Skip to main content
Erschienen in: International Journal of Hematology 6/2018

03.05.2018 | Progress in Hematology

Regulation of unfolded protein response in hematopoietic stem cells

verfasst von: Valgardur Sigurdsson, Kenichi Miharada

Erschienen in: International Journal of Hematology | Ausgabe 6/2018

Einloggen, um Zugang zu erhalten

Abstract

Hematopoietic stem cells (HSCs) play a central role in hematopoietic regeneration, which has been demonstrated by thorough studies. In contrast, the cell cycle status and metabolic condition of HSCs define these cells as dormant. Recent studies have also revealed that protein metabolism is quite unique, as dormant HSCs have a lower protein synthesis rate and folding capacity. Under proliferative conditions, upon hematopoietic stress, HSCs need to deal with higher requirements of protein production to achieve fast and effective blood replenishment. In such cases, increased protein synthesis could exceed the capacity of precise protein quality control, leading to the accumulation of unfolded and misfolded proteins. In turn, this triggers endoplasmic reticulum (ER) stress as a part of the unfolded protein response (UPR). Since ER stress is a multi-layered, bidirectional cellular response that contains both positive (survival) and negative (death) reactions, proper management of UPR and ER stress signals is crucial for HSCs and also for maintaining the healthy hematopoietic system. In this review, we introduce the latest findings in this emerging field within hematopoiesis and HSC regulation.
Literatur
2.
5.
Zurück zum Zitat Signer RA, Magee JA, Salic A, et al. Haematopoietic stem cells require a highly regulated protein synthesis rate. Nature. 2014;509(7498):49–54.CrossRefPubMedPubMedCentral Signer RA, Magee JA, Salic A, et al. Haematopoietic stem cells require a highly regulated protein synthesis rate. Nature. 2014;509(7498):49–54.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Sigurdsson V, Takei H, Soboleva S, et al. Bile acids protect expanding hematopoietic stem cells from unfolded protein stress in fetal liver. Cell Stem Cell. 2016;18(4):522–32.CrossRefPubMed Sigurdsson V, Takei H, Soboleva S, et al. Bile acids protect expanding hematopoietic stem cells from unfolded protein stress in fetal liver. Cell Stem Cell. 2016;18(4):522–32.CrossRefPubMed
7.
Zurück zum Zitat Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334(6059):1081–6.CrossRefPubMed Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334(6059):1081–6.CrossRefPubMed
8.
Zurück zum Zitat Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007;8(7):519–29.CrossRefPubMed Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007;8(7):519–29.CrossRefPubMed
9.
Zurück zum Zitat Miharada K, Sigurdsson V, Karlsson S. Dppa5 improves hematopoietic stem cell activity by reducing endoplasmic reticulum stress. Cell Rep. 2014;7(5):1381–92.CrossRefPubMed Miharada K, Sigurdsson V, Karlsson S. Dppa5 improves hematopoietic stem cell activity by reducing endoplasmic reticulum stress. Cell Rep. 2014;7(5):1381–92.CrossRefPubMed
10.
Zurück zum Zitat van Galen P, Kreso A, Mbong N, et al. The unfolded protein response governs integrity of the haematopoietic stem-cell pool during stress. Nature. 2014;510(7504):268–72.CrossRefPubMed van Galen P, Kreso A, Mbong N, et al. The unfolded protein response governs integrity of the haematopoietic stem-cell pool during stress. Nature. 2014;510(7504):268–72.CrossRefPubMed
12.
Zurück zum Zitat Hartl FU, Hayer-Hartl M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science. 2002;295(5561):1852–8.CrossRefPubMed Hartl FU, Hayer-Hartl M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science. 2002;295(5561):1852–8.CrossRefPubMed
14.
