Skip to main content

08.12.2024 | Original Article

Reprogramming miR-146b-snphb Signaling Activates Axonal Mitochondrial Transport in the Zebrafish M-cell and Facilitates Axon Regeneration After Injury

verfasst von: Xin-Liang Wang, Zong-Yi Wang, Xing-Han Chen, Yuan Cai, Bing Hu

Erschienen in: Neuroscience Bulletin

Einloggen, um Zugang zu erhalten

Abstract

Acute mitochondrial damage and the energy crisis following axonal injury highlight mitochondrial transport as an important target for axonal regeneration. Syntaphilin (Snph), known for its potent mitochondrial anchoring action, has emerged as a significant inhibitor of both mitochondrial transport and axonal regeneration. Therefore, investigating the molecular mechanisms that influence the expression levels of the snph gene can provide a viable strategy to regulate mitochondrial trafficking and enhance axonal regeneration. Here, we reveal the inhibitory effect of microRNA-146b (miR-146b) on the expression of the homologous zebrafish gene syntaphilin b (snphb). Through CRISPR/Cas9 and single-cell electroporation, we elucidated the positive regulatory effect of the miR-146b-snphb axis on Mauthner cell (M-cell) axon regeneration at the global and single-cell levels. Through escape response tests, we show that miR-146b-snphb signaling positively regulates functional recovery after M-cell axon injury. In addition, continuous dynamic imaging in vivo showed that reprogramming miR-146b significantly promotes axonal mitochondrial trafficking in the pre-injury and early stages of regeneration. Our study reveals an intrinsic axonal regeneration regulatory axis that promotes axonal regeneration by reprogramming mitochondrial transport and anchoring. This regulation involves noncoding RNA, and mitochondria-associated genes may provide a potential opportunity for the repair of central nervous system injury.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Zhou B, Yu P, Lin MY, Sun T, Chen Y, Sheng ZH. Facilitation of axon regeneration by enhancing mitochondrial transport and rescuing energy deficits. J Cell Biol 2016, 214: 103–119.PubMedPubMedCentralCrossRef Zhou B, Yu P, Lin MY, Sun T, Chen Y, Sheng ZH. Facilitation of axon regeneration by enhancing mitochondrial transport and rescuing energy deficits. J Cell Biol 2016, 214: 103–119.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Han Q, Xie Y, Ordaz JD, Huh AJ, Huang N, Wu W. Restoring cellular energetics promotes axonal regeneration and functional recovery after spinal cord injury. Cell Metab 2020, 31: 623-641.e8.PubMedPubMedCentralCrossRef Han Q, Xie Y, Ordaz JD, Huh AJ, Huang N, Wu W. Restoring cellular energetics promotes axonal regeneration and functional recovery after spinal cord injury. Cell Metab 2020, 31: 623-641.e8.PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Huang N, Li S, Xie Y, Han Q, Xu XM, Sheng ZH. Reprogramming an energetic AKT-PAK5 axis boosts axon energy supply and facilitates neuron survival and regeneration after injury and ischemia. Curr Biol 2021, 31: 3098-3114.e7.PubMedPubMedCentralCrossRef Huang N, Li S, Xie Y, Han Q, Xu XM, Sheng ZH. Reprogramming an energetic AKT-PAK5 axis boosts axon energy supply and facilitates neuron survival and regeneration after injury and ischemia. Curr Biol 2021, 31: 3098-3114.e7.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Cartoni R, Norsworthy MW, Bei F, Wang C, Li S, Zhang Y, et al. The mammalian-specific protein Armcx1 regulates mitochondrial transport during axon regeneration. Neuron 2016, 92: 1294–1307.PubMedPubMedCentralCrossRef Cartoni R, Norsworthy MW, Bei F, Wang C, Li S, Zhang Y, et al. The mammalian-specific protein Armcx1 regulates mitochondrial transport during axon regeneration. Neuron 2016, 92: 1294–1307.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Devine MJ, Kittler JT. Mitochondria at the neuronal presynapse in health and disease. Nat Rev Neurosci 2018, 19: 63–80.PubMedCrossRef Devine MJ, Kittler JT. Mitochondria at the neuronal presynapse in health and disease. Nat Rev Neurosci 2018, 19: 63–80.PubMedCrossRef
