Skip to main content
Erschienen in: Inflammation 1/2015

01.02.2015

Relevance of the Myeloid Differentiation Factor 88 (MyD88) on RANKL, OPG, and Nod Expressions Induced by TLR and IL-1R Signaling in Bone Marrow Stromal Cells

verfasst von: Fábio Renato Manzolli Leite, Sabrina Garcia de Aquino, Morgana Rodrigues Guimarães, Joni Augusto Cirelli, Dario S. Zamboni, João S. Silva, Carlos Rossa Junior

Erschienen in: Inflammation | Ausgabe 1/2015

Einloggen, um Zugang zu erhalten

Abstract

The myeloid differentiation factor 88 (MyD88) plays a pivotal role in Toll-like receptor (TLR)- and interleukin-1 receptor (IL-1R)-induced osteoclastogenesis. We examined the role of MyD88 on p38 mitogen-activated protein kinase (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) activation and nucleotide-binding oligomerization domain (Nod) induction by lipopolysaccharide (LPS) and IL-1 beta, and their effect on receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) production in bone marrow stromal cell (BMSC). RANKL, Nod1, Nod2, NF-κB, and p38 protein levels were determined by Western blot. Nod2 was stimulated with muramyl dipeptide (MDP) prior to TLR4 stimulation with LPS. MyD88 deficiency markedly inhibited RANKL expression after LPS stimulation and increased OPG messenger RNA (mRNA) production. Also, MyD88 was necessary for NF-κB and p38 MAPK activation. MDP alone did not induce RANKL and OPG expressions; however, when combined with LPS, their expressions were significantly increased (p < 0.05). Our results support that MyD88 signaling has a pivotal role in osteoclastogenesis thought NF-κB and p38 activation. Nod2 and especially Nod1 levels were influenced by MyD88.
Literatur
1.
Zurück zum Zitat Doyle, S.L., and L.A. O’Neill. 2006. Toll-like receptors: from the discovery of NFkappaB to new insights into transcriptional regulations in innate immunity. Biochemical Pharmacology 72(9): 1102–1113.CrossRefPubMed Doyle, S.L., and L.A. O’Neill. 2006. Toll-like receptors: from the discovery of NFkappaB to new insights into transcriptional regulations in innate immunity. Biochemical Pharmacology 72(9): 1102–1113.CrossRefPubMed
2.
Zurück zum Zitat Janssens, S., and R. Beyaert. 2002. A universal role for MyD88 in TLR/IL-1R-mediated signaling. Trends in Biochemical Sciences 27(9): 474–482.CrossRefPubMed Janssens, S., and R. Beyaert. 2002. A universal role for MyD88 in TLR/IL-1R-mediated signaling. Trends in Biochemical Sciences 27(9): 474–482.CrossRefPubMed
3.
Zurück zum Zitat Sato, N., N. Takahashi, K. Suda, M. Nakamura, M. Yamaki, T. Ninomiya, et al. 2004. MyD88 but not TRIF is essential for osteoclastogenesis induced by lipopolysaccharide, diacyl lipopeptide, and IL-1alpha. Journal of Experimental Medicine 200(5): 601–611.CrossRefPubMedCentralPubMed Sato, N., N. Takahashi, K. Suda, M. Nakamura, M. Yamaki, T. Ninomiya, et al. 2004. MyD88 but not TRIF is essential for osteoclastogenesis induced by lipopolysaccharide, diacyl lipopeptide, and IL-1alpha. Journal of Experimental Medicine 200(5): 601–611.CrossRefPubMedCentralPubMed
4.
