Skip to main content
Erschienen in: Sports Medicine 10/2020

01.07.2020 | Systematic Review

Relative Proximity of Critical Power and Metabolic/Ventilatory Thresholds: Systematic Review and Meta-Analysis

verfasst von: Miguel Ángel Galán-Rioja, Fernando González-Mohíno, David C. Poole, José Mª González-Ravé

Erschienen in: Sports Medicine | Ausgabe 10/2020

Einloggen, um Zugang zu erhalten

Abstract

Background

Critical power (CP) has been redefined as the new ‘gold standard’ that represents the boundary between the heavy- and severe-exercise intensity domains and hence the maximal metabolic steady state (MMSS). However, several other “thresholds”, for instance, the maximal lactate steady state [MLSS], ventilatory thresholds [VT1, VT2] and respiratory compensation point [RCP]) have been considered synonymous with CP.

Objective

This study aimed to systematically review the scientific literature and perform a meta-analysis to determine the degree of correspondence/difference between CP and MLSS, VT1, VT2 and RCP.

Methods

A literature search on 2 databases (Scopus and Web of Science) was conducted on October 2, 2019. After analyzing 356 resultant articles, studies were included if they met the following inclusion criteria: (a) studies were randomized controlled trials, (b) studies included interrelations between CP and VT1, VT2, MLSS, RCP. Articles were excluded if they constituted duplicate articles or did not meet the inclusion criteria. Nine studies met the inclusion criteria and were included in this meta-analysis. This resulted in 104 participants. A random effects weighted meta-analysis with correlation coefficients was used to pool the results.

Results

The pooled correlation coefficient of CP and all thresholds analyzed was r = 0.73 (p > 0.00001). The subgroup analysis for each threshold with CP demonstrated significant correlation coefficients of r = 0.80 (95% CI [0.40; 1.21], Z = 3.90, p = 0.0001) for CP & RCP; r = 0.77 (CI 95% = [0.36; 1.18], Z = 3.71, p = 0.0002) for CP & MLSS; r = 0.76 (CI 95% = [0.31; 1.21], Z = 3.32, p = 0.0009) for CP & VT1. However, CP & VT2r = 0.39 (CI 95% = [− 0.37; 1.15], Z = 1.01, p = 0.31) were not significantly correlated. Despite the significant correlations between CP and VT1, MLSS and RCP these variables and VT2 under- (VT1, 30%; MLSS, 11%) or over-estimated (RCP, 6%; VT2, 21%) CP.

