedPubMedCentral Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C, Marinov GK, Khatun J, Williams BA, Zaleski C, Rozowsky J, Röder M, Kokocinski F, Abdelhamid RF, Alioto T, Antoshechkin I, Baer MT, Bar NS, Batut P, Bell K, Bell I, Chakrabortty S, Chen X, Chrast J, Curado J, Derrien T, Drenkow J, Dumais E, Dumais J, Duttagupta R, Falconnet E, Fastuca M, Fejes-Toth K, Ferreira P, Foissac S, Fullwood MJ, Gao H, Gonzalez D, Gordon A, Gunawardena H, Howald C, Jha S, Johnson R, Kapranov P, King B, Kingswood C, Luo OJ, Park E, Persaud K, Preall JB, Ribeca P, Risk B, Robyr D, Sammeth M, Schaffer L, See LH, Shahab A, Skancke J, Suzuki AM, Takahashi H, Tilgner H, Trout D, Walters N, Wang H, Wrobel J, Yu Y, Ruan X, Hayashizaki Y, Harrow J, Gerstein M, Hubbard T, Reymond A, Antonarakis SE, Hannon G, Giddings MC, Ruan Y, Wold B, Carninci P, Guigó R, Gingeras TR (2012) Landscape of transcription in human cells. Nature 489(7414):101–108CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99(3):247–257CrossRefPubMed Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99(3):247–257CrossRefPubMed
14.
15.
Zurück zum Zitat Lee PP, Fitzpatrick DR, Beard C, Jessup HK, Lehar S, Makar KW, Pérez-Melgosa M, Sweetser MT, Schlissel MS, Nguyen S, Cherry SR, Tsai JH, Tucker SM, Weaver WM, Kelso A, Jaenisch R, Wilson CB (2001) A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 15(5):763–774CrossRefPubMed Lee PP, Fitzpatrick DR, Beard C, Jessup HK, Lehar S, Makar KW, Pérez-Melgosa M, Sweetser MT, Schlissel MS, Nguyen S, Cherry SR, Tsai JH, Tucker SM, Weaver WM, Kelso A, Jaenisch R, Wilson CB (2001) A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 15(5):763–774CrossRefPubMed
16.
Zurück zum Zitat Lee DU, Agarwal S, Rao A (2002) Th2 lineage commitment and efficient IL-4 production involves extended demethylation of the IL-4 gene. Immunity 16(5):649–660CrossRefPubMed Lee DU, Agarwal S, Rao A (2002) Th2 lineage commitment and efficient IL-4 production involves extended demethylation of the IL-4 gene. Immunity 16(5):649–660CrossRefPubMed
17.
Zurück zum Zitat Wang LQ, Liu YJ, Beier UH et al (2013) Foxp3+ T-regulatory cells require DNA methyltransferase 1 expression to prevent development of lethal autoimmunity. Blood 121(18):3631–3639CrossRefPubMedPubMedCentral Wang LQ, Liu YJ, Beier UH et al (2013) Foxp3+ T-regulatory cells require DNA methyltransferase 1 expression to prevent development of lethal autoimmunity. Blood 121(18):3631–3639CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Pham D, Yu Q, Walline CC, Muthukrishnan R, Blum JS, Kaplan MH (2013) Opposing roles of STAT4 and Dnmt3a in Th1 gene regulation. J Immunol 191(2):902–911CrossRefPubMed Pham D, Yu Q, Walline CC, Muthukrishnan R, Blum JS, Kaplan MH (2013) Opposing roles of STAT4 and Dnmt3a in Th1 gene regulation. J Immunol 191(2):902–911CrossRefPubMed
19.
Zurück zum Zitat Yu Q, Zhou BH, Zhang YL et al (2012) DNA methyltransferase 3a limits the expression of interleukin-13 in T helper 2 cells and allergic airway inflammation. Proc Natl Acad Sci U S A 109(2):541–546CrossRefPubMed Yu Q, Zhou BH, Zhang YL et al (2012) DNA methyltransferase 3a limits the expression of interleukin-13 in T helper 2 cells and allergic airway inflammation. Proc Natl Acad Sci U S A 109(2):541–546CrossRefPubMed
20.
Zurück zum Zitat Ladle BH, Li KP, Phillips MJ, Pucsek AB, Haile A, Powell JD, Jaffee EM, Hildeman DA, Gamper CJ (2016) De novo DNA methylation by DNA methyltransferase 3a controls early effector CD8+ T-cell fate decisions following activation. Proc Natl Acad Sci U S A 113(38):10631–10636CrossRefPubMedPubMedCentral Ladle BH, Li KP, Phillips MJ, Pucsek AB, Haile A, Powell JD, Jaffee EM, Hildeman DA, Gamper CJ (2016) De novo DNA methylation by DNA methyltransferase 3a controls early effector CD8+ T-cell fate decisions following activation. Proc Natl Acad Sci U S A 113(38):10631–10636CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Youngblood B, Hale JS, Kissick HT, Ahn E, Xu X, Wieland A, Araki K, West EE, Ghoneim HE, Fan Y, Dogra P, Davis CW, Konieczny BT, Antia R, Cheng X, Ahmed R (2017) Effector CD8 T cells dedifferentiate into long-lived memory cells. Nature 552(7685):404–409CrossRefPubMedPubMedCentral Youngblood B, Hale JS, Kissick HT, Ahn E, Xu X, Wieland A, Araki K, West EE, Ghoneim HE, Fan Y, Dogra P, Davis CW, Konieczny BT, Antia R, Cheng X, Ahmed R (2017) Effector CD8 T cells dedifferentiate into long-lived memory cells. Nature 552(7685):404–409CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Wu XJ, Zhang Y (2017) TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet 18(9):517–534CrossRefPubMed Wu XJ, Zhang Y (2017) TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet 18(9):517–534CrossRefPubMed
24.
