Skip to main content
main-content

01.12.2017 | Research article | Ausgabe 1/2017 Open Access

BMC Medicine 1/2017

Relationship between salivary/pancreatic amylase and body mass index: a systems biology approach

Zeitschrift:
BMC Medicine > Ausgabe 1/2017
Autoren:
Amélie Bonnefond, Loïc Yengo, Aurélie Dechaume, Mickaël Canouil, Maxime Castelain, Estelle Roger, Frédéric Allegaert, Robert Caiazzo, Violeta Raverdy, Marie Pigeyre, Abdelilah Arredouani, Jean-Michel Borys, Claire Lévy-Marchal, Jacques Weill, Ronan Roussel, Beverley Balkau, Michel Marre, François Pattou, Thierry Brousseau, Philippe Froguel
Wichtige Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​s12916-017-0784-x) contains supplementary material, which is available to authorized users.

Abstract

Background

Salivary (AMY1) and pancreatic (AMY2) amylases hydrolyze starch. Copy number of AMY1A (encoding AMY1) was reported to be higher in populations with a high-starch diet and reduced in obese people. These results based on quantitative PCR have been challenged recently. We aimed to re-assess the relationship between amylase and adiposity using a systems biology approach.

Methods

We assessed the association between plasma enzymatic activity of AMY1 or AMY2, and several metabolic traits in almost 4000 French individuals from D.E.S.I.R. longitudinal study. The effect of the number of copies of AMY1A (encoding AMY1) or AMY2A (encoding AMY2) measured through droplet digital PCR was then analyzed on the same parameters in the same study. A Mendelian randomization analysis was also performed. We subsequently assessed the association between AMY1A copy number and obesity risk in two case-control studies (5000 samples in total). Finally, we assessed the association between body mass index (BMI)-related plasma metabolites and AMY1 or AMY2 activity.

Results

We evidenced strong associations between AMY1 or AMY2 activity and lower BMI. However, we found a modest contribution of AMY1A copy number to lower BMI. Mendelian randomization identified a causal negative effect of BMI on AMY1 and AMY2 activities. Yet, we also found a significant negative contribution of AMY1 activity at baseline to the change in BMI during the 9-year follow-up, and a significant contribution of AMY1A copy number to lower obesity risk in children, suggesting a bidirectional relationship between AMY1 activity and adiposity. Metabonomics identified a BMI-independent association between AMY1 activity and lactate, a product of complex carbohydrate fermentation.

Conclusions

These findings provide new insights into the involvement of amylase in adiposity and starch metabolism.
Zusatzmaterial
Additional file 10: BMI (means ± s.e.m.) according to ddPCR-estimated AMY1A copy number in several sets of D.E.S.I.R.: (i) the first set of 2137 samples previously analyzed by qPCR in Falchi et al. [3] paper; (ii) the second set of “all samples minus those 2137 samples (=1463 samples)”, and (iii) all samples from D.E.S.I.R. (DOC 187 kb)
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2017

BMC Medicine 1/2017 Zur Ausgabe

Neu im Fachgebiet Allgemeinmedizin

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Allgemeinmedizin und bleiben Sie gut informiert – ganz bequem per eMail.

Bildnachweise