Conclusion

Regardless of the presence of significant correlations among CP and ventilatory or metabolic thresholds CP differs significantly from each. Thus, logically, if CP represents the best estimate of the heavy-severe exercise intensity transition none of the thresholds considered (i.e., VT1, VT2, MLSS, RCP), at least as determined in the studies analyzed herein, should be considered synonymous with such.
Literatur
1.
Zurück zum Zitat Hill AV. The physiological basis of athletic records. Nature. 1925;116:544–8. Hill AV. The physiological basis of athletic records. Nature. 1925;116:544–8.
2.
Zurück zum Zitat Monod H, Scherrer J. Capacity for static work in a synergistic muscular group in man. C R Seances Soc Biol Fil. 1957;151(7):1358–62.PubMed Monod H, Scherrer J. Capacity for static work in a synergistic muscular group in man. C R Seances Soc Biol Fil. 1957;151(7):1358–62.PubMed
3.
Zurück zum Zitat Poole DC, Ward SA, Gardner GW, Whipp BJ. Metabolic and respiratory profile of the upper limit for prolonged exercise in man. Ergonomics. 1988;31:1265–79.PubMed Poole DC, Ward SA, Gardner GW, Whipp BJ. Metabolic and respiratory profile of the upper limit for prolonged exercise in man. Ergonomics. 1988;31:1265–79.PubMed
4.
Zurück zum Zitat Poole DC, Burnley M, Vanhatalo A, Rossiter HB, Jones AM. Critical power: an important fatigue threshold in exercise physiology. Med Sci Sports Exerc. 2016;48(11):2320–34.PubMedPubMedCentral Poole DC, Burnley M, Vanhatalo A, Rossiter HB, Jones AM. Critical power: an important fatigue threshold in exercise physiology. Med Sci Sports Exerc. 2016;48(11):2320–34.PubMedPubMedCentral
5.
Zurück zum Zitat Jones AM, Carter H. The effect of endurance training on parameters of aerobic fitness. Sports Med. 2000;29(6):373–86.PubMed Jones AM, Carter H. The effect of endurance training on parameters of aerobic fitness. Sports Med. 2000;29(6):373–86.PubMed
6.
Zurück zum Zitat Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol. 1986;60(6):2020–7.PubMed Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol. 1986;60(6):2020–7.PubMed
7.
Zurück zum Zitat Jones AM, Wilkerson DP, DiMenna F, Fulford J, Poole DC. Muscle metabolic responses to exercise above and below the ‘‘critical power’’ assessed using 31P-MRS. Am J Physiol Regul Integr Comp Physiol. 2008;294(2):585–93. Jones AM, Wilkerson DP, DiMenna F, Fulford J, Poole DC. Muscle metabolic responses to exercise above and below the ‘‘critical power’’ assessed using 31P-MRS. Am J Physiol Regul Integr Comp Physiol. 2008;294(2):585–93.
8.
Zurück zum Zitat Poole DC, Jones AM. Oxygen uptake kinetics. Compr Physiol. 2012;2(2):933–96.PubMed Poole DC, Jones AM. Oxygen uptake kinetics. Compr Physiol. 2012;2(2):933–96.PubMed
9.
Zurück zum Zitat Holloszy JO, Coyle EF. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol Respir Environ Exerc Physiol. 1984;56(4):831–8.PubMed Holloszy JO, Coyle EF. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol Respir Environ Exerc Physiol. 1984;56(4):831–8.PubMed
10.
Zurück zum Zitat Jones AM, Burnley M, Black MI, Poole DC, Vanhatalo A. The maximal metabolic steady state: redefining the ‘gold standard’. Physiol Rep. 2019;7(10):e14098.PubMedPubMedCentral Jones AM, Burnley M, Black MI, Poole DC, Vanhatalo A. The maximal metabolic steady state: redefining the ‘gold standard’. Physiol Rep. 2019;7(10):e14098.PubMedPubMedCentral
11.