Zurück zum Zitat Tsagaratou A, Aijo T, Lio CWJ, Yue X, Huang Y, Jacobsen SE, Lahdesmaki H, Rao A (2014) Dissecting the dynamic changes of 5-hydroxymethylcytosine in T-cell development and differentiation. Proc Natl Acad Sci U S A 111(32):E3306–E3315CrossRefPubMedPubMedCentral Tsagaratou A, Aijo T, Lio CWJ, Yue X, Huang Y, Jacobsen SE, Lahdesmaki H, Rao A (2014) Dissecting the dynamic changes of 5-hydroxymethylcytosine in T-cell development and differentiation. Proc Natl Acad Sci U S A 111(32):E3306–E3315CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Iyer LM, Tahiliani M, Rao A, Aravind L (2009) Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle 8(11):1698–1710CrossRefPubMed Iyer LM, Tahiliani M, Rao A, Aravind L (2009) Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle 8(11):1698–1710CrossRefPubMed
26.
Zurück zum Zitat Koh KP, Yabuuchi A, Rao S, Huang Y, Cunniff K, Nardone J, Laiho A, Tahiliani M, Sommer CA, Mostoslavsky G, Lahesmaa R, Orkin SH, Rodig SJ, Daley GQ, Rao A (2011) Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell 8(2):200–213CrossRefPubMedPubMedCentral Koh KP, Yabuuchi A, Rao S, Huang Y, Cunniff K, Nardone J, Laiho A, Tahiliani M, Sommer CA, Mostoslavsky G, Lahesmaa R, Orkin SH, Rodig SJ, Daley GQ, Rao A (2011) Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell 8(2):200–213CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Pastor WA, Aravind L, Rao A (2013) TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol 14(6):341–356CrossRefPubMedPubMedCentral Pastor WA, Aravind L, Rao A (2013) TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol 14(6):341–356CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Nair VS, Oh KI (2014) Down-regulation of Tet2 prevents TSDR demethylation in IL2 deficient regulatory T cells. Biochem Biophys Res Commun 450(1):918–924CrossRefPubMed Nair VS, Oh KI (2014) Down-regulation of Tet2 prevents TSDR demethylation in IL2 deficient regulatory T cells. Biochem Biophys Res Commun 450(1):918–924CrossRefPubMed
30.
Zurück zum Zitat Yang RL, Qu CY, Zhou Y et al (2015) Hydrogen sulfide promotes Tet1- and Tet2-mediated Foxp3 demethylation to drive regulatory T cell differentiation and maintain immune homeostasis. Immunity 43(2):251–263CrossRefPubMedPubMedCentral Yang RL, Qu CY, Zhou Y et al (2015) Hydrogen sulfide promotes Tet1- and Tet2-mediated Foxp3 demethylation to drive regulatory T cell differentiation and maintain immune homeostasis. Immunity 43(2):251–263CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Zheng Y, Josefowicz S, Chaudhry A, Peng XP, Forbush K, Rudensky AY (2010) Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463(7282):808–U120CrossRefPubMedPubMedCentral Zheng Y, Josefowicz S, Chaudhry A, Peng XP, Forbush K, Rudensky AY (2010) Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463(7282):808–U120CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Floess S, Freyer J, Siewert C et al (2007) Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol 5(2):169–178CrossRef Floess S, Freyer J, Siewert C et al (2007) Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol 5(2):169–178CrossRef
33.
Zurück zum Zitat Tsagaratou A, Gonzalez-Avalos E, Rautio S et al (2017) TET proteins regulate the lineage specification and TCR-mediated expansion of iNKT cells. Nat Immunol 18(1):45–53CrossRefPubMed Tsagaratou A, Gonzalez-Avalos E, Rautio S et al (2017) TET proteins regulate the lineage specification and TCR-mediated expansion of iNKT cells. Nat Immunol 18(1):45–53CrossRefPubMed
34.
Zurück zum Zitat Ko M, Bandukwala HS, An J, Lamperti ED, Thompson EC, Hastie R, Tsangaratou A, Rajewsky K, Koralov SB, Rao A (2011) Ten-Eleven-Translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice. Proc Natl Acad Sci U S A 108(35):14566–14571CrossRefPubMedPubMedCentral Ko M, Bandukwala HS, An J, Lamperti ED, Thompson EC, Hastie R, Tsangaratou A, Rajewsky K, Koralov SB, Rao A (2011) Ten-Eleven-Translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice. Proc Natl Acad Sci U S A 108(35):14566–14571CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Nair VS, Song MH, Oh KI (2016) Vitamin C facilitates demethylation of the Foxp3 enhancer in a Tet-dependent manner. J Immunol 196(5):2119–2131CrossRef Nair VS, Song MH, Oh KI (2016) Vitamin C facilitates demethylation of the Foxp3 enhancer in a Tet-dependent manner. J Immunol 196(5):2119–2131CrossRef
36.
Zurück zum Zitat Marmorstein R, Zhou MM (2014) Writers and readers of histone acetylation: structure, mechanism, and inhibition. Cold Spring Harb Perspect Biol 6(7) Marmorstein R, Zhou MM (2014) Writers and readers of histone acetylation: structure, mechanism, and inhibition. Cold Spring Harb Perspect Biol 6(7)
37.
Zurück zum Zitat Ellmeier W, Seiser C (2018) Histone deacetylase function in CD4(+) T cells. Nat Rev Immunol 18:617–634CrossRefPubMed Ellmeier W, Seiser C (2018) Histone deacetylase function in CD4(+) T cells. Nat Rev Immunol 18:617–634CrossRefPubMed
38.
