Skip to main content
Erschienen in: Journal of Neurology 7/2016

09.05.2016 | Original Communication

Reliable volumetry of the cervical spinal cord in MS patient follow-up data with cord image analyzer (Cordial)

verfasst von: Michael Amann, Simon Pezold, Yvonne Naegelin, Ketut Fundana, Michaela Andělová, Katrin Weier, Christoph Stippich, Ludwig Kappos, Ernst-Wilhelm Radue, Philippe Cattin, Till Sprenger

Erschienen in: Journal of Neurology | Ausgabe 7/2016

Einloggen, um Zugang zu erhalten

Abstract

Spinal cord (SC) atrophy is an important contributor to the development of disability in many neurological disorders including multiple sclerosis (MS). To assess the spinal cord atrophy in clinical trials and clinical practice, largely automated methods are needed due to the sheer amount of data. Moreover, using these methods in longitudinal trials requires them to deliver highly reliable measurements, enabling comparisons of multiple data sets of the same subject over time. We present a method for SC volumetry using 3D MRI data providing volume measurements for SC sections of fixed length and location. The segmentation combines a continuous max flow approach with SC surface reconstruction that locates the SC boundary based on image voxel intensities. Two cutting planes perpendicular to the SC centerline are determined based on predefined distances to an anatomical landmark, and the cervical SC volume (CSCV) is then calculated in-between these boundaries. The development of the method focused on its application in MRI follow-up studies; the method provides a high scan–rescan reliability, which was tested on healthy subject data. Scan–rescan reliability coefficients of variation (COV) were below 1 %, intra- and interrater COV were even lower (0.1–0.2 %). To show the applicability in longitudinal trials, 3-year follow-up data of 48 patients with a progressive course of MS were assessed. In this cohort, CSCV loss was the only significant predictor of disability progression (p = 0.02). We are, therefore, confident that our method provides a reliable tool for SC volumetry in longitudinal clinical trials.
Literatur
1.
Zurück zum Zitat Bendfeldt K, Kuster P, Traud S, Egger H, Winklhofer S, Mueller-Lenke N, Naegelin Y, Gass A, Kappos L, Matthews PM, Nichols TE, Radue EW, Borgwardt SJ (2009) Association of regional gray matter volume loss and progression of white matter lesions in multiple sclerosis—a longitudinal voxel-based morphometry study. NeuroImage 45:60–67CrossRefPubMed Bendfeldt K, Kuster P, Traud S, Egger H, Winklhofer S, Mueller-Lenke N, Naegelin Y, Gass A, Kappos L, Matthews PM, Nichols TE, Radue EW, Borgwardt SJ (2009) Association of regional gray matter volume loss and progression of white matter lesions in multiple sclerosis—a longitudinal voxel-based morphometry study. NeuroImage 45:60–67CrossRefPubMed
2.
Zurück zum Zitat Carbonell-Caballero J, Manjon JV, Marti-Bonmati L, Olalla JR, Casanova B, de la Iglesia-Vaya M, Coret F, Robles M (2006) Accurate quantification methods to evaluate cervical cord atrophy in multiple sclerosis patients. Magma 19:237–246CrossRefPubMed Carbonell-Caballero J, Manjon JV, Marti-Bonmati L, Olalla JR, Casanova B, de la Iglesia-Vaya M, Coret F, Robles M (2006) Accurate quantification methods to evaluate cervical cord atrophy in multiple sclerosis patients. Magma 19:237–246CrossRefPubMed
3.
Zurück zum Zitat Chen M, Carass A, Oh J, Nair G, Pham DL, Reich DS, Prince JL (2013) Automatic magnetic resonance spinal cord segmentation with topology constraints for variable fields of view. NeuroImage 83:1051–1062CrossRefPubMed Chen M, Carass A, Oh J, Nair G, Pham DL, Reich DS, Prince JL (2013) Automatic magnetic resonance spinal cord segmentation with topology constraints for variable fields of view. NeuroImage 83:1051–1062CrossRefPubMed