Zurück zum Zitat Tannous A, Pisoni GB, Hebert DN, et al. N-linked sugar-regulated protein folding and quality control in the ER. Semin Cell Dev Biol. 2015;41:79–89.CrossRefPubMed Tannous A, Pisoni GB, Hebert DN, et al. N-linked sugar-regulated protein folding and quality control in the ER. Semin Cell Dev Biol. 2015;41:79–89.CrossRefPubMed
15.
Zurück zum Zitat Kim YE, Hipp MS, Bracher A, et al. Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem. 2013;82:323–55.CrossRefPubMed Kim YE, Hipp MS, Bracher A, et al. Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem. 2013;82:323–55.CrossRefPubMed
16.
Zurück zum Zitat Morrow G, Hightower LE, Tanguay RM. Small heat shock proteins: big folding machines. Cell Stress Chaperones. 2015;20(2):207–12.CrossRefPubMed Morrow G, Hightower LE, Tanguay RM. Small heat shock proteins: big folding machines. Cell Stress Chaperones. 2015;20(2):207–12.CrossRefPubMed
17.
Zurück zum Zitat Meusser B, Hirsch C, Jarosch E, Sommer T. ERAD: the long road to destruction. Nat Cell Biol. 2005;7(8):766–72.CrossRefPubMed Meusser B, Hirsch C, Jarosch E, Sommer T. ERAD: the long road to destruction. Nat Cell Biol. 2005;7(8):766–72.CrossRefPubMed
18.
Zurück zum Zitat Bozaykut P, Ozer NK, Karademir B. Regulation of protein turnover by heat shock proteins. Free Radic Biol Med. 2014;77:195–209.CrossRefPubMed Bozaykut P, Ozer NK, Karademir B. Regulation of protein turnover by heat shock proteins. Free Radic Biol Med. 2014;77:195–209.CrossRefPubMed
19.
Zurück zum Zitat Luo B, Lee AS. The critical roles of endoplasmic reticulum chaperones and unfolded protein response in tumorigenesis and anticancer therapies. Oncogene. 2013;32(7):805–18.CrossRefPubMed Luo B, Lee AS. The critical roles of endoplasmic reticulum chaperones and unfolded protein response in tumorigenesis and anticancer therapies. Oncogene. 2013;32(7):805–18.CrossRefPubMed
20.
Zurück zum Zitat Hetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol. 2012;13(2):89–102.CrossRefPubMed Hetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol. 2012;13(2):89–102.CrossRefPubMed
21.
22.
Zurück zum Zitat Yoshida H. Unconventional splicing of XBP-1 mRNA in the unfolded protein response. Antioxid Redox Signal. 2007;9(12):2323–33.CrossRefPubMed Yoshida H. Unconventional splicing of XBP-1 mRNA in the unfolded protein response. Antioxid Redox Signal. 2007;9(12):2323–33.CrossRefPubMed
23.
Zurück zum Zitat Yoshida H, Matsui T, Yamamoto A, et al. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell. 2001;107(7):881 – 91.CrossRefPubMed Yoshida H, Matsui T, Yamamoto A, et al. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell. 2001;107(7):881 – 91.CrossRefPubMed
24.
Zurück zum Zitat Ma Y, Hendershot LM. Delineation of a negative feedback regulatory loop that controls protein translation during endoplasmic reticulum stress. J Biol Chem. 2003;278(37):34864–73.CrossRefPubMed Ma Y, Hendershot LM. Delineation of a negative feedback regulatory loop that controls protein translation during endoplasmic reticulum stress. J Biol Chem. 2003;278(37):34864–73.CrossRefPubMed
25.
Zurück zum Zitat Zinszner H, Kuroda M, Wang X, et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev. 1998;12(7):982 – 95.CrossRefPubMedPubMedCentral Zinszner H, Kuroda M, Wang X, et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev. 1998;12(7):982 – 95.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Sano R, Reed JC. ER stress-induced cell death mechanisms. Biochim Biophys Acta. 2013;1833(12):3460–70.CrossRefPubMed Sano R, Reed JC. ER stress-induced cell death mechanisms. Biochim Biophys Acta. 2013;1833(12):3460–70.CrossRefPubMed
27.
Zurück zum Zitat Eizirik DL, Cnop M. ER stress in pancreatic beta cells: the thin red line between adaptation and failure. Sci Signal. 2010;3(110):pe7.CrossRefPubMed Eizirik DL, Cnop M. ER stress in pancreatic beta cells: the thin red line between adaptation and failure. Sci Signal. 2010;3(110):pe7.CrossRefPubMed
28.