Zurück zum Zitat Broxterman RM, Ade CJ, Craig JC, Wilcox SL, Schlup SJ, Barstow TJ. The relationship between critical speed and the respiratory compensation point: coincidence or equivalence. Eur J Sport Sci. 2015;15(7):631–9.PubMed Broxterman RM, Ade CJ, Craig JC, Wilcox SL, Schlup SJ, Barstow TJ. The relationship between critical speed and the respiratory compensation point: coincidence or equivalence. Eur J Sport Sci. 2015;15(7):631–9.PubMed
12.
Zurück zum Zitat Pringle JS, Jones AM. Maximal lactate steady state, critical power and EMG during cycling. Eur J Appl Physiol. 2002;88(3):214–26.PubMed Pringle JS, Jones AM. Maximal lactate steady state, critical power and EMG during cycling. Eur J Appl Physiol. 2002;88(3):214–26.PubMed
13.
Zurück zum Zitat Carita RA, Greco CC, Denadai BS. Maximal lactate steady state and critical power in well-trained cyclists. Rev Bras Med Esporte. 2009;15(5):370–3. Carita RA, Greco CC, Denadai BS. Maximal lactate steady state and critical power in well-trained cyclists. Rev Bras Med Esporte. 2009;15(5):370–3.
14.
Zurück zum Zitat Mattioni Maturana F, Keir DA, McLay KM, Murias JM. Can measures of the Critical Power precisely estimate the máximal metabolic steady-state? Appl Physiol Nutr Metab. 2016;41(11):1197–203.PubMed Mattioni Maturana F, Keir DA, McLay KM, Murias JM. Can measures of the Critical Power precisely estimate the máximal metabolic steady-state? Appl Physiol Nutr Metab. 2016;41(11):1197–203.PubMed
15.
Zurück zum Zitat Greco CC, Caritá RA, Dekerle J, Denadai BS. Effect of aerobic training status on both maximal lactate steady state and critical power. Appl Physiol Nutr Metab. 2012;37(4):736–43.PubMed Greco CC, Caritá RA, Dekerle J, Denadai BS. Effect of aerobic training status on both maximal lactate steady state and critical power. Appl Physiol Nutr Metab. 2012;37(4):736–43.PubMed
16.
Zurück zum Zitat Svedahl K, MacIntosh BR. Anaerobic threshold: the concept and methods of measurement. Can J Appl Physiol. 2003;28(2):299–323.PubMed Svedahl K, MacIntosh BR. Anaerobic threshold: the concept and methods of measurement. Can J Appl Physiol. 2003;28(2):299–323.PubMed
17.
Zurück zum Zitat Dekerle J, Baron B, Dupont L, Vanvelcenaher J, Pelayo P. Maximal lactate steady state, respiratory compensation threshold and critical power. Eur J Appl Physiol. 2003;89(3–4):281–8.PubMed Dekerle J, Baron B, Dupont L, Vanvelcenaher J, Pelayo P. Maximal lactate steady state, respiratory compensation threshold and critical power. Eur J Appl Physiol. 2003;89(3–4):281–8.PubMed
18.
Zurück zum Zitat Bergstrom HC, Housh TJ, Zuniga JM, Traylor DA, Camic CL, Lewis RW, et al. The relationships among critical power determined from a 3-min all-out test, respiratory compensation point, gas exchange threshold, and ventilatory threshold. Res Q Exerc Sport. 2013;84(2):232–8.PubMed Bergstrom HC, Housh TJ, Zuniga JM, Traylor DA, Camic CL, Lewis RW, et al. The relationships among critical power determined from a 3-min all-out test, respiratory compensation point, gas exchange threshold, and ventilatory threshold. Res Q Exerc Sport. 2013;84(2):232–8.PubMed
19.
Zurück zum Zitat Nakamura FY, Okuno NM, Perandini LAB, de Oliveira FR, Bucheit M, Simões HG. Perceived exertion threshold: comparison with ventilatory thersholds and critical power. Sci Sport. 2009;24:196–201. Nakamura FY, Okuno NM, Perandini LAB, de Oliveira FR, Bucheit M, Simões HG. Perceived exertion threshold: comparison with ventilatory thersholds and critical power. Sci Sport. 2009;24:196–201.
20.
