Skip to main content
Erschienen in: Intensive Care Medicine 7/2017

04.02.2017 | What's New in Intensive Care

Renal replacement in 2050: from renal support to renal replacement?

verfasst von: Lui G. Forni, Michael Darmon, Miet Schetz

Erschienen in: Intensive Care Medicine | Ausgabe 7/2017

Einloggen, um Zugang zu erhalten

Excerpt

Almost 100 years have evolved between the first description of dialysis and the first successful application in humans (Fig. 1). This diffusive system heralded what has now become the mainstay of treatment of end-stage renal disease. The use of convective therapies was described later (1960s) with continuous convective systems being commercially available in the 1980s [13]. Much energy has been expended over the last few decades in terms of filter development, machine refinements and increasing safety and tolerance but without major changes regarding basic principles or limitations. The nomenclature adopted is not without problems; the “renal replacement therapies” performed in our patients provide the most rudimentary “renal support”, correcting acid–base and electrolyte balance through the replacement fluid or dialysate (generally with standard composition). Volume depletion is achieved through mere hydrostatic pressure gradients and the delivered dose is not tailored to the actual individual’s needs [4]. Additionally, renal replacement therapy is unselective, resulting in unwanted losses of electrolytes, nutrients, drugs and other (possibly as yet unidentified) substances. The replacement fluid/dialysate may itself contain microorganisms or impurities, and important aspects of renal function such as blood pressure control, metabolic and hormonal homeostasis are not addressed. In brief, renal replacement therapies do little more than prevent lethal complications whilst awaiting organ recovery. The same criticism can be levied at intermittent haemodialysis where the best treatment for end-stage renal disease is organ transplantation.
Literatur
1.
Zurück zum Zitat Graham T (1854) The Bakerian lecture: osmotic force. Philos Trans R Soc Lond 144:177–228CrossRef Graham T (1854) The Bakerian lecture: osmotic force. Philos Trans R Soc Lond 144:177–228CrossRef
2.
Zurück zum Zitat Hass G (1925) Versuche der Blutauswaschung am Lebenden mit Hilfe der Dialyse. Klin Wochenschr 4(1):13–14CrossRef Hass G (1925) Versuche der Blutauswaschung am Lebenden mit Hilfe der Dialyse. Klin Wochenschr 4(1):13–14CrossRef
3.
Zurück zum Zitat Kolff WBH (1943) De kunstmatige nier: een dialysator met groot oppervlak. Ned Tijdschr Geneeskd 87:1684 Kolff WBH (1943) De kunstmatige nier: een dialysator met groot oppervlak. Ned Tijdschr Geneeskd 87:1684
5.
Zurück zum Zitat Sharma MK, Wieringa FP, Frijns AJ, Kooman JP (2016) On-line monitoring of electrolytes in hemodialysis: on the road towards individualizing treatment. Expert Rev Med Devices 13(10):933–943CrossRefPubMed Sharma MK, Wieringa FP, Frijns AJ, Kooman JP (2016) On-line monitoring of electrolytes in hemodialysis: on the road towards individualizing treatment. Expert Rev Med Devices 13(10):933–943CrossRefPubMed
6.
Zurück zum Zitat Locatelli F, Stefoni S, Petitclerc T, Coli L, Di Filippo S, Andrulli S et al (2012) Effect of a plasma sodium biofeedback system applied to HFR on the intradialytic cardiovascular stability. Results from a randomized controlled study. Nephrol Dial Transplant 27(10):3935–3942CrossRefPubMedPubMedCentral Locatelli F, Stefoni S, Petitclerc T, Coli L, Di Filippo S, Andrulli S et al (2012) Effect of a plasma sodium biofeedback system applied to HFR on the intradialytic cardiovascular stability. Results from a randomized controlled study. Nephrol Dial Transplant 27(10):3935–3942CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Tumlin J, Wali R, Williams W, Murray P, Tolwani AJ, Vinnikova AK et al (2008) Efficacy and safety of renal tubule cell therapy for acute renal failure. J Am Soc Nephrol 19(5):1034–1040CrossRefPubMedPubMedCentral Tumlin J, Wali R, Williams W, Murray P, Tolwani AJ, Vinnikova AK et al (2008) Efficacy and safety of renal tubule cell therapy for acute renal failure. J Am Soc Nephrol 19(5):1034–1040CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Roy SGK, Marchant R, Zydney A, Brown D, Fleischman A (2011) Implanted renal replacement for end stage renal disease. Panminerva Med 53:155PubMed Roy SGK, Marchant R, Zydney A, Brown D, Fleischman A (2011) Implanted renal replacement for end stage renal disease. Panminerva Med 53:155PubMed