Zurück zum Zitat Medzhitov, R., P. Preston-Hurlburt, E. Kopp, A. Stadlen, C. Chen, S. Ghosh, et al. 1998. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Molecular Cell 2(2): 253–258.CrossRefPubMed Medzhitov, R., P. Preston-Hurlburt, E. Kopp, A. Stadlen, C. Chen, S. Ghosh, et al. 1998. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Molecular Cell 2(2): 253–258.CrossRefPubMed
5.
Zurück zum Zitat Burns, K., F. Martinon, C. Esslinger, H. Pahl, P. Schneider, J.L. Bodmer, et al. 1998. MyD88, an adapter protein involved in interleukin-1 signaling. Journal of Biological Chemistry 273(20): 12203–12209.CrossRefPubMed Burns, K., F. Martinon, C. Esslinger, H. Pahl, P. Schneider, J.L. Bodmer, et al. 1998. MyD88, an adapter protein involved in interleukin-1 signaling. Journal of Biological Chemistry 273(20): 12203–12209.CrossRefPubMed
6.
Zurück zum Zitat Adachi, O., T. Kawai, K. Takeda, M. Matsumoto, H. Tsutsui, M. Sakagami, et al. 1998. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9(1): 143–150.CrossRefPubMed Adachi, O., T. Kawai, K. Takeda, M. Matsumoto, H. Tsutsui, M. Sakagami, et al. 1998. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9(1): 143–150.CrossRefPubMed
7.
Zurück zum Zitat Schnare, M., A.C. Holt, K. Takeda, S. Akira, and R. Medzhitov. 2000. Recognition of CpG DNA is mediated by signaling pathways dependent on the adaptor protein MyD88. Current Biology 10(18): 1139–1142.CrossRefPubMed Schnare, M., A.C. Holt, K. Takeda, S. Akira, and R. Medzhitov. 2000. Recognition of CpG DNA is mediated by signaling pathways dependent on the adaptor protein MyD88. Current Biology 10(18): 1139–1142.CrossRefPubMed
8.
Zurück zum Zitat Alexopoulou, L., A.C. Holt, R. Medzhitov, and R.A. Flavell. 2001. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413(6857): 732–738.CrossRefPubMed Alexopoulou, L., A.C. Holt, R. Medzhitov, and R.A. Flavell. 2001. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413(6857): 732–738.CrossRefPubMed
9.
Zurück zum Zitat Deng, L., C. Wang, E. Spencer, L. Yang, A. Braun, J. You, et al. 2000. Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103(2): 351–361.CrossRefPubMed Deng, L., C. Wang, E. Spencer, L. Yang, A. Braun, J. You, et al. 2000. Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103(2): 351–361.CrossRefPubMed
10.
Zurück zum Zitat Wang, C., L. Deng, M. Hong, G.R. Akkaraju, J. Inoue, and Z.J. Chen. 2001. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412(6844): 346–351.CrossRefPubMed Wang, C., L. Deng, M. Hong, G.R. Akkaraju, J. Inoue, and Z.J. Chen. 2001. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412(6844): 346–351.CrossRefPubMed
11.
Zurück zum Zitat Garcia de Aquino S, Manzolli Leite FR, Stach-Machado DR, Francisco da Silva JA, Spolidorio LC, Rossa C, Jr. 2009. Signaling pathways associated with the expression of inflammatory mediators activated during the course of two models of experimental periodontitis. Life Science. 84(21-22):745–54. doi:10.1016/j.lfs.2009.03.001. Garcia de Aquino S, Manzolli Leite FR, Stach-Machado DR, Francisco da Silva JA, Spolidorio LC, Rossa C, Jr. 2009. Signaling pathways associated with the expression of inflammatory mediators activated during the course of two models of experimental periodontitis. Life Science. 84(21-22):745–54. doi:10.​1016/​j.​lfs.​2009.​03.​001.
12.