Zurück zum Zitat Caen K, Vermeire K, Bourgois JG, Boone J. Exercise thresholds on trial: are they really equivalent? Med Sci Sports Exerc. 2018;50(6):1277–84.PubMed Caen K, Vermeire K, Bourgois JG, Boone J. Exercise thresholds on trial: are they really equivalent? Med Sci Sports Exerc. 2018;50(6):1277–84.PubMed
21.
Zurück zum Zitat Leo JA, Sabapathy S, Simmonds MJ, Cross TJ. The respiratory compensation point is not a valid surrogate for critical power. Med Sci Sports Exerc. 2017;49(7):1452–60.PubMed Leo JA, Sabapathy S, Simmonds MJ, Cross TJ. The respiratory compensation point is not a valid surrogate for critical power. Med Sci Sports Exerc. 2017;49(7):1452–60.PubMed
22.
Zurück zum Zitat Jenkins DG, Quigley BM. Blood lactate in trained cyclists during cycle ergometry at critical power. Eur J Appl Physiol Occup Physiol. 1990;61(3–4):278–83.PubMed Jenkins DG, Quigley BM. Blood lactate in trained cyclists during cycle ergometry at critical power. Eur J Appl Physiol Occup Physiol. 1990;61(3–4):278–83.PubMed
23.
Zurück zum Zitat Bishop D, Jenkins DG, Howard A. The critical power function isdependent on the duration of the predictive exercise tests chosen. Int J Sports Med. 1998;19(2):125–9.PubMed Bishop D, Jenkins DG, Howard A. The critical power function isdependent on the duration of the predictive exercise tests chosen. Int J Sports Med. 1998;19(2):125–9.PubMed
24.
Zurück zum Zitat Beneke R. Anaerobic threshold, individual anaerobic threshold, and maximal lactate steady state in rowing. Med Sci Sports Exerc. 1995;27(6):863–7.PubMed Beneke R. Anaerobic threshold, individual anaerobic threshold, and maximal lactate steady state in rowing. Med Sci Sports Exerc. 1995;27(6):863–7.PubMed
25.
Zurück zum Zitat Jorfeldt L, Juhlin-Dannfelt A, Karlsson J. Lactate release in relation to tissue lactate in human skeletal muscle during exercise. J Appl Physiol Respir Environ Exerc Physiol. 1978;44(3):350–2.PubMed Jorfeldt L, Juhlin-Dannfelt A, Karlsson J. Lactate release in relation to tissue lactate in human skeletal muscle during exercise. J Appl Physiol Respir Environ Exerc Physiol. 1978;44(3):350–2.PubMed
26.
Zurück zum Zitat Wasserman K, McIlroy MB. Detecting the threshold of anaerobic metabolism in cardiac patients during exercise. Am J Cardiol. 1964;14:844–52.PubMed Wasserman K, McIlroy MB. Detecting the threshold of anaerobic metabolism in cardiac patients during exercise. Am J Cardiol. 1964;14:844–52.PubMed
27.
Zurück zum Zitat Whipp BJ. The hyperpnea of dynamic muscular exercise. Exerc Sport Sci Rev. 1977;5:295–311.PubMed Whipp BJ. The hyperpnea of dynamic muscular exercise. Exerc Sport Sci Rev. 1977;5:295–311.PubMed
28.
Zurück zum Zitat Vallier JM, Bigard AX, Carré F, Eclache JP, Mercier J. Détermination des seuils lactiques et ventilatoires. Position de la société française de médecine du sport. Sci Sports. 2000;15:133–40. Vallier JM, Bigard AX, Carré F, Eclache JP, Mercier J. Détermination des seuils lactiques et ventilatoires. Position de la société française de médecine du sport. Sci Sports. 2000;15:133–40.
29.
Zurück zum Zitat Keir DA, Fontana FY, Robertson TC, Murias JM, Paterson DH, Kowalchuk JM, et al. Exercise intensity thresholds: indentifying the boundaries of sustainable performance. Med Sci Sports Exerc. 2015;47(9):1932–40.PubMed Keir DA, Fontana FY, Robertson TC, Murias JM, Paterson DH, Kowalchuk JM, et al. Exercise intensity thresholds: indentifying the boundaries of sustainable performance. Med Sci Sports Exerc. 2015;47(9):1932–40.PubMed
30.