4.
Zurück zum Zitat Coulon O, Hickman SJ, Parker GJ, Barker GJ, Miller DH, Arridge SR (2002) Quantification of spinal cord atrophy from magnetic resonance images via a B-spline active surface model. Magn Reson Med 47:1176–1185CrossRefPubMed Coulon O, Hickman SJ, Parker GJ, Barker GJ, Miller DH, Arridge SR (2002) Quantification of spinal cord atrophy from magnetic resonance images via a B-spline active surface model. Magn Reson Med 47:1176–1185CrossRefPubMed
5.
Zurück zum Zitat De Leener B, Cohen-Adad J, Kadoury S (2015) Automatic segmentation of the spinal cord and spinal canal coupled with vertebral labeling. IEEE Trans Med Imaging 34:1705–1718CrossRefPubMed De Leener B, Cohen-Adad J, Kadoury S (2015) Automatic segmentation of the spinal cord and spinal canal coupled with vertebral labeling. IEEE Trans Med Imaging 34:1705–1718CrossRefPubMed
6.
Zurück zum Zitat Fonov VS, Le Troter A, Taso M, De Leener B, Leveque G, Benhamou M, Sdika M, Benali H, Pradat PF, Collins DL, Callot V, Cohen-Adad J (2014) Framework for integrated MRI average of the spinal cord white and gray matter: the MNI-Poly-AMU template. NeuroImage 102(Pt 2):817–827CrossRefPubMed Fonov VS, Le Troter A, Taso M, De Leener B, Leveque G, Benhamou M, Sdika M, Benali H, Pradat PF, Collins DL, Callot V, Cohen-Adad J (2014) Framework for integrated MRI average of the spinal cord white and gray matter: the MNI-Poly-AMU template. NeuroImage 102(Pt 2):817–827CrossRefPubMed
7.
Zurück zum Zitat Frangi A, Niessen W, Vincken K, Viergever M (1998) Multiscale vessel enhancement filtering. In: Wells W, Colchester A, Delp S (eds) Medical image computing and computer-assisted interventation—MICCAI’98. Springer, Berlin Heidelberg, pp 130–137CrossRef Frangi A, Niessen W, Vincken K, Viergever M (1998) Multiscale vessel enhancement filtering. In: Wells W, Colchester A, Delp S (eds) Medical image computing and computer-assisted interventation—MICCAI’98. Springer, Berlin Heidelberg, pp 130–137CrossRef
8.
Zurück zum Zitat Han JS, Kaufman B, El Yousef SJ, Benson JE, Bonstelle CT, Alfidi RJ, Haaga JR, Yeung H, Huss RG (1983) NMR imaging of the spine. AJR Am J Roentgenol 141:1137–1145CrossRefPubMed Han JS, Kaufman B, El Yousef SJ, Benson JE, Bonstelle CT, Alfidi RJ, Haaga JR, Yeung H, Huss RG (1983) NMR imaging of the spine. AJR Am J Roentgenol 141:1137–1145CrossRefPubMed
9.
Zurück zum Zitat Harrison DE, Cailliet R, Harrison DD, Troyanovich SJ, Harrison SO (1999) A review of biomechanics of the central nervous system–part II: spinal cord strains from postural loads. J Manipulative Physiol Ther 22:322–332CrossRefPubMed Harrison DE, Cailliet R, Harrison DD, Troyanovich SJ, Harrison SO (1999) A review of biomechanics of the central nervous system–part II: spinal cord strains from postural loads. J Manipulative Physiol Ther 22:322–332CrossRefPubMed
10.
Zurück zum Zitat Hickman SJ, Hadjiprocopis A, Coulon O, Miller DH, Barker GJ (2004) Cervical spinal cord MTR histogram analysis in multiple sclerosis using a 3D acquisition and a B-spline active surface segmentation technique. Magn Reson Imaging 22:891–895CrossRefPubMed Hickman SJ, Hadjiprocopis A, Coulon O, Miller DH, Barker GJ (2004) Cervical spinal cord MTR histogram analysis in multiple sclerosis using a 3D acquisition and a B-spline active surface segmentation technique. Magn Reson Imaging 22:891–895CrossRefPubMed
11.