Zurück zum Zitat Harlow E, Whyte P, Franza BR Jr, Schley C (1986) Association of adenovirus early-region 1A proteins with cellular polypeptides. Mol Cell Biol 6(5):1579–1589CrossRefPubMedPubMedCentral Harlow E, Whyte P, Franza BR Jr, Schley C (1986) Association of adenovirus early-region 1A proteins with cellular polypeptides. Mol Cell Biol 6(5):1579–1589CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Kasper LH, Fukuyama T, Biesen MA, Boussouar F, Tong C, de Pauw A, Murray PJ, van Deursen JMA, Brindle PK (2006) Conditional knockout mice reveal distinct functions for the global transcriptional coactivators CBP and p300 in T-cell development. Mol Cell Biol 26(3):789–809CrossRefPubMedPubMedCentral Kasper LH, Fukuyama T, Biesen MA, Boussouar F, Tong C, de Pauw A, Murray PJ, van Deursen JMA, Brindle PK (2006) Conditional knockout mice reveal distinct functions for the global transcriptional coactivators CBP and p300 in T-cell development. Mol Cell Biol 26(3):789–809CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Avots A, Buttmann M, Chuvpilo S, Escher C, Smola U, Bannister AJ, Rapp UR, Kouzarides T, Serfling E (1999) CBP/p300 integrates Raf/Rac-signaling pathways in the transcriptional induction of NF-ATc during T cell activation. Immunity 10(5):515–524CrossRefPubMed Avots A, Buttmann M, Chuvpilo S, Escher C, Smola U, Bannister AJ, Rapp UR, Kouzarides T, Serfling E (1999) CBP/p300 integrates Raf/Rac-signaling pathways in the transcriptional induction of NF-ATc during T cell activation. Immunity 10(5):515–524CrossRefPubMed
41.
Zurück zum Zitat Hosokawa H, Tanaka T, Suzuki Y, Iwamura C, Ohkubo S, Endoh K, Kato M, Endo Y, Onodera A, Tumes DJ, Kanai A, Sugano S, Nakayama T (2013) Functionally distinct Gata3/Chd4 complexes coordinately establish T helper 2 (Th2) cell identity. Proc Natl Acad Sci U S A 110(12):4691–4696CrossRefPubMedPubMedCentral Hosokawa H, Tanaka T, Suzuki Y, Iwamura C, Ohkubo S, Endoh K, Kato M, Endo Y, Onodera A, Tumes DJ, Kanai A, Sugano S, Nakayama T (2013) Functionally distinct Gata3/Chd4 complexes coordinately establish T helper 2 (Th2) cell identity. Proc Natl Acad Sci U S A 110(12):4691–4696CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Dang EV, Barbi J, Yang HY, Jinasena D, Yu H, Zheng Y, Bordman Z, Fu J, Kim Y, Yen HR, Luo W, Zeller K, Shimoda L, Topalian SL, Semenza GL, Dang CV, Pardoll DM, Pan F (2011) Control of T(H)17/T-reg balance by hypoxia-inducible factor 1. Cell 146(5):772–784CrossRefPubMedPubMedCentral Dang EV, Barbi J, Yang HY, Jinasena D, Yu H, Zheng Y, Bordman Z, Fu J, Kim Y, Yen HR, Luo W, Zeller K, Shimoda L, Topalian SL, Semenza GL, Dang CV, Pardoll DM, Pan F (2011) Control of T(H)17/T-reg balance by hypoxia-inducible factor 1. Cell 146(5):772–784CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Hammitzsch A, Tallant C, Fedorov O, O’Mahony A, Brennan PE, Hay DA, Martinez FO, al-Mossawi MH, de Wit J, Vecellio M, Wells C, Wordsworth P, Müller S, Knapp S, Bowness P (2015) CBP30, a selective CBP/p300 bromodomain inhibitor, suppresses human Th17 responses. Proc Natl Acad Sci U S A 112(34):10768–10773CrossRefPubMedPubMedCentral Hammitzsch A, Tallant C, Fedorov O, O’Mahony A, Brennan PE, Hay DA, Martinez FO, al-Mossawi MH, de Wit J, Vecellio M, Wells C, Wordsworth P, Müller S, Knapp S, Bowness P (2015) CBP30, a selective CBP/p300 bromodomain inhibitor, suppresses human Th17 responses. Proc Natl Acad Sci U S A 112(34):10768–10773CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Maekawa Y, Minato Y, Ishifune C, Kurihara T, Kitamura A, Kojima H, Yagita H, Sakata-Yanagimoto M, Saito T, Taniuchi I, Chiba S, Sone S, Yasutomo K (2008) Notch2 integrates signaling by the transcription factors RBP-J and CREB1 to promote T cell cytotoxicity. Nat Immunol 9(10):1140–1147CrossRefPubMed Maekawa Y, Minato Y, Ishifune C, Kurihara T, Kitamura A, Kojima H, Yagita H, Sakata-Yanagimoto M, Saito T, Taniuchi I, Chiba S, Sone S, Yasutomo K (2008) Notch2 integrates signaling by the transcription factors RBP-J and CREB1 to promote T cell cytotoxicity. Nat Immunol 9(10):1140–1147CrossRefPubMed
45.
Zurück zum Zitat van Loosdregt J, Vercoulen Y, Guichelaar T, Gent YYJ, Beekman JM, van Beekum O, Brenkman AB, Hijnen DJ, Mutis T, Kalkhoven E, Prakken BJ, Coffer PJ (2010) Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization. Blood 115(5):965–974CrossRefPubMed van Loosdregt J, Vercoulen Y, Guichelaar T, Gent YYJ, Beekman JM, van Beekum O, Brenkman AB, Hijnen DJ, Mutis T, Kalkhoven E, Prakken BJ, Coffer PJ (2010) Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization. Blood 115(5):965–974CrossRefPubMed
46.