9.
Zurück zum Zitat Humes HD, Fissell WH, Weitzel WF, Buffington DA, Westover AJ, MacKay SM et al (2002) Metabolic replacement of kidney function in uremic animals with a bioartificial kidney containing human cells. Am J Kidney Dis 39(5):1078–1087CrossRefPubMed Humes HD, Fissell WH, Weitzel WF, Buffington DA, Westover AJ, MacKay SM et al (2002) Metabolic replacement of kidney function in uremic animals with a bioartificial kidney containing human cells. Am J Kidney Dis 39(5):1078–1087CrossRefPubMed
10.
Zurück zum Zitat Herrera M, Mirotsou M (2014) Stem cells: potential and challenges for kidney repair. Am J Physiol Ren Physiol 306(1):F12–F23CrossRef Herrera M, Mirotsou M (2014) Stem cells: potential and challenges for kidney repair. Am J Physiol Ren Physiol 306(1):F12–F23CrossRef
11.
Zurück zum Zitat Marshall D, Clancy M, Bottomley M, Symonds K, Brenchley PE, Bravery CA (2005) Transplantation of metanephroi to sites within the abdominal cavity. Transplant Proc 37(1):194–197CrossRefPubMed Marshall D, Clancy M, Bottomley M, Symonds K, Brenchley PE, Bravery CA (2005) Transplantation of metanephroi to sites within the abdominal cavity. Transplant Proc 37(1):194–197CrossRefPubMed
12.
Zurück zum Zitat Yokoo T, Fukui A, Matsumoto K, Ohashi T, Sado Y, Suzuki H et al (2008) Generation of a transplantable erythropoietin-producer derived from human mesenchymal stem cells. Transplantation 85(11):1654–1658CrossRefPubMed Yokoo T, Fukui A, Matsumoto K, Ohashi T, Sado Y, Suzuki H et al (2008) Generation of a transplantable erythropoietin-producer derived from human mesenchymal stem cells. Transplantation 85(11):1654–1658CrossRefPubMed
13.
Zurück zum Zitat Kim SS, Gwak SJ, Han J, Park HJ, Park MH, Song KW et al (2007) Kidney tissue reconstruction by fetal kidney cell transplantation: effect of gestation stage of fetal kidney cells. Stem Cells 25(6):1393–1401CrossRefPubMed Kim SS, Gwak SJ, Han J, Park HJ, Park MH, Song KW et al (2007) Kidney tissue reconstruction by fetal kidney cell transplantation: effect of gestation stage of fetal kidney cells. Stem Cells 25(6):1393–1401CrossRefPubMed
14.
Zurück zum Zitat Lanza RP, Chung HY, Yoo JJ, Wettstein PJ, Blackwell C, Borson N et al (2002) Generation of histocompatible tissues using nuclear transplantation. Nat Biotechnol 20(7):689–696CrossRefPubMed Lanza RP, Chung HY, Yoo JJ, Wettstein PJ, Blackwell C, Borson N et al (2002) Generation of histocompatible tissues using nuclear transplantation. Nat Biotechnol 20(7):689–696CrossRefPubMed
15.
Zurück zum Zitat Canaud G, Bonventre V (2015) Cell cycle arrest and the evolution of chronic kidney disease from acute kidney injury. Nephrol Dial Transplant 30(4):575CrossRefPubMed Canaud G, Bonventre V (2015) Cell cycle arrest and the evolution of chronic kidney disease from acute kidney injury. Nephrol Dial Transplant 30(4):575CrossRefPubMed
Metadaten
Titel
Renal replacement in 2050: from renal support to renal replacement?
verfasst von
Lui G. Forni
Michael Darmon
Miet Schetz
Publikationsdatum
04.02.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Intensive Care Medicine / Ausgabe 7/2017
Print ISSN: 0342-4642
Elektronische ISSN: 1432-1238
DOI
https://doi.org/10.1007/s00134-016-4664-1

Weitere Artikel der Ausgabe 7/2017

Intensive Care Medicine 7/2017 Zur Ausgabe

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.