Zurück zum Zitat Takaesu, G., S. Kishida, A. Hiyama, K. Yamaguchi, H. Shibuya, K. Irie, et al. 2000. TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Molecular Cell 5(4): 649–658.CrossRefPubMed Takaesu, G., S. Kishida, A. Hiyama, K. Yamaguchi, H. Shibuya, K. Irie, et al. 2000. TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Molecular Cell 5(4): 649–658.CrossRefPubMed
13.
Zurück zum Zitat Kopp, E., R. Medzhitov, J. Carothers, C. Xiao, I. Douglas, C.A. Janeway, et al. 1999. ECSIT is an evolutionarily conserved intermediate in the Toll/IL-1 signal transduction pathway. Genes and Development 13(16): 2059–2071.CrossRefPubMedCentralPubMed Kopp, E., R. Medzhitov, J. Carothers, C. Xiao, I. Douglas, C.A. Janeway, et al. 1999. ECSIT is an evolutionarily conserved intermediate in the Toll/IL-1 signal transduction pathway. Genes and Development 13(16): 2059–2071.CrossRefPubMedCentralPubMed
14.
Zurück zum Zitat Sanz, L., M.T. Diaz-Meco, H. Nakano, and J. Moscat. 2000. The atypical PKC-interacting protein p62 channels NF-kappaB activation by the IL-1-TRAF6 pathway. EMBO Journal 19(7): 1576–1586.CrossRefPubMedCentralPubMed Sanz, L., M.T. Diaz-Meco, H. Nakano, and J. Moscat. 2000. The atypical PKC-interacting protein p62 channels NF-kappaB activation by the IL-1-TRAF6 pathway. EMBO Journal 19(7): 1576–1586.CrossRefPubMedCentralPubMed
15.
Zurück zum Zitat Yoshida, H., S. Hayashi, T. Kunisada, M. Ogawa, S. Nishikawa, H. Okamura, et al. 1990. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345(6274): 442–444.CrossRefPubMed Yoshida, H., S. Hayashi, T. Kunisada, M. Ogawa, S. Nishikawa, H. Okamura, et al. 1990. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345(6274): 442–444.CrossRefPubMed
16.
Zurück zum Zitat Boyle, W.J., W.S. Simonet, and D.L. Lacey. 2003. Osteoclast differentiation and activation. Nature 423(6937): 337–342.CrossRefPubMed Boyle, W.J., W.S. Simonet, and D.L. Lacey. 2003. Osteoclast differentiation and activation. Nature 423(6937): 337–342.CrossRefPubMed
17.
Zurück zum Zitat Kawai, T., O. Adachi, T. Ogawa, K. Takeda, and S. Akira. 1999. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11(1): 115–122.CrossRefPubMed Kawai, T., O. Adachi, T. Ogawa, K. Takeda, and S. Akira. 1999. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11(1): 115–122.CrossRefPubMed
18.
Zurück zum Zitat Kim, Y.G., J.H. Park, S. Daignault, K. Fukase, and G. Nunez. 2008. Cross-tolerization between Nod1 and Nod2 signaling results in reduced refractoriness to bacterial infection in Nod2-deficient macrophages. Journal of Immunology 181(6): 4340–4346.CrossRef Kim, Y.G., J.H. Park, S. Daignault, K. Fukase, and G. Nunez. 2008. Cross-tolerization between Nod1 and Nod2 signaling results in reduced refractoriness to bacterial infection in Nod2-deficient macrophages. Journal of Immunology 181(6): 4340–4346.CrossRef
19.
Zurück zum Zitat Hugot, J.P., M. Chamaillard, H. Zouali, S. Lesage, J.P. Cezard, J. Belaiche, et al. 2001. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411(6837): 599–603.CrossRefPubMed Hugot, J.P., M. Chamaillard, H. Zouali, S. Lesage, J.P. Cezard, J. Belaiche, et al. 2001. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411(6837): 599–603.CrossRefPubMed
20.