8.
9.
Zurück zum Zitat Pilling AD, Horiuchi D, Lively CM, Saxton WM. Kinesin-1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Mol Biol Cell 2006, 17: 2057–2068.PubMedPubMedCentralCrossRef Pilling AD, Horiuchi D, Lively CM, Saxton WM. Kinesin-1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Mol Biol Cell 2006, 17: 2057–2068.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Tanaka Y, Kanai Y, Okada Y, Nonaka S, Takeda S, Harada A, et al. Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell 1998, 93: 1147–1158.PubMedCrossRef Tanaka Y, Kanai Y, Okada Y, Nonaka S, Takeda S, Harada A, et al. Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell 1998, 93: 1147–1158.PubMedCrossRef
11.
Zurück zum Zitat Cheng XT, Huang N, Sheng ZH. Programming axonal mitochondrial maintenance and bioenergetics in neurodegeneration and regeneration. Neuron 2022, 110: 1899–1923.PubMedPubMedCentralCrossRef Cheng XT, Huang N, Sheng ZH. Programming axonal mitochondrial maintenance and bioenergetics in neurodegeneration and regeneration. Neuron 2022, 110: 1899–1923.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Chen Y, Sheng ZH. Kinesin-1-syntaphilin coupling mediates activity-dependent regulation of axonal mitochondrial transport. J Cell Biol 2013, 202: 351–364.PubMedPubMedCentralCrossRef Chen Y, Sheng ZH. Kinesin-1-syntaphilin coupling mediates activity-dependent regulation of axonal mitochondrial transport. J Cell Biol 2013, 202: 351–364.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Kang JS, Tian JH, Pan PY, Zald P, Li C, Deng C, et al. Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation. Cell 2008, 132: 137–148.PubMedPubMedCentralCrossRef Kang JS, Tian JH, Pan PY, Zald P, Li C, Deng C, et al. Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation. Cell 2008, 132: 137–148.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Verreet T, Weaver CJ, Hino H, Hibi M, Poulain FE. Syntaphilin-mediated docking of mitochondria at the growth cone is dispensable for axon elongation in vivo. eNeuro 2019, 6: ENEURO.0026–ENEURO.0019.2019. Verreet T, Weaver CJ, Hino H, Hibi M, Poulain FE. Syntaphilin-mediated docking of mitochondria at the growth cone is dispensable for axon elongation in vivo. eNeuro 2019, 6: ENEURO.0026–ENEURO.0019.2019.
15.
Zurück zum Zitat Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 2013, 496: 498–503.PubMedPubMedCentralCrossRef Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 2013, 496: 498–503.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Bremer J, Marsden KC, Miller A, Granato M. The ubiquitin ligase PHR promotes directional regrowth of spinal zebrafish axons. Commun Biol 2019, 2: 195.PubMedPubMedCentralCrossRef Bremer J, Marsden KC, Miller A, Granato M. The ubiquitin ligase PHR promotes directional regrowth of spinal zebrafish axons. Commun Biol 2019, 2: 195.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Hecker A, Anger P, Braaker PN, Schulze W, Schuster S. High-resolution mapping of injury-site dependent functional recovery in a single axon in zebrafish. Commun Biol 2020, 3: 307.PubMedPubMedCentralCrossRef Hecker A, Anger P, Braaker PN, Schulze W, Schuster S. High-resolution mapping of injury-site dependent functional recovery in a single axon in zebrafish. Commun Biol 2020, 3: 307.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Korn H, Faber DS. The Mauthner cell half a century later: A neurobiological model for decision-making? Neuron 2005, 47: 13–28.PubMedCrossRef Korn H, Faber DS. The Mauthner cell half a century later: A neurobiological model for decision-making? Neuron 2005, 47: 13–28.PubMedCrossRef