Zurück zum Zitat Liu YJ, Wang LQ, Predina J et al (2013) Inhibition of p300 impairs Foxp3(+) T regulatory cell function and promotes antitumor immunity. Nat Med 19(9):1173–1177CrossRefPubMedPubMedCentral Liu YJ, Wang LQ, Predina J et al (2013) Inhibition of p300 impairs Foxp3(+) T regulatory cell function and promotes antitumor immunity. Nat Med 19(9):1173–1177CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Vahedi G, Kanno Y, Furumoto Y, Jiang K, Parker SCJ, Erdos MR, Davis SR, Roychoudhuri R, Restifo NP, Gadina M, Tang Z, Ruan Y, Collins FS, Sartorelli V, O’Shea JJ (2015) Super-enhancers delineate disease-associated regulatory nodes in T cells. Nature 520(7548):558–562CrossRefPubMedPubMedCentral Vahedi G, Kanno Y, Furumoto Y, Jiang K, Parker SCJ, Erdos MR, Davis SR, Roychoudhuri R, Restifo NP, Gadina M, Tang Z, Ruan Y, Collins FS, Sartorelli V, O’Shea JJ (2015) Super-enhancers delineate disease-associated regulatory nodes in T cells. Nature 520(7548):558–562CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Javaid N, Choi S (2017) Acetylation- and methylation-related epigenetic proteins in the context of their targets. Genes-Basel 8(8) Javaid N, Choi S (2017) Acetylation- and methylation-related epigenetic proteins in the context of their targets. Genes-Basel 8(8)
49.
Zurück zum Zitat Gao BX, Kong QF, Zhang YN et al (2017) The histone acetyltransferase Gcn5 positively regulates T cell activation. J Immunol 198(10):3927–3938CrossRefPubMed Gao BX, Kong QF, Zhang YN et al (2017) The histone acetyltransferase Gcn5 positively regulates T cell activation. J Immunol 198(10):3927–3938CrossRefPubMed
50.
Zurück zum Zitat Goswami R, Kaplan MH (2012) Gcn5 is required for PU.1-dependent IL-9 induction in Th9 cells. J Immunol 189(6):3026–3033CrossRefPubMed Goswami R, Kaplan MH (2012) Gcn5 is required for PU.1-dependent IL-9 induction in Th9 cells. J Immunol 189(6):3026–3033CrossRefPubMed
51.
Zurück zum Zitat Lee KK, Workman JL (2007) Histone acetyltransferase complexes: one size doesn't fit all. Nat Rev Mol Cell Biol 8(4):284–295CrossRefPubMed Lee KK, Workman JL (2007) Histone acetyltransferase complexes: one size doesn't fit all. Nat Rev Mol Cell Biol 8(4):284–295CrossRefPubMed
52.
Zurück zum Zitat Millard CJ, Watson PJ, Fairall L, Schwabe JWR (2017) Targeting class I histone deacetylases in a “complex” environment. Trends Pharmacol Sci 38(4):363–377CrossRefPubMed Millard CJ, Watson PJ, Fairall L, Schwabe JWR (2017) Targeting class I histone deacetylases in a “complex” environment. Trends Pharmacol Sci 38(4):363–377CrossRefPubMed
53.
Zurück zum Zitat Dovey OM, Foster CT, Conte N, Edwards SA, Edwards JM, Singh R, Vassiliou G, Bradley A, Cowley SM (2013) Histone deacetylase 1 and 2 are essential for normal T-cell development and genomic stability in mice. Blood 121(8):1335–1344CrossRefPubMed Dovey OM, Foster CT, Conte N, Edwards SA, Edwards JM, Singh R, Vassiliou G, Bradley A, Cowley SM (2013) Histone deacetylase 1 and 2 are essential for normal T-cell development and genomic stability in mice. Blood 121(8):1335–1344CrossRefPubMed
54.
Zurück zum Zitat Boucheron N, Tschismarov R, Goeschl L et al (2014) CD4(+) T cell lineage integrity is controlled by the histone deacetylases HDAC1 and HDAC2. Nat Immunol 15(5):439–43+CrossRefPubMedPubMedCentral Boucheron N, Tschismarov R, Goeschl L et al (2014) CD4(+) T cell lineage integrity is controlled by the histone deacetylases HDAC1 and HDAC2. Nat Immunol 15(5):439–43+CrossRefPubMedPubMedCentral
55.
Zurück zum Zitat Goschl L, Preglej T, Hamminger P et al (2018) A T cell-specific deletion of HDAC1 protects against experimental autoimmune encephalomyelitis. J Autoimmun 86:51–61CrossRefPubMed Goschl L, Preglej T, Hamminger P et al (2018) A T cell-specific deletion of HDAC1 protects against experimental autoimmune encephalomyelitis. J Autoimmun 86:51–61CrossRefPubMed
56.
Zurück zum Zitat Grausenburger R, Bilic I, Boucheron N, Zupkovitz G, el-Housseiny L, Tschismarov R, Zhang Y, Rembold M, Gaisberger M, Hartl A, Epstein MM, Matthias P, Seiser C, Ellmeier W (2010) Conditional deletion of histone deacetylase 1 in T cells leads to enhanced airway inflammation and increased Th2 cytokine production. J Immunol 185(6):3489–3497CrossRefPubMed Grausenburger R, Bilic I, Boucheron N, Zupkovitz G, el-Housseiny L, Tschismarov R, Zhang Y, Rembold M, Gaisberger M, Hartl A, Epstein MM, Matthias P, Seiser C, Ellmeier W (2010) Conditional deletion of histone deacetylase 1 in T cells leads to enhanced airway inflammation and increased Th2 cytokine production. J Immunol 185(6):3489–3497CrossRefPubMed
57.
Zurück zum Zitat Woods DM, Woan KV, Cheng FD et al (2017) T cells lacking HDAC11 have increased effector functions and mediate enhanced alloreactivity in a murine model. Blood 130(2):146–155CrossRefPubMedPubMedCentral Woods DM, Woan KV, Cheng FD et al (2017) T cells lacking HDAC11 have increased effector functions and mediate enhanced alloreactivity in a murine model. Blood 130(2):146–155CrossRefPubMedPubMedCentral
58.