Zurück zum Zitat Gass JN, Gunn KE, Sriburi R, et al. Stressed-out B cells? Plasma-cell differentiation and the unfolded protein response. Trends Immunol. 2004;25(1):17–24.CrossRefPubMed Gass JN, Gunn KE, Sriburi R, et al. Stressed-out B cells? Plasma-cell differentiation and the unfolded protein response. Trends Immunol. 2004;25(1):17–24.CrossRefPubMed
29.
Zurück zum Zitat Reimold AM, Iwakoshi NN, Manis J, et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature. 2001;412(6844):300–7.CrossRefPubMed Reimold AM, Iwakoshi NN, Manis J, et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature. 2001;412(6844):300–7.CrossRefPubMed
31.
Zurück zum Zitat Halbleib K, Pesek K, Covino R, et al. Activation of the unfolded protein response by lipid bilayer stress. Mol Cell. 2017;67(4):673–84.e8.CrossRefPubMed Halbleib K, Pesek K, Covino R, et al. Activation of the unfolded protein response by lipid bilayer stress. Mol Cell. 2017;67(4):673–84.e8.CrossRefPubMed
32.
Zurück zum Zitat Suda T, Takubo K, Semenza GL. Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell. 2011;9(4):298–310.CrossRefPubMed Suda T, Takubo K, Semenza GL. Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell. 2011;9(4):298–310.CrossRefPubMed
33.
Zurück zum Zitat Miharada K, Karlsson G, Rehn M, et al. Cripto regulates hematopoietic stem cells as a hypoxic-niche-related factor through cell surface receptor GRP78. Cell Stem Cell. 2011;9(4):330–44.CrossRefPubMed Miharada K, Karlsson G, Rehn M, et al. Cripto regulates hematopoietic stem cells as a hypoxic-niche-related factor through cell surface receptor GRP78. Cell Stem Cell. 2011;9(4):330–44.CrossRefPubMed
34.
Zurück zum Zitat Wouters BG, Koritzinsky M. Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer. 2008;8(11):851–64.CrossRefPubMed Wouters BG, Koritzinsky M. Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer. 2008;8(11):851–64.CrossRefPubMed
35.
Zurück zum Zitat Rouault-Pierre K, Lopez-Onieva L, Foster K, et al. HIF-2α protects human hematopoietic stem/progenitors and acute myeloid leukemic cells from apoptosis induced by endoplasmic reticulum stress. Cell Stem Cell. 2013;13(5):549–63.CrossRefPubMed Rouault-Pierre K, Lopez-Onieva L, Foster K, et al. HIF-2α protects human hematopoietic stem/progenitors and acute myeloid leukemic cells from apoptosis induced by endoplasmic reticulum stress. Cell Stem Cell. 2013;13(5):549–63.CrossRefPubMed
36.
Zurück zum Zitat Iwawaki T, Akai R, Kohno K, et al. A transgenic mouse model for monitoring endoplasmic reticulum stress. Nat Med. 2004;10(1):98–102.CrossRefPubMed Iwawaki T, Akai R, Kohno K, et al. A transgenic mouse model for monitoring endoplasmic reticulum stress. Nat Med. 2004;10(1):98–102.CrossRefPubMed
37.
Zurück zum Zitat Zhao Y, Zhou J, Liu D, et al. ATF4 plays a pivotal role in the development of functional hematopoietic stem cells in mouse fetal liver. Blood. 2015;126(21):2383–91.CrossRefPubMedPubMedCentral Zhao Y, Zhou J, Liu D, et al. ATF4 plays a pivotal role in the development of functional hematopoietic stem cells in mouse fetal liver. Blood. 2015;126(21):2383–91.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Iwawaki T, Akai R, Yamanaka S, et al. Function of IRE1 alpha in the placenta is essential for placental development and embryonic viability. Proc Natl Acad Sci USA. 2009;106(39):16657–62.CrossRefPubMedPubMedCentral Iwawaki T, Akai R, Yamanaka S, et al. Function of IRE1 alpha in the placenta is essential for placental development and embryonic viability. Proc Natl Acad Sci USA. 2009;106(39):16657–62.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Reimold AM, Etkin A, Clauss I, et al. An essential role in liver development for transcription factor XBP-1. Genes Dev. 2000;14(2):152–7.PubMedPubMedCentral Reimold AM, Etkin A, Clauss I, et al. An essential role in liver development for transcription factor XBP-1. Genes Dev. 2000;14(2):152–7.PubMedPubMedCentral
40.