Zurück zum Zitat Broxterman RM, Craig JC, Richardson RS. The respiratory compensation point and the deoxygenation break point are not valid surrogates for critical power and maximum lactate steady state. Med Sci Sports Exerc. 2018;50(11):2379–82.PubMed Broxterman RM, Craig JC, Richardson RS. The respiratory compensation point and the deoxygenation break point are not valid surrogates for critical power and maximum lactate steady state. Med Sci Sports Exerc. 2018;50(11):2379–82.PubMed
31.
Zurück zum Zitat Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA Statement. PLoS Med. 2009;6(7):e1000097.PubMedPubMedCentral Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA Statement. PLoS Med. 2009;6(7):e1000097.PubMedPubMedCentral
32.
Zurück zum Zitat de Morton NA. The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust J Physiother. 2009;55(2):129–33.PubMed de Morton NA. The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust J Physiother. 2009;55(2):129–33.PubMed
33.
Zurück zum Zitat Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83(8):713–21.PubMed Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83(8):713–21.PubMed
35.
Zurück zum Zitat González-Mohíno F, Santos-Concejero J, Yustres I, González-Ravé JM. The effects of interval and continuous training on the oxygen cost of running in recreational runners: a systematic review and meta-analysis. Sport Med. 2020;50(2):283–94. González-Mohíno F, Santos-Concejero J, Yustres I, González-Ravé JM. The effects of interval and continuous training on the oxygen cost of running in recreational runners: a systematic review and meta-analysis. Sport Med. 2020;50(2):283–94.
36.
Zurück zum Zitat Review Manager (RevMan) [Windows 10] (2014) Version 5.3. Copenhagen: the Nordic Cochrane Centre, The Cochrane Collaboration Review Manager (RevMan) [Windows 10] (2014) Version 5.3. Copenhagen: the Nordic Cochrane Centre, The Cochrane Collaboration
37.
Zurück zum Zitat Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol. 2009;62(10):e1–34.PubMed Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol. 2009;62(10):e1–34.PubMed
38.
Zurück zum Zitat Barker T, Poole DC, Noble ML, Barstow TJ. Human critical power–oxygen uptake relationship at different pedalling frequencies. Exp Physiol. 2006;91(3):621–32.PubMed Barker T, Poole DC, Noble ML, Barstow TJ. Human critical power–oxygen uptake relationship at different pedalling frequencies. Exp Physiol. 2006;91(3):621–32.PubMed
39.
Zurück zum Zitat Keir DA, Pogliaghi S, Murias JM. The respiratory compensation point and the deoxygenation break point are valid surrogates for critical power and maximum lactate steady state. Med Sci Sports Exerc. 2018;50(11):2375–8.PubMed Keir DA, Pogliaghi S, Murias JM. The respiratory compensation point and the deoxygenation break point are valid surrogates for critical power and maximum lactate steady state. Med Sci Sports Exerc. 2018;50(11):2375–8.PubMed
40.
Zurück zum Zitat Buchfuhrer MJ, Hansen JE, Robinson TE, Sue DY, Wasserman K, Whipp BJ. Optimizing the exercise protocol for cardiopulmonary assessment. J Appl Physiol Respir Environ Exerc Physiol. 1983;55(5):1558–64.PubMed Buchfuhrer MJ, Hansen JE, Robinson TE, Sue DY, Wasserman K, Whipp BJ. Optimizing the exercise protocol for cardiopulmonary assessment. J Appl Physiol Respir Environ Exerc Physiol. 1983;55(5):1558–64.PubMed
41.
Zurück zum Zitat Honig CR, Gayeski TEJ, Groebe K. Myoglobin and oxygen gradients. In: Crystal RG, West JB, Weibel ER, Barnes PJ, editors. The lung: scientific foundations. New York: Raven Press; 1997. p. 1925–34. Honig CR, Gayeski TEJ, Groebe K. Myoglobin and oxygen gradients. In: Crystal RG, West JB, Weibel ER, Barnes PJ, editors. The lung: scientific foundations. New York: Raven Press; 1997. p. 1925–34.