Zurück zum Zitat Yan KL, Cao Q, Reilly CM et al (2011) Histone deacetylase 9 deficiency protects against effector T cell-mediated systemic autoimmunity. J Biol Chem 286(33):28833–28843CrossRefPubMedPubMedCentral Yan KL, Cao Q, Reilly CM et al (2011) Histone deacetylase 9 deficiency protects against effector T cell-mediated systemic autoimmunity. J Biol Chem 286(33):28833–28843CrossRefPubMedPubMedCentral
59.
Zurück zum Zitat Lim HW, Kang SG, Ryu JK, Schilling B, Fei M, Lee IS, Kehasse A, Shirakawa K, Yokoyama M, Schnölzer M, Kasler HG, Kwon HS, Gibson BW, Sato H, Akassoglou K, Xiao C, Littman DR, Ott M, Verdin E (2015) SIRT1 deacetylates ROR gamma t and enhances Th17 cell generation. J Exp Med 212(5):607–617CrossRefPubMedPubMedCentral Lim HW, Kang SG, Ryu JK, Schilling B, Fei M, Lee IS, Kehasse A, Shirakawa K, Yokoyama M, Schnölzer M, Kasler HG, Kwon HS, Gibson BW, Sato H, Akassoglou K, Xiao C, Littman DR, Ott M, Verdin E (2015) SIRT1 deacetylates ROR gamma t and enhances Th17 cell generation. J Exp Med 212(5):607–617CrossRefPubMedPubMedCentral
60.
Zurück zum Zitat Zhang JN, Lee SM, Shannon S et al (2009) The type III histone deacetylase Sirt1 is essential for maintenance of T cell tolerance in mice. J Clin Invest 119(10):3048–3058CrossRefPubMedPubMedCentral Zhang JN, Lee SM, Shannon S et al (2009) The type III histone deacetylase Sirt1 is essential for maintenance of T cell tolerance in mice. J Clin Invest 119(10):3048–3058CrossRefPubMedPubMedCentral
62.
Zurück zum Zitat Li B, Greene MI (2007) FOXP3 actively represses transcription by recruiting the HAT/HDAC complex. Cell Cycle 6(12):1432–1436CrossRefPubMed Li B, Greene MI (2007) FOXP3 actively represses transcription by recruiting the HAT/HDAC complex. Cell Cycle 6(12):1432–1436CrossRefPubMed
63.
Zurück zum Zitat Tao R, de Zoeten EF, Ozkaynak E et al (2007) Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat Med 13(11):1299–1307CrossRefPubMed Tao R, de Zoeten EF, Ozkaynak E et al (2007) Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat Med 13(11):1299–1307CrossRefPubMed
64.
Zurück zum Zitat Wang LQ, Liu YJ, Han RX et al (2015) FOXP3(+) regulatory T cell development and function require histone/protein deacetylase 3. J Clin Invest 125(3):1111–1123CrossRefPubMedPubMedCentral Wang LQ, Liu YJ, Han RX et al (2015) FOXP3(+) regulatory T cell development and function require histone/protein deacetylase 3. J Clin Invest 125(3):1111–1123CrossRefPubMedPubMedCentral
65.
Zurück zum Zitat Shilatifard A (2006) Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem 75:243–269CrossRefPubMed Shilatifard A (2006) Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem 75:243–269CrossRefPubMed
66.
Zurück zum Zitat Morera L, Lubbert M, Jung M (2016) Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy. Clin Epigenetics 8:57CrossRefPubMedPubMedCentral Morera L, Lubbert M, Jung M (2016) Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy. Clin Epigenetics 8:57CrossRefPubMedPubMedCentral
67.
Zurück zum Zitat Tachibana M, Sugimoto K, Nozaki M, Ueda J, Ohta T, Ohki M, Fukuda M, Takeda N, Niida H, Kato H, Shinkai Y (2002) G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev 16(14):1779–1791CrossRefPubMedPubMedCentral Tachibana M, Sugimoto K, Nozaki M, Ueda J, Ohta T, Ohki M, Fukuda M, Takeda N, Niida H, Kato H, Shinkai Y (2002) G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev 16(14):1779–1791CrossRefPubMedPubMedCentral
68.
Zurück zum Zitat Verbaro DJ, Sakurai N, Kim B, Shinkai Y, Egawa T (2018) Cutting edge: the histone methyltransferase G9a is required for silencing of helper T lineage-associated genes in proliferating CD8 T cells. J Immunol 200(12):3891–3896CrossRefPubMed Verbaro DJ, Sakurai N, Kim B, Shinkai Y, Egawa T (2018) Cutting edge: the histone methyltransferase G9a is required for silencing of helper T lineage-associated genes in proliferating CD8 T cells. J Immunol 200(12):3891–3896CrossRefPubMed
69.
Zurück zum Zitat Shin HM, Kapoor V, Guan T et al (2013) Epigenetic modifications induced by Blimp-1 regulate CD8(+) T cell memory progression during acute virus infection. Immunity 39(4):661–675CrossRefPubMed Shin HM, Kapoor V, Guan T et al (2013) Epigenetic modifications induced by Blimp-1 regulate CD8(+) T cell memory progression during acute virus infection. Immunity 39(4):661–675CrossRefPubMed
70.
Zurück zum Zitat Hedrich CM, Crispin JC, Rauen T et al (2014) cAMP responsive element modulator (CREM) alpha mediates chromatin remodeling of CD8 during the generation of CD3(+)CD4(−)CD8(−) T cells. J Biol Chem 289(4):2361–2370CrossRefPubMed Hedrich CM, Crispin JC, Rauen T et al (2014) cAMP responsive element modulator (CREM) alpha mediates chromatin remodeling of CD8 during the generation of CD3(+)CD4(−)CD8(−) T cells. J Biol Chem 289(4):2361–2370CrossRefPubMed
71.