Zurück zum Zitat Yamamoto K, Sato T, Matsui T, et al. Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1. Dev Cell. 2007;13(3):365–76.CrossRefPubMed Yamamoto K, Sato T, Matsui T, et al. Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1. Dev Cell. 2007;13(3):365–76.CrossRefPubMed
41.
Zurück zum Zitat Pina C, Teles J, Fugazza C, et al. Single-cell network analysis identifies Ddit3 as a nodal lineage regulator in hematopoiesis. Cell Rep. 2015;11(10):1503–10.CrossRefPubMedPubMedCentral Pina C, Teles J, Fugazza C, et al. Single-cell network analysis identifies Ddit3 as a nodal lineage regulator in hematopoiesis. Cell Rep. 2015;11(10):1503–10.CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Walasek MA, van Os R, de Haan G. Hematopoietic stem cell expansion: challenges and opportunities. Ann N Y Acad Sci. 2012;1266:138–50.CrossRefPubMed Walasek MA, van Os R, de Haan G. Hematopoietic stem cell expansion: challenges and opportunities. Ann N Y Acad Sci. 2012;1266:138–50.CrossRefPubMed
43.
Zurück zum Zitat Ito K, Hirao A, Arai F, et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med. 2006;12(4):446–51.CrossRefPubMed Ito K, Hirao A, Arai F, et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med. 2006;12(4):446–51.CrossRefPubMed
44.
Zurück zum Zitat Ozcan U, Yilmaz E, Ozcan L, et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science. 2006;313(5790):1137–40.CrossRefPubMedPubMedCentral Ozcan U, Yilmaz E, Ozcan L, et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science. 2006;313(5790):1137–40.CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Ema H, Nakauchi H. Expansion of hematopoietic stem cells in the developing liver of a mouse embryo. Blood. 2000;95(7):2284–8.PubMed Ema H, Nakauchi H. Expansion of hematopoietic stem cells in the developing liver of a mouse embryo. Blood. 2000;95(7):2284–8.PubMed
46.
Zurück zum Zitat Mikkola H, Orkin SH. The journey of developing hematopoietic stem cells. Development. 2006;133(19):3733–44.CrossRefPubMed Mikkola H, Orkin SH. The journey of developing hematopoietic stem cells. Development. 2006;133(19):3733–44.CrossRefPubMed
47.
Zurück zum Zitat Nakagawa M, Setchell KD. Bile acid metabolism in early life: studies of amniotic fluid. J Lipid Res. 1990;31(6):1089–98.PubMed Nakagawa M, Setchell KD. Bile acid metabolism in early life: studies of amniotic fluid. J Lipid Res. 1990;31(6):1089–98.PubMed
48.
Zurück zum Zitat Itoh S, Onishi S. Hepatic taurine, glycine and individual bile acids in early human fetus. Early Hum Dev. 2000;57(1):71–7.CrossRefPubMed Itoh S, Onishi S. Hepatic taurine, glycine and individual bile acids in early human fetus. Early Hum Dev. 2000;57(1):71–7.CrossRefPubMed
50.
Zurück zum Zitat Rosen H, Reshef A, Maeda N, et al. Markedly reduced bile acid synthesis but maintained levels of cholesterol and vitamin D metabolites in mice with disrupted Sterol 27-hydroxylase gene. J Biol Chem. 1998;273(24):14805–12.CrossRefPubMed Rosen H, Reshef A, Maeda N, et al. Markedly reduced bile acid synthesis but maintained levels of cholesterol and vitamin D metabolites in mice with disrupted Sterol 27-hydroxylase gene. J Biol Chem. 1998;273(24):14805–12.CrossRefPubMed
51.
Zurück zum Zitat Boyce M, Bryant KF, Jousse C, et al. A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science. 2005;307(5711):935–9.CrossRefPubMed Boyce M, Bryant KF, Jousse C, et al. A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science. 2005;307(5711):935–9.CrossRefPubMed
52.
Zurück zum Zitat Bershtein S, Mu W, Serohijos AW, et al. Protein quality control acts on folding intermediates to shape the effects of mutations on organismal fitness. Mol Cell. 2013;49(1):133–44.CrossRefPubMed Bershtein S, Mu W, Serohijos AW, et al. Protein quality control acts on folding intermediates to shape the effects of mutations on organismal fitness. Mol Cell. 2013;49(1):133–44.CrossRefPubMed
53.