Zurück zum Zitat Horsfield MA, Sala S, Neema M, Absinta M, Bakshi A, Sormani MP, Rocca MA, Bakshi R, Filippi M (2010) Rapid semi-automatic segmentation of the spinal cord from magnetic resonance images: application in multiple sclerosis. NeuroImage 50:446–455CrossRefPubMedPubMedCentral Horsfield MA, Sala S, Neema M, Absinta M, Bakshi A, Sormani MP, Rocca MA, Bakshi R, Filippi M (2010) Rapid semi-automatic segmentation of the spinal cord from magnetic resonance images: application in multiple sclerosis. NeuroImage 50:446–455CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Janke A, Zhao H, Cowin GJ, Galloway GJ, Doddrell DM (2004) Use of spherical harmonic deconvolution methods to compensate for nonlinear gradient effects on MRI images. Magn Reson Med 52:115–122CrossRefPubMed Janke A, Zhao H, Cowin GJ, Galloway GJ, Doddrell DM (2004) Use of spherical harmonic deconvolution methods to compensate for nonlinear gradient effects on MRI images. Magn Reson Med 52:115–122CrossRefPubMed
13.
Zurück zum Zitat Kearney H, Yiannakas MC, Abdel-Aziz K, Wheeler-Kingshott CA, Altmann DR, Ciccarelli O, Miller DH (2014) Improved MRI quantification of spinal cord atrophy in multiple sclerosis. J Magn Reson Imaging JMRI 39:617–623CrossRefPubMed Kearney H, Yiannakas MC, Abdel-Aziz K, Wheeler-Kingshott CA, Altmann DR, Ciccarelli O, Miller DH (2014) Improved MRI quantification of spinal cord atrophy in multiple sclerosis. J Magn Reson Imaging JMRI 39:617–623CrossRefPubMed
14.
Zurück zum Zitat Koh J, Kim T, Chaudhary V, Dhillon G (2010) Automatic segmentation of the spinal cord and the dural sac in lumbar MR images using gradient vector flow field. Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual Conference 2010:3117–3120 Koh J, Kim T, Chaudhary V, Dhillon G (2010) Automatic segmentation of the spinal cord and the dural sac in lumbar MR images using gradient vector flow field. Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual Conference 2010:3117–3120
15.
Zurück zum Zitat Laule C, Vavasour IM, Zhao Y, Traboulsee AL, Oger J, Vavasour JD, Mackay AL, Li DK (2010) Two-year study of cervical cord volume and myelin water in primary progressive multiple sclerosis. Mult Scler 16:670–677CrossRefPubMed Laule C, Vavasour IM, Zhao Y, Traboulsee AL, Oger J, Vavasour JD, Mackay AL, Li DK (2010) Two-year study of cervical cord volume and myelin water in primary progressive multiple sclerosis. Mult Scler 16:670–677CrossRefPubMed
16.
Zurück zum Zitat Losseff NA, Webb SL, O’Riordan JI, Page R, Wang L, Barker GJ, Tofts PS, McDonald WI, Miller DH, Thompson AJ (1996) Spinal cord atrophy and disability in multiple sclerosis. A new reproducible and sensitive MRI method with potential to monitor disease progression. Brain: J Neurol 119(Pt 3):701–708CrossRef Losseff NA, Webb SL, O’Riordan JI, Page R, Wang L, Barker GJ, Tofts PS, McDonald WI, Miller DH, Thompson AJ (1996) Spinal cord atrophy and disability in multiple sclerosis. A new reproducible and sensitive MRI method with potential to monitor disease progression. Brain: J Neurol 119(Pt 3):701–708CrossRef
17.
Zurück zum Zitat Lukas C, Bellenberg B, Rexilius GW, Hahn HK, Köster O, Schimrigk SK (2006) MR-based measurement of spinal cord atrophy in multiple sclerosis: reproducibility and sensitivity of a new semi-automated procedure. Eur Radiol 16:458 Lukas C, Bellenberg B, Rexilius GW, Hahn HK, Köster O, Schimrigk SK (2006) MR-based measurement of spinal cord atrophy in multiple sclerosis: reproducibility and sensitivity of a new semi-automated procedure. Eur Radiol 16:458
18.