Zurück zum Zitat Antignano F, Burrows K, Hughes MR, Han JM, Kron KJ, Penrod NM, Oudhoff MJ, Wang SKH, Min PH, Gold MJ, Chenery AL, Braam MJS, Fung TC, Rossi FMV, McNagny KM, Arrowsmith CH, Lupien M, Levings MK, Zaph C (2014) Methyltransferase G9A regulates T cell differentiation during murine intestinal inflammation. J Clin Invest 124(5):1945–1955CrossRefPubMedPubMedCentral Antignano F, Burrows K, Hughes MR, Han JM, Kron KJ, Penrod NM, Oudhoff MJ, Wang SKH, Min PH, Gold MJ, Chenery AL, Braam MJS, Fung TC, Rossi FMV, McNagny KM, Arrowsmith CH, Lupien M, Levings MK, Zaph C (2014) Methyltransferase G9A regulates T cell differentiation during murine intestinal inflammation. J Clin Invest 124(5):1945–1955CrossRefPubMedPubMedCentral
72.
Zurück zum Zitat Lehnertz B, Northrop JP, Antignano F, Burrows K, Hadidi S, Mullaly SC, Rossi FMV, Zaph C (2010) Activating and inhibitory functions for the histone lysine methyltransferase G9a in T helper cell differentiation and function. J Exp Med 207(5):915–922CrossRefPubMedPubMedCentral Lehnertz B, Northrop JP, Antignano F, Burrows K, Hadidi S, Mullaly SC, Rossi FMV, Zaph C (2010) Activating and inhibitory functions for the histone lysine methyltransferase G9a in T helper cell differentiation and function. J Exp Med 207(5):915–922CrossRefPubMedPubMedCentral
73.
Zurück zum Zitat Zhang XH, Cook PC, Zindy E et al (2016) Integrin alpha 4 beta 1 controls G9a activity that regulates epigenetic changes and nuclear properties required for lymphocyte migration. Nucleic Acids Res 44(7):3031–3044CrossRefPubMed Zhang XH, Cook PC, Zindy E et al (2016) Integrin alpha 4 beta 1 controls G9a activity that regulates epigenetic changes and nuclear properties required for lymphocyte migration. Nucleic Acids Res 44(7):3031–3044CrossRefPubMed
74.
Zurück zum Zitat Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410(6824):120–124CrossRefPubMed Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410(6824):120–124CrossRefPubMed
75.
Zurück zum Zitat Wakabayashi Y, Tamiya T, Takada I, Fukaya T, Sugiyama Y, Inoue N, Kimura A, Morita R, Kashiwagi I, Takimoto T, Nomura M, Yoshimura A (2011) Histone 3 lysine 9 (H3K9) methyltransferase recruitment to the interleukin-2 (IL-2) promoter is a mechanism of suppression of IL-2 transcription by the transforming growth factor-beta-Smad pathway. J Biol Chem 286(41):35456–35465CrossRefPubMedPubMedCentral Wakabayashi Y, Tamiya T, Takada I, Fukaya T, Sugiyama Y, Inoue N, Kimura A, Morita R, Kashiwagi I, Takimoto T, Nomura M, Yoshimura A (2011) Histone 3 lysine 9 (H3K9) methyltransferase recruitment to the interleukin-2 (IL-2) promoter is a mechanism of suppression of IL-2 transcription by the transforming growth factor-beta-Smad pathway. J Biol Chem 286(41):35456–35465CrossRefPubMedPubMedCentral
76.
Zurück zum Zitat Allan RS, Zueva E, Cammas F, Schreiber HA, Masson V, Belz GT, Roche D, Maison C, Quivy JP, Almouzni G, Amigorena S (2012) An epigenetic silencing pathway controlling T helper 2 cell lineage commitment. Nature 487(7406):249–U137CrossRefPubMed Allan RS, Zueva E, Cammas F, Schreiber HA, Masson V, Belz GT, Roche D, Maison C, Quivy JP, Almouzni G, Amigorena S (2012) An epigenetic silencing pathway controlling T helper 2 cell lineage commitment. Nature 487(7406):249–U137CrossRefPubMed
77.
Zurück zum Zitat Pace L, Goudot C, Zueva E, Gueguen P, Burgdorf N, Waterfall JJ, Quivy JP, Almouzni G, Amigorena S (2018) The epigenetic control of stemness in CD8(+) T cell fate commitment. Science 359(6372):177–17+CrossRefPubMed Pace L, Goudot C, Zueva E, Gueguen P, Burgdorf N, Waterfall JJ, Quivy JP, Almouzni G, Amigorena S (2018) The epigenetic control of stemness in CD8(+) T cell fate commitment. Science 359(6372):177–17+CrossRefPubMed
78.
Zurück zum Zitat Morey L, Helin K (2010) Polycomb group protein-mediated repression of transcription. Trends Biochem Sci 35(6):323–332CrossRefPubMed Morey L, Helin K (2010) Polycomb group protein-mediated repression of transcription. Trends Biochem Sci 35(6):323–332CrossRefPubMed
79.
Zurück zum Zitat Yang XP, Jiang K, Hirahara K et al (2015) EZH2 is crucial for both differentiation of regulatory T cells and T effector cell expansion. Sci Rep-Uk 5 Yang XP, Jiang K, Hirahara K et al (2015) EZH2 is crucial for both differentiation of regulatory T cells and T effector cell expansion. Sci Rep-Uk 5
80.