Zurück zum Zitat Li-Hawkins J, Gåfvels M, Olin M, et al. Cholic acid mediates negative feedback regulation of bile acid synthesis in mice. J Clin Invest. 2002;110(8):1191–200.CrossRefPubMedPubMedCentral Li-Hawkins J, Gåfvels M, Olin M, et al. Cholic acid mediates negative feedback regulation of bile acid synthesis in mice. J Clin Invest. 2002;110(8):1191–200.CrossRefPubMedPubMedCentral
54.
Zurück zum Zitat Nakada D, Oguro H, Levi BP, et al. Oestrogen increases haematopoietic stem- cell self-renewal in females and during pregnancy. Nature. 2014;505(7484):555–8.CrossRefPubMedPubMedCentral Nakada D, Oguro H, Levi BP, et al. Oestrogen increases haematopoietic stem- cell self-renewal in females and during pregnancy. Nature. 2014;505(7484):555–8.CrossRefPubMedPubMedCentral
55.
Zurück zum Zitat Chapple RH, Hu T, Tseng YJ, et al. ERα promotes murine hematopoietic regeneration through the Ire1α-mediated unfolded protein response. Elife. 2018;7:e31159.CrossRefPubMedPubMedCentral Chapple RH, Hu T, Tseng YJ, et al. ERα promotes murine hematopoietic regeneration through the Ire1α-mediated unfolded protein response. Elife. 2018;7:e31159.CrossRefPubMedPubMedCentral
56.
Zurück zum Zitat Wahlestedt M, Pronk CJ, Bryder D. Concise review: hematopoietic stem cell aging and the prospects for rejuvenation. Stem Cells Transl Med. 2015;4(2):186–94.CrossRefPubMed Wahlestedt M, Pronk CJ, Bryder D. Concise review: hematopoietic stem cell aging and the prospects for rejuvenation. Stem Cells Transl Med. 2015;4(2):186–94.CrossRefPubMed
57.
58.
Zurück zum Zitat Luchsinger LL, de Almeida MJ, Corrigan DJ, et al. Mitofusin 2 maintains haematopoietic stem cells with extensive lymphoid potential. Nature. 2016;529(7587):528–31.CrossRefPubMedPubMedCentral Luchsinger LL, de Almeida MJ, Corrigan DJ, et al. Mitofusin 2 maintains haematopoietic stem cells with extensive lymphoid potential. Nature. 2016;529(7587):528–31.CrossRefPubMedPubMedCentral
59.
Zurück zum Zitat Qian P, He XC, Paulson A, et al. The Dlk1-Gtl2 locus preserves lt-hsc function by inhibiting the PI3K-mTOR pathway to restrict mitochondrial metabolism. Cell Stem Cell. 2016;18(2):214–28.CrossRefPubMed Qian P, He XC, Paulson A, et al. The Dlk1-Gtl2 locus preserves lt-hsc function by inhibiting the PI3K-mTOR pathway to restrict mitochondrial metabolism. Cell Stem Cell. 2016;18(2):214–28.CrossRefPubMed
60.
Zurück zum Zitat Ito K, Turcotte R, Cui J, et al. Self-renewal of a purified Tie2 + hematopoietic stem cell population relies on mitochondrial clearance. Science. 2016;354(6316):1156–60.CrossRefPubMedPubMedCentral Ito K, Turcotte R, Cui J, et al. Self-renewal of a purified Tie2 + hematopoietic stem cell population relies on mitochondrial clearance. Science. 2016;354(6316):1156–60.CrossRefPubMedPubMedCentral
61.
Zurück zum Zitat Ansó E, Weinberg SE, Diebold LP, et al. The mitochondrial respiratory chain is essential for haematopoietic stem cell function. Nat Cell Biol. 2017;19(6):614–25.CrossRefPubMedPubMedCentral Ansó E, Weinberg SE, Diebold LP, et al. The mitochondrial respiratory chain is essential for haematopoietic stem cell function. Nat Cell Biol. 2017;19(6):614–25.CrossRefPubMedPubMedCentral
63.
Zurück zum Zitat Mohrin M, Shin J, Liu Y, et al. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science. 2015;347(6228):1374–7.CrossRefPubMedPubMedCentral Mohrin M, Shin J, Liu Y, et al. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science. 2015;347(6228):1374–7.CrossRefPubMedPubMedCentral
64.
Metadaten
Titel
Regulation of unfolded protein response in hematopoietic stem cells
verfasst von
Valgardur Sigurdsson
Kenichi Miharada
Publikationsdatum
03.05.2018
Verlag
Springer Japan
Erschienen in
International Journal of Hematology / Ausgabe 6/2018
Print ISSN: 0925-5710
Elektronische ISSN: 1865-3774
DOI
https://doi.org/10.1007/s12185-018-2458-7

Weitere Artikel der Ausgabe 6/2018

International Journal of Hematology 6/2018 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.