42.
Zurück zum Zitat Richardson RS, Noyszewski EA, Kendrick KF, Leigh JS, Wagner PD. Myoglobin O2 desaturation during exercise. Evidence of limited O2 transport. J Clin Invest. 1995;96(4):1916–26.PubMedPubMedCentral Richardson RS, Noyszewski EA, Kendrick KF, Leigh JS, Wagner PD. Myoglobin O2 desaturation during exercise. Evidence of limited O2 transport. J Clin Invest. 1995;96(4):1916–26.PubMedPubMedCentral
43.
Zurück zum Zitat Voter WA, Gayeski TE. Determination of myoglobin saturation of frozen specimens using a reflecting cryospectrophotometer. Am J Physiol. 1995;269(4–2):1328–41. Voter WA, Gayeski TE. Determination of myoglobin saturation of frozen specimens using a reflecting cryospectrophotometer. Am J Physiol. 1995;269(4–2):1328–41.
44.
Zurück zum Zitat Gayeski TE, Connett RJ, Honig CR. Oxygen transport in rest-work transition illustrates new functions for myoglobin. Am J Physiol. 1985;248(6–2):914–21. Gayeski TE, Connett RJ, Honig CR. Oxygen transport in rest-work transition illustrates new functions for myoglobin. Am J Physiol. 1985;248(6–2):914–21.
45.
Zurück zum Zitat Brooks GA. Anaerobic threshold: review of the concept and directions for future research. Med Sci Sports Exerc. 1985;17(1):22–34.PubMed Brooks GA. Anaerobic threshold: review of the concept and directions for future research. Med Sci Sports Exerc. 1985;17(1):22–34.PubMed
46.
Zurück zum Zitat Moritani T, Nagata A, deVries HA, Muro M. Critical power as a measure of physical work capacity and anaerobic threshold. Ergonomics. 1981;24(5):339–50.PubMed Moritani T, Nagata A, deVries HA, Muro M. Critical power as a measure of physical work capacity and anaerobic threshold. Ergonomics. 1981;24(5):339–50.PubMed
47.
Zurück zum Zitat Poole DC, Schaffartzik W, Knight D, Derion T, Kenned B, Guy HJ, et al. Contribution of exercising legs to the slow component of oxygen uptake kinetics in humans. J Appl Physiol (1985). 1991;71(4):1245–60. Poole DC, Schaffartzik W, Knight D, Derion T, Kenned B, Guy HJ, et al. Contribution of exercising legs to the slow component of oxygen uptake kinetics in humans. J Appl Physiol (1985). 1991;71(4):1245–60.
48.
Zurück zum Zitat Jones AM, Poole DC. Physiological demands of endurance exercise. In: Maughan RJ, editor. Olympic textbook of science in sport. Chichester (UK): Blackwell Publishing; 2009. p. 43–55. Jones AM, Poole DC. Physiological demands of endurance exercise. In: Maughan RJ, editor. Olympic textbook of science in sport. Chichester (UK): Blackwell Publishing; 2009. p. 43–55.
49.
Zurück zum Zitat Poole DC, Ward SA, Whipp BJ. The effects of training on the metabolic and respiratory profile of high-intensity cycle ergometer exercise. Eur J Appl Physiol Occup Physiol. 1990;59(6):421–9.PubMed Poole DC, Ward SA, Whipp BJ. The effects of training on the metabolic and respiratory profile of high-intensity cycle ergometer exercise. Eur J Appl Physiol Occup Physiol. 1990;59(6):421–9.PubMed
50.
Zurück zum Zitat Reybrouck T, Ghesquiere J, Cattaert A, Fagard R, Amery A. Ventilatory thresholds during short- and long-term exercise. J Appl Physiol Respir Environ Exerc Physiol. 1983;55(6):1694–700.PubMed Reybrouck T, Ghesquiere J, Cattaert A, Fagard R, Amery A. Ventilatory thresholds during short- and long-term exercise. J Appl Physiol Respir Environ Exerc Physiol. 1983;55(6):1694–700.PubMed