Zurück zum Zitat Tumes DJ, Onodera A, Suzuki A, Shinoda K, Endo Y, Iwamura C, Hosokawa H, Koseki H, Tokoyoda K, Suzuki Y, Motohashi S, Nakayama T (2013) The polycomb protein Ezh2 regulates differentiation and plasticity of CD4(+) T helper type 1 and type 2 cells. Immunity 39(5):819–832CrossRefPubMed Tumes DJ, Onodera A, Suzuki A, Shinoda K, Endo Y, Iwamura C, Hosokawa H, Koseki H, Tokoyoda K, Suzuki Y, Motohashi S, Nakayama T (2013) The polycomb protein Ezh2 regulates differentiation and plasticity of CD4(+) T helper type 1 and type 2 cells. Immunity 39(5):819–832CrossRefPubMed
81.
Zurück zum Zitat DuPage M, Chopra G, Quiros J, Rosenthal WL, Morar MM, Holohan D, Zhang R, Turka L, Marson A, Bluestone JA (2015) The chromatin-modifying enzyme Ezh2 is critical for the maintenance of regulatory T cell identity after activation. Immunity 42(2):227–238CrossRefPubMedPubMedCentral DuPage M, Chopra G, Quiros J, Rosenthal WL, Morar MM, Holohan D, Zhang R, Turka L, Marson A, Bluestone JA (2015) The chromatin-modifying enzyme Ezh2 is critical for the maintenance of regulatory T cell identity after activation. Immunity 42(2):227–238CrossRefPubMedPubMedCentral
82.
Zurück zum Zitat Zhang YX, Kinkel S, Maksimovic J et al (2014) The polycomb repressive complex 2 governs life and death of peripheral T cells. Blood 124(5):737–749CrossRefPubMed Zhang YX, Kinkel S, Maksimovic J et al (2014) The polycomb repressive complex 2 governs life and death of peripheral T cells. Blood 124(5):737–749CrossRefPubMed
83.
Zurück zum Zitat Su I, Dobenecker MW, Dickinson E, Oser M, Basavaraj A, Marqueron R, Viale A, Reinberg D, Wülfing C, Tarakhovsky A (2005) Polycomb group protein Ezh2 controls actin polymerization and cell signaling. Cell 121(3):425–436CrossRefPubMed Su I, Dobenecker MW, Dickinson E, Oser M, Basavaraj A, Marqueron R, Viale A, Reinberg D, Wülfing C, Tarakhovsky A (2005) Polycomb group protein Ezh2 controls actin polymerization and cell signaling. Cell 121(3):425–436CrossRefPubMed
84.
Zurück zum Zitat Gray SM, Amezquita RA, Guan TX et al (2017) Polycomb repressive complex 2-mediated chromatin repression guides effector CD8(+) T cell terminal differentiation and loss of multipotency. Immunity 46(4):596–608CrossRefPubMedPubMedCentral Gray SM, Amezquita RA, Guan TX et al (2017) Polycomb repressive complex 2-mediated chromatin repression guides effector CD8(+) T cell terminal differentiation and loss of multipotency. Immunity 46(4):596–608CrossRefPubMedPubMedCentral
85.
Zurück zum Zitat He S, Liu YN, Meng LJ et al (2017) Ezh2 phosphorylation state determines its capacity to maintain CD8(+) T memory precursors for antitumor immunity. Nat Commun 8:2125CrossRefPubMedPubMedCentral He S, Liu YN, Meng LJ et al (2017) Ezh2 phosphorylation state determines its capacity to maintain CD8(+) T memory precursors for antitumor immunity. Nat Commun 8:2125CrossRefPubMedPubMedCentral
86.
Zurück zum Zitat Peng D, Kryczek I, Nagarsheth N, Zhao L, Wei S, Wang W, Sun Y, Zhao E, Vatan L, Szeliga W, Kotarski J, Tarkowski R, Dou Y, Cho K, Hensley-Alford S, Munkarah A, Liu R, Zou W (2015) Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 527(7577):249–253CrossRefPubMedPubMedCentral Peng D, Kryczek I, Nagarsheth N, Zhao L, Wei S, Wang W, Sun Y, Zhao E, Vatan L, Szeliga W, Kotarski J, Tarkowski R, Dou Y, Cho K, Hensley-Alford S, Munkarah A, Liu R, Zou W (2015) Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 527(7577):249–253CrossRefPubMedPubMedCentral
87.
Zurück zum Zitat Goswami S, Apostolou I, Zhang J, Skepner J, Anandhan S, Zhang X, Xiong L, Trojer P, Aparicio A, Subudhi SK, Allison JP, Zhao H, Sharma P (2018) Modulation of EZH2 expression in T cells improves efficacy of anti-CTLA-4 therapy. J Clin Invest 128(9):3813–3818CrossRefPubMedPubMedCentral Goswami S, Apostolou I, Zhang J, Skepner J, Anandhan S, Zhang X, Xiong L, Trojer P, Aparicio A, Subudhi SK, Allison JP, Zhao H, Sharma P (2018) Modulation of EZH2 expression in T cells improves efficacy of anti-CTLA-4 therapy. J Clin Invest 128(9):3813–3818CrossRefPubMedPubMedCentral
88.
Zurück zum Zitat Nakamura T, Mori T, Tada S, Krajewski W, Rozovskaia T, Wassell R, Dubois G, Mazo A, Croce CM, Canaani E (2002) ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol Cell 10(5):1119–1128CrossRefPubMed Nakamura T, Mori T, Tada S, Krajewski W, Rozovskaia T, Wassell R, Dubois G, Mazo A, Croce CM, Canaani E (2002) ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol Cell 10(5):1119–1128CrossRefPubMed
89.
Zurück zum Zitat Yamashita M, Hirahara K, Shinnakasu R, Hosokawa H, Norikane S, Kimura MY, Hasegawa A, Nakayama T (2006) Crucial role of MLL for the maintenance of memory T helper type 2 cell responses. Immunity 24(5):611–622CrossRefPubMed Yamashita M, Hirahara K, Shinnakasu R, Hosokawa H, Norikane S, Kimura MY, Hasegawa A, Nakayama T (2006) Crucial role of MLL for the maintenance of memory T helper type 2 cell responses. Immunity 24(5):611–622CrossRefPubMed
90.