Zurück zum Zitat Lukas C, Knol DL, Sombekke MH, Bellenberg B, Hahn HK, Popescu V, Weier K, Radue EW, Gass A, Kappos L, Naegelin Y, Uitdehaag BM, Geurts JJ, Barkhof F, Vrenken H (2015) Cervical spinal cord volume loss is related to clinical disability progression in multiple sclerosis. J Neurol Neurosurg Psychiatry 86:410–418CrossRefPubMed Lukas C, Knol DL, Sombekke MH, Bellenberg B, Hahn HK, Popescu V, Weier K, Radue EW, Gass A, Kappos L, Naegelin Y, Uitdehaag BM, Geurts JJ, Barkhof F, Vrenken H (2015) Cervical spinal cord volume loss is related to clinical disability progression in multiple sclerosis. J Neurol Neurosurg Psychiatry 86:410–418CrossRefPubMed
19.
Zurück zum Zitat Modic MT, Weinstein MA, Pavlicek W, Starnes DL, Duchesneau PM, Boumphrey F, Hardy RJ Jr (1983) Nuclear magnetic resonance imaging of the spine. Radiology 148:757–762CrossRefPubMed Modic MT, Weinstein MA, Pavlicek W, Starnes DL, Duchesneau PM, Boumphrey F, Hardy RJ Jr (1983) Nuclear magnetic resonance imaging of the spine. Radiology 148:757–762CrossRefPubMed
20.
Zurück zum Zitat Mukherjee DP, Cheng I, Ray N, Mushahwar V, Lebel M, Basu A (2010) Automatic segmentation of spinal cord MRI using symmetric boundary tracing. IEEE Trans Inform Technol Biomed: Publ IEEE Eng Med Biol Soc 14:1275–1278CrossRef Mukherjee DP, Cheng I, Ray N, Mushahwar V, Lebel M, Basu A (2010) Automatic segmentation of spinal cord MRI using symmetric boundary tracing. IEEE Trans Inform Technol Biomed: Publ IEEE Eng Med Biol Soc 14:1275–1278CrossRef
21.
Zurück zum Zitat Norman D, Mills CM, Brant-Zawadzki M, Yeates A, Crooks LE, Kaufman L (1983) Magnetic resonance imaging of the spinal cord and canal: potentials and limitations. AJR Am J Roentgenol 141:1147–1152CrossRefPubMed Norman D, Mills CM, Brant-Zawadzki M, Yeates A, Crooks LE, Kaufman L (1983) Magnetic resonance imaging of the spinal cord and canal: potentials and limitations. AJR Am J Roentgenol 141:1147–1152CrossRefPubMed
22.
Zurück zum Zitat Oh J, Seigo M, Saidha S, Sotirchos E, Zackowski K, Chen M, Prince J, Diener-West M, Calabresi PA, Reich DS (2014) Spinal cord normalization in multiple sclerosis. J Neuroimaging: Off J Am Soc Neuroimaging 24:577–584CrossRef Oh J, Seigo M, Saidha S, Sotirchos E, Zackowski K, Chen M, Prince J, Diener-West M, Calabresi PA, Reich DS (2014) Spinal cord normalization in multiple sclerosis. J Neuroimaging: Off J Am Soc Neuroimaging 24:577–584CrossRef
23.
Zurück zum Zitat Pezold S, Amann M, Weier K, Fundana K, Radue E, Sprenger T, Cattin P (2014) A semi-automatic method for the quantification of spinal cord atrophy. In: Yao J, Klinder T, Li S (eds) Computational methods and clinical applications for spine imaging. Springer International Publishing, pp 143–155 Pezold S, Amann M, Weier K, Fundana K, Radue E, Sprenger T, Cattin P (2014) A semi-automatic method for the quantification of spinal cord atrophy. In: Yao J, Klinder T, Li S (eds) Computational methods and clinical applications for spine imaging. Springer International Publishing, pp 143–155
24.
Zurück zum Zitat Pezold S, Fundana K, Amann M, Andelova M, Pfister A, Sprenger T, Cattin P (2015) Automatic segmentation of the spinal cord using continuous max flow with cross-sectional similarity prior and tubularity features. In: Yao J, Glocker B, Klinder T, Li S (eds) Recent advances in computational methods and clinical applications for spine imaging. Springer International Publishing, pp 107–118 Pezold S, Fundana K, Amann M, Andelova M, Pfister A, Sprenger T, Cattin P (2015) Automatic segmentation of the spinal cord using continuous max flow with cross-sectional similarity prior and tubularity features. In: Yao J, Glocker B, Klinder T, Li S (eds) Recent advances in computational methods and clinical applications for spine imaging. Springer International Publishing, pp 107–118
25.