Zurück zum Zitat Yang, S., N. Takahashi, T. Yamashita, N. Sato, M. Takahashi, M. Mogi, et al. 2005. Muramyl dipeptide enhances osteoclast formation induced by lipopolysaccharide, IL-1 alpha, and TNF-alpha through nucleotide-binding oligomerization domain 2-mediated signaling in osteoblasts. Journal of Immunology 175(3): 1956–1964.CrossRef Yang, S., N. Takahashi, T. Yamashita, N. Sato, M. Takahashi, M. Mogi, et al. 2005. Muramyl dipeptide enhances osteoclast formation induced by lipopolysaccharide, IL-1 alpha, and TNF-alpha through nucleotide-binding oligomerization domain 2-mediated signaling in osteoblasts. Journal of Immunology 175(3): 1956–1964.CrossRef
21.
Zurück zum Zitat Rossa Jr., C., M. Liu, and K.L. Kirkwood. 2008. A dominant function of p38 mitogen-activated protein kinase signaling in receptor activator of nuclear factor-kappaB ligand expression and osteoclastogenesis induction by Aggregatibacter actinomycetemcomitans and Escherichia coli lipopolysaccharide. Journal of Periodontal Research 43(2): 201–211.CrossRefPubMedCentralPubMed Rossa Jr., C., M. Liu, and K.L. Kirkwood. 2008. A dominant function of p38 mitogen-activated protein kinase signaling in receptor activator of nuclear factor-kappaB ligand expression and osteoclastogenesis induction by Aggregatibacter actinomycetemcomitans and Escherichia coli lipopolysaccharide. Journal of Periodontal Research 43(2): 201–211.CrossRefPubMedCentralPubMed
22.
Zurück zum Zitat Yamashita, T., N. Takahashi, S. Yang, N. Sato, and N. Udagawa. 2006. Bone destruction caused by osteoclasts. Clinical Calcium 16(2): 234–240.PubMed Yamashita, T., N. Takahashi, S. Yang, N. Sato, and N. Udagawa. 2006. Bone destruction caused by osteoclasts. Clinical Calcium 16(2): 234–240.PubMed
23.
Zurück zum Zitat Soory, M. 2007. Periodontal diseases and rheumatoid arthritis: a coincident model for therapeutic intervention? Current Drug Metabolism 8(8): 750–757.CrossRefPubMed Soory, M. 2007. Periodontal diseases and rheumatoid arthritis: a coincident model for therapeutic intervention? Current Drug Metabolism 8(8): 750–757.CrossRefPubMed
24.
Zurück zum Zitat Falgarone, G., O. Jaen, and M.C. Boissier. 2005. Role for innate immunity in rheumatoid arthritis. Joint, Bone, Spine 72(1): 17–25.CrossRefPubMed Falgarone, G., O. Jaen, and M.C. Boissier. 2005. Role for innate immunity in rheumatoid arthritis. Joint, Bone, Spine 72(1): 17–25.CrossRefPubMed
25.
Zurück zum Zitat Basak, G.W., A.S. Srivastava, R. Malhotra, and E. Carrier. 2009. Multiple myeloma bone marrow niche. Current Pharmaceutical Biotechnology 10(3): 345–346.CrossRefPubMed Basak, G.W., A.S. Srivastava, R. Malhotra, and E. Carrier. 2009. Multiple myeloma bone marrow niche. Current Pharmaceutical Biotechnology 10(3): 345–346.CrossRefPubMed
26.
Zurück zum Zitat Ogura, Y., D.K. Bonen, N. Inohara, D.L. Nicolae, F.F. Chen, R. Ramos, et al. 2001. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411(6837): 603–606.CrossRefPubMed Ogura, Y., D.K. Bonen, N. Inohara, D.L. Nicolae, F.F. Chen, R. Ramos, et al. 2001. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411(6837): 603–606.CrossRefPubMed
27.
Zurück zum Zitat Inohara, N., Y. Ogura, F.F. Chen, A. Muto, and G. Nunez. 2001. Human Nod1 confers responsiveness to bacterial lipopolysaccharides. Journal of Biological Chemistry 276(4): 2551–2554.CrossRefPubMed Inohara, N., Y. Ogura, F.F. Chen, A. Muto, and G. Nunez. 2001. Human Nod1 confers responsiveness to bacterial lipopolysaccharides. Journal of Biological Chemistry 276(4): 2551–2554.CrossRefPubMed