Zurück zum Zitat Schaller M, Ito T, Allen RM, Kroetz D, Kittan N, Ptaschinski C, Cavassani K, Carson WF, Godessart N, Grembecka J, Cierpicki T, Dou Y, Kunkel SL (2015) Epigenetic regulation of IL-12-dependent T cell proliferation. J Leukoc Biol 98(4):601–613CrossRefPubMedPubMedCentral Schaller M, Ito T, Allen RM, Kroetz D, Kittan N, Ptaschinski C, Cavassani K, Carson WF, Godessart N, Grembecka J, Cierpicki T, Dou Y, Kunkel SL (2015) Epigenetic regulation of IL-12-dependent T cell proliferation. J Leukoc Biol 98(4):601–613CrossRefPubMedPubMedCentral
91.
Zurück zum Zitat Placek K, Hu GQ, Cui KR et al (2017) MLL4 prepares the enhancer landscape for Foxp3 induction via chromatin looping. Nat Immunol 18(9):1035–103+CrossRefPubMedPubMedCentral Placek K, Hu GQ, Cui KR et al (2017) MLL4 prepares the enhancer landscape for Foxp3 induction via chromatin looping. Nat Immunol 18(9):1035–103+CrossRefPubMedPubMedCentral
92.
Zurück zum Zitat Hong SH, Cho YW, Yu LR et al (2007) Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proc Natl Acad Sci U S A 104(47):18439–18444CrossRefPubMedPubMedCentral Hong SH, Cho YW, Yu LR et al (2007) Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proc Natl Acad Sci U S A 104(47):18439–18444CrossRefPubMedPubMedCentral
93.
Zurück zum Zitat Wang CC, Lee JE, Cho YW et al (2012) UTX regulates mesoderm differentiation of embryonic stem cells independent of H3K27 demethylase activity. Proc Natl Acad Sci U S A 109(38):15324–15329CrossRefPubMedPubMedCentral Wang CC, Lee JE, Cho YW et al (2012) UTX regulates mesoderm differentiation of embryonic stem cells independent of H3K27 demethylase activity. Proc Natl Acad Sci U S A 109(38):15324–15329CrossRefPubMedPubMedCentral
94.
Zurück zum Zitat Manna S, Kim JK, Bauge C et al (2015) Histone H3 lysine 27 demethylases Jmjd3 and Utx are required for T-cell differentiation. Nat Commun 6:8152CrossRefPubMed Manna S, Kim JK, Bauge C et al (2015) Histone H3 lysine 27 demethylases Jmjd3 and Utx are required for T-cell differentiation. Nat Commun 6:8152CrossRefPubMed
95.
Zurück zum Zitat Ntziachristos P, Tsirigos A, Welstead GG, Trimarchi T, Bakogianni S, Xu L, Loizou E, Holmfeldt L, Strikoudis A, King B, Mullenders J, Becksfort J, Nedjic J, Paietta E, Tallman MS, Rowe JM, Tonon G, Satoh T, Kruidenier L, Prinjha R, Akira S, van Vlierberghe P, Ferrando AA, Jaenisch R, Mullighan CG, Aifantis I (2014) Contrasting roles of histone 3 lysine 27 demethylases in acute lymphoblastic leukaemia. Nature 514(7523):513–517CrossRefPubMedPubMedCentral Ntziachristos P, Tsirigos A, Welstead GG, Trimarchi T, Bakogianni S, Xu L, Loizou E, Holmfeldt L, Strikoudis A, King B, Mullenders J, Becksfort J, Nedjic J, Paietta E, Tallman MS, Rowe JM, Tonon G, Satoh T, Kruidenier L, Prinjha R, Akira S, van Vlierberghe P, Ferrando AA, Jaenisch R, Mullighan CG, Aifantis I (2014) Contrasting roles of histone 3 lysine 27 demethylases in acute lymphoblastic leukaemia. Nature 514(7523):513–517CrossRefPubMedPubMedCentral
96.
Zurück zum Zitat Li QT, Zou J, Wang MJ et al (2014) Critical role of histone demethylase Jmjd3 in the regulation of CD4(+) T-cell differentiation. Nat Commun 5:5780CrossRefPubMed Li QT, Zou J, Wang MJ et al (2014) Critical role of histone demethylase Jmjd3 in the regulation of CD4(+) T-cell differentiation. Nat Commun 5:5780CrossRefPubMed
97.
Zurück zum Zitat Liu Z, Cao W, Xu LX et al (2015) The histone H3 lysine-27 demethylase Jmjd3 plays a critical role in specific regulation of Th17 cell differentiation. J Mol Cell Biol 7(6):505–516CrossRefPubMed Liu Z, Cao W, Xu LX et al (2015) The histone H3 lysine-27 demethylase Jmjd3 plays a critical role in specific regulation of Th17 cell differentiation. J Mol Cell Biol 7(6):505–516CrossRefPubMed
98.
Metadaten
Titel
Regulation of T cell differentiation and function by epigenetic modification enzymes
verfasst von
Huicheng Liu
Pingfei Li
Zhengping Wei
Cai Zhang
Minghui Xia
Qiuyang Du
Yufei Chen
Na Liu
Huabin Li
Xiang-Ping Yang
Publikationsdatum
08.04.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Seminars in Immunopathology / Ausgabe 3/2019
Print ISSN: 1863-2297
Elektronische ISSN: 1863-2300
DOI
https://doi.org/10.1007/s00281-019-00731-w

Weitere Artikel der Ausgabe 3/2019

Seminars in Immunopathology 3/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.