51.
Zurück zum Zitat Whipp BJ. Control of exercise hyperpnes. In: Hornbein TF, editor. Regulation of breathing. New York: Dekker; 1981. p. 1069–138. Whipp BJ. Control of exercise hyperpnes. In: Hornbein TF, editor. Regulation of breathing. New York: Dekker; 1981. p. 1069–138.
52.
Zurück zum Zitat Dempsey JA, Hanson PG, Henderson KS. Exercise-induced arterial hypoxaemia in healthy human subjects at sea level. J Physiol. 1984;355:161–75.PubMedPubMedCentral Dempsey JA, Hanson PG, Henderson KS. Exercise-induced arterial hypoxaemia in healthy human subjects at sea level. J Physiol. 1984;355:161–75.PubMedPubMedCentral
53.
Zurück zum Zitat Dempsey JA, McKenzie DC, Haverkamp HC, Eldridge MW. Update in the understanding of respiratory limitations to exercise performance in fit, active adults. Chest. 2008;134(3):613–22.PubMed Dempsey JA, McKenzie DC, Haverkamp HC, Eldridge MW. Update in the understanding of respiratory limitations to exercise performance in fit, active adults. Chest. 2008;134(3):613–22.PubMed
54.
Zurück zum Zitat Amann M, Blain GM, Proctor LT, Sebranek JJ, Pegelow DF, Dempsey JA. Implications of group III and IV muscle afferents for high-intensity endurance exercise performance in humans. J Physiol. 2011;589(21):5299–309.PubMedPubMedCentral Amann M, Blain GM, Proctor LT, Sebranek JJ, Pegelow DF, Dempsey JA. Implications of group III and IV muscle afferents for high-intensity endurance exercise performance in humans. J Physiol. 2011;589(21):5299–309.PubMedPubMedCentral
55.
Zurück zum Zitat Vanhatalo A, Black MI, DiMenna FJ, Blackwell JR, Schmidt JF, Thompson C, et al. The mechanistic bases of the power-time relationship: muscle metabolic responses and relationships to muscle fibre type. J Physiol. 2016;594(15):4407–23.PubMedPubMedCentral Vanhatalo A, Black MI, DiMenna FJ, Blackwell JR, Schmidt JF, Thompson C, et al. The mechanistic bases of the power-time relationship: muscle metabolic responses and relationships to muscle fibre type. J Physiol. 2016;594(15):4407–23.PubMedPubMedCentral
56.
Zurück zum Zitat Rausch SM, Whipp BJ, Wasserman K, Huszczuk A. Role of the carotid bodies in the respiratory compensation for the metabolic acidosis of exercise in humans. J Physiol. 1991;444:567–78.PubMedPubMedCentral Rausch SM, Whipp BJ, Wasserman K, Huszczuk A. Role of the carotid bodies in the respiratory compensation for the metabolic acidosis of exercise in humans. J Physiol. 1991;444:567–78.PubMedPubMedCentral
57.
Zurück zum Zitat Forster HV, Haouzi P, Dempsey JA. Control of breathing during exercise. Compr Physiol. 2012;2(1):743–77.PubMed Forster HV, Haouzi P, Dempsey JA. Control of breathing during exercise. Compr Physiol. 2012;2(1):743–77.PubMed
58.
Zurück zum Zitat Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307–10.PubMed Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307–10.PubMed
59.
Zurück zum Zitat Bulbulian R, Wilcox AR, Darabos BL. Anaerobic contribution to distance running performance of trained cross-country athletes. Med Sci Sports Exerc. 1986;18(1):107–13.PubMed Bulbulian R, Wilcox AR, Darabos BL. Anaerobic contribution to distance running performance of trained cross-country athletes. Med Sci Sports Exerc. 1986;18(1):107–13.PubMed
60.
Zurück zum Zitat Poole DC. Measurements of the anaerobic work capacity in a group of highly trained runners. Med Sci Sports Exerc. 1986;18(6):703–5.PubMed Poole DC. Measurements of the anaerobic work capacity in a group of highly trained runners. Med Sci Sports Exerc. 1986;18(6):703–5.PubMed