Zurück zum Zitat Reid JD (1960) Effects of flexion-extension movements of the head and spine upon the spinal cord and nerve roots. J Neurol Neurosurg Psychiatry 23:214–221CrossRefPubMedPubMedCentral Reid JD (1960) Effects of flexion-extension movements of the head and spine upon the spinal cord and nerve roots. J Neurol Neurosurg Psychiatry 23:214–221CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Smith SM, De Stefano N, Jenkinson M, Matthews PM (2001) Normalized accurate measurement of longitudinal brain change. J Comput Assist Tomogr 25:466–475CrossRefPubMed Smith SM, De Stefano N, Jenkinson M, Matthews PM (2001) Normalized accurate measurement of longitudinal brain change. J Comput Assist Tomogr 25:466–475CrossRefPubMed
27.
Zurück zum Zitat Smith SM, Zhang Y, Jenkinson M, Chen J, Matthews PM, Federico A, De Stefano N (2002) Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. NeuroImage 17:479–489CrossRefPubMed Smith SM, Zhang Y, Jenkinson M, Chen J, Matthews PM, Federico A, De Stefano N (2002) Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. NeuroImage 17:479–489CrossRefPubMed
28.
Zurück zum Zitat Stevenson VL, Leary SM, Losseff NA, Parker GJ, Barker GJ, Husmani Y, Miller DH, Thompson AJ (1998) Spinal cord atrophy and disability in MS: a longitudinal study. Neurology 51:234–238CrossRefPubMed Stevenson VL, Leary SM, Losseff NA, Parker GJ, Barker GJ, Husmani Y, Miller DH, Thompson AJ (1998) Spinal cord atrophy and disability in MS: a longitudinal study. Neurology 51:234–238CrossRefPubMed
29.
Zurück zum Zitat Valsasina P, Rocca MA, Horsfield MA, Copetti M, Filippi M (2015) A longitudinal MRI study of cervical cord atrophy in multiple sclerosis. J Neurol 262:1622–1628CrossRefPubMed Valsasina P, Rocca MA, Horsfield MA, Copetti M, Filippi M (2015) A longitudinal MRI study of cervical cord atrophy in multiple sclerosis. J Neurol 262:1622–1628CrossRefPubMed
30.
Zurück zum Zitat Van Uitert R, Bitter I, Butman JA (2005) Semi-automatic spinal cord segmentation and quantification. Int Congr Ser 1281:224–229CrossRef Van Uitert R, Bitter I, Butman JA (2005) Semi-automatic spinal cord segmentation and quantification. Int Congr Ser 1281:224–229CrossRef
31.
Zurück zum Zitat Yiannakas MC, Mustafa AM, De Leener B, Kearney H, Tur C, Altmann DR, De Angelis F, Plantone D, Ciccarelli O, Miller DH, Cohen-Adad J, Gandini Wheeler-Kingshott CAM (2016) Fully automated segmentation of the cervical cord from T1-weighted MRI using PropSeg: Application to multiple sclerosis. NeuroImage: Clinical 10:71–77CrossRef Yiannakas MC, Mustafa AM, De Leener B, Kearney H, Tur C, Altmann DR, De Angelis F, Plantone D, Ciccarelli O, Miller DH, Cohen-Adad J, Gandini Wheeler-Kingshott CAM (2016) Fully automated segmentation of the cervical cord from T1-weighted MRI using PropSeg: Application to multiple sclerosis. NeuroImage: Clinical 10:71–77CrossRef
32.
Zurück zum Zitat Yuan J, Bae E, Tai XC (2010) A study on continuous max-flow and min-cut approaches. Proc Cvpr Ieee:2217–2224 Yuan J, Bae E, Tai XC (2010) A study on continuous max-flow and min-cut approaches. Proc Cvpr Ieee:2217–2224
Metadaten
Titel
Reliable volumetry of the cervical spinal cord in MS patient follow-up data with cord image analyzer (Cordial)
verfasst von
Michael Amann
Simon Pezold
Yvonne Naegelin
Ketut Fundana
Michaela Andělová
Katrin Weier
Christoph Stippich
Ludwig Kappos
Ernst-Wilhelm Radue
Philippe Cattin
Till Sprenger
Publikationsdatum
09.05.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Neurology / Ausgabe 7/2016
Print ISSN: 0340-5354
Elektronische ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-016-8133-0

Weitere Artikel der Ausgabe 7/2016

Journal of Neurology 7/2016 Zur Ausgabe

Pioneers in Neurology

Jules Tinel (1879–1952)

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.