28.
Zurück zum Zitat Stroh, T., A. Batra, R. Glauben, I. Fedke, U. Erben, A. Kroesen, et al. 2008. Nucleotide oligomerization domains 1 and 2: regulation of expression and function in preadipocytes. Journal of Immunology 181(5): 3620–3627.CrossRef Stroh, T., A. Batra, R. Glauben, I. Fedke, U. Erben, A. Kroesen, et al. 2008. Nucleotide oligomerization domains 1 and 2: regulation of expression and function in preadipocytes. Journal of Immunology 181(5): 3620–3627.CrossRef
29.
Zurück zum Zitat O’Neill, L.A. 2006. Targeting signal transduction as a strategy to treat inflammatory diseases. Nature Reviews Drug Discovery 5(7): 549–563.CrossRefPubMed O’Neill, L.A. 2006. Targeting signal transduction as a strategy to treat inflammatory diseases. Nature Reviews Drug Discovery 5(7): 549–563.CrossRefPubMed
30.
Zurück zum Zitat Zeuthen, L.H., L.N. Fink, and H. Frokiaer. 2008. Toll-like receptor 2 and nucleotide-binding oligomerization domain-2 play divergent roles in the recognition of gut-derived lactobacilli and bifidobacteria in dendritic cells. Immunology 124(4): 489–502.CrossRefPubMedCentralPubMed Zeuthen, L.H., L.N. Fink, and H. Frokiaer. 2008. Toll-like receptor 2 and nucleotide-binding oligomerization domain-2 play divergent roles in the recognition of gut-derived lactobacilli and bifidobacteria in dendritic cells. Immunology 124(4): 489–502.CrossRefPubMedCentralPubMed
31.
Zurück zum Zitat Rossa, C., K. Ehmann, M. Liu, C. Patil, and K.L. Kirkwood. 2006. MKK3/6-p38 MAPK signaling is required for IL-1beta and TNF-alpha-induced RANKL expression in bone marrow stromal cells. Journal of Interferon and Cytokine Research 26(10): 719–729.CrossRefPubMed Rossa, C., K. Ehmann, M. Liu, C. Patil, and K.L. Kirkwood. 2006. MKK3/6-p38 MAPK signaling is required for IL-1beta and TNF-alpha-induced RANKL expression in bone marrow stromal cells. Journal of Interferon and Cytokine Research 26(10): 719–729.CrossRefPubMed
32.
Zurück zum Zitat Rogers, J.E., F. Li, D.D. Coatney, J. Otremba, J.M. Kriegl, T.A. Protter, et al. 2007. A p38 mitogen-activated protein kinase inhibitor arrests active alveolar bone loss in a rat periodontitis model. Journal of Periodontology 78(10): 1992–1998.CrossRefPubMed Rogers, J.E., F. Li, D.D. Coatney, J. Otremba, J.M. Kriegl, T.A. Protter, et al. 2007. A p38 mitogen-activated protein kinase inhibitor arrests active alveolar bone loss in a rat periodontitis model. Journal of Periodontology 78(10): 1992–1998.CrossRefPubMed
Metadaten
Titel
Relevance of the Myeloid Differentiation Factor 88 (MyD88) on RANKL, OPG, and Nod Expressions Induced by TLR and IL-1R Signaling in Bone Marrow Stromal Cells
verfasst von
Fábio Renato Manzolli Leite
Sabrina Garcia de Aquino
Morgana Rodrigues Guimarães
Joni Augusto Cirelli
Dario S. Zamboni
João S. Silva
Carlos Rossa Junior
Publikationsdatum
01.02.2015
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 1/2015
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-014-0001-4

Weitere Artikel der Ausgabe 1/2015

Inflammation 1/2015 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.