61.
Zurück zum Zitat Gaesser GA, Carnevale TJ, Garfinkel A, Walter DO, Womack CJ. Estimation of critical power with nonlinear and linear models. Med Sci Sports Exerc. 1995;27(10):1430–8.PubMed Gaesser GA, Carnevale TJ, Garfinkel A, Walter DO, Womack CJ. Estimation of critical power with nonlinear and linear models. Med Sci Sports Exerc. 1995;27(10):1430–8.PubMed
62.
Zurück zum Zitat Burnley M, Doust JH, Vanhatalo A. A 3-min all-out test to determine peak oxygen uptake and the maximal steady state. Med Sci Sports Exerc. 2006;38(11):1995–2003.PubMed Burnley M, Doust JH, Vanhatalo A. A 3-min all-out test to determine peak oxygen uptake and the maximal steady state. Med Sci Sports Exerc. 2006;38(11):1995–2003.PubMed
63.
Zurück zum Zitat Vanhatalo A, Doust JH, Burnley M. Determination of critical power using a 3-min all-out cycling test. Med Sci Sports Exerc. 2007;39(3):548–55.PubMed Vanhatalo A, Doust JH, Burnley M. Determination of critical power using a 3-min all-out cycling test. Med Sci Sports Exerc. 2007;39(3):548–55.PubMed
64.
Zurück zum Zitat Vanhatalo A, Doust JH, Burnley M. A 3-min all-out cycling test is sensitive to a change in critical power. Med Sci Sports Exerc. 2008;40(9):1693–9.PubMed Vanhatalo A, Doust JH, Burnley M. A 3-min all-out cycling test is sensitive to a change in critical power. Med Sci Sports Exerc. 2008;40(9):1693–9.PubMed
65.
Zurück zum Zitat Vanhatalo A, Doust JH, Burnley M. Robustness of a 3 min all-out cycling test to manipulations of power profile and cadence in humans. Exp Physiol. 2008;93(3):383–90.PubMed Vanhatalo A, Doust JH, Burnley M. Robustness of a 3 min all-out cycling test to manipulations of power profile and cadence in humans. Exp Physiol. 2008;93(3):383–90.PubMed
66.
Zurück zum Zitat Broxterman RM, Ade CJ, Poole DC, Harms CA, Barstow TJ. A single test for the determination of parameters of the speed-time relationship for running. Respir Physiol Neurobiol. 2013;185(2):380–5.PubMed Broxterman RM, Ade CJ, Poole DC, Harms CA, Barstow TJ. A single test for the determination of parameters of the speed-time relationship for running. Respir Physiol Neurobiol. 2013;185(2):380–5.PubMed
67.
Zurück zum Zitat Poole DC, Gaesser GA. Response of ventilatory and lactate thresholds to continuous and interval training. J Appl Physiol. 1985;58(4):1115–21.PubMed Poole DC, Gaesser GA. Response of ventilatory and lactate thresholds to continuous and interval training. J Appl Physiol. 1985;58(4):1115–21.PubMed
68.
Zurück zum Zitat Gaesser GA, Wilson LA. Effects of continuous and Interval training on the parameters of the power endurance time relationship for high intensity exercise. Int. J. Sports Med. 1988;9(6):417–21.PubMed Gaesser GA, Wilson LA. Effects of continuous and Interval training on the parameters of the power endurance time relationship for high intensity exercise. Int. J. Sports Med. 1988;9(6):417–21.PubMed
Metadaten
Titel
Relative Proximity of Critical Power and Metabolic/Ventilatory Thresholds: Systematic Review and Meta-Analysis
verfasst von
Miguel Ángel Galán-Rioja
Fernando González-Mohíno
David C. Poole
José Mª González-Ravé
Publikationsdatum
01.07.2020
Verlag
Springer International Publishing
Erschienen in
Sports Medicine / Ausgabe 10/2020
Print ISSN: 0112-1642
Elektronische ISSN: 1179-2035
DOI
https://doi.org/10.1007/s40279-020-01314-8

Weitere Artikel der Ausgabe 10/2020

Sports Medicine 10/2020 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.