20.
Zurück zum Zitat Hu BB, Chen M, Huang RC, Huang YB, Xu Y, Yin W, et al. In vivo imaging of Mauthner axon regeneration, remyelination and synapses re-establishment after laser axotomy in zebrafish larvae. Exp Neurol 2018, 300: 67–73.PubMedCrossRef Hu BB, Chen M, Huang RC, Huang YB, Xu Y, Yin W, et al. In vivo imaging of Mauthner axon regeneration, remyelination and synapses re-establishment after laser axotomy in zebrafish larvae. Exp Neurol 2018, 300: 67–73.PubMedCrossRef
21.
Zurück zum Zitat Rodemer W, Hu J, Selzer ME, Shifman MI. Heterogeneity in the regenerative abilities of central nervous system axons within species: Why do some neurons regenerate better than others? Neural Regen Res 2020, 15: 996–1005.PubMedCrossRef Rodemer W, Hu J, Selzer ME, Shifman MI. Heterogeneity in the regenerative abilities of central nervous system axons within species: Why do some neurons regenerate better than others? Neural Regen Res 2020, 15: 996–1005.PubMedCrossRef
22.
Zurück zum Zitat Huang R, Xu Y, Chen M, Yang L, Wang X, Shen Y, et al. Visualizing the intracellular trafficking in zebrafish mauthner cells. Methods Mol Biol 2022, 2431: 351–364.PubMedCrossRef Huang R, Xu Y, Chen M, Yang L, Wang X, Shen Y, et al. Visualizing the intracellular trafficking in zebrafish mauthner cells. Methods Mol Biol 2022, 2431: 351–364.PubMedCrossRef
23.
Zurück zum Zitat Thisse C, Thisse B. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc 2008, 3: 59–69.PubMedCrossRef Thisse C, Thisse B. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc 2008, 3: 59–69.PubMedCrossRef
24.
Zurück zum Zitat Cohen SM. Use of microRNA sponges to explore tissue-specific microRNA functions in vivo. Nat Methods 2009, 6: 873–874.PubMedCrossRef Cohen SM. Use of microRNA sponges to explore tissue-specific microRNA functions in vivo. Nat Methods 2009, 6: 873–874.PubMedCrossRef
25.
Zurück zum Zitat Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: Competitive inhibitors of small RNAs in mammalian cells. Nat Methods 2007, 4: 721–726.PubMedCrossRef Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: Competitive inhibitors of small RNAs in mammalian cells. Nat Methods 2007, 4: 721–726.PubMedCrossRef
26.
Zurück zum Zitat Wang Z, Wang X, Shi L, Cai Y, Hu B. Wolfram syndrome 1b mutation suppresses Mauthner-cell axon regeneration via ER stress signal pathway. Acta Neuropathol Commun 2022, 10: 184.PubMedPubMedCentralCrossRef Wang Z, Wang X, Shi L, Cai Y, Hu B. Wolfram syndrome 1b mutation suppresses Mauthner-cell axon regeneration via ER stress signal pathway. Acta Neuropathol Commun 2022, 10: 184.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Chen M, Huang RC, Yang LQ, Ren DL, Hu B. In vivo imaging of evoked calcium responses indicates the intrinsic axonal regenerative capacity of zebrafish. FASEB J 2019, 33: 7721–7733.PubMedCrossRef Chen M, Huang RC, Yang LQ, Ren DL, Hu B. In vivo imaging of evoked calcium responses indicates the intrinsic axonal regenerative capacity of zebrafish. FASEB J 2019, 33: 7721–7733.PubMedCrossRef
28.
Zurück zum Zitat Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM, Baskerville S, et al. MicroRNAs regulate brain morphogenesis in zebrafish. Science 2005, 308: 833–838.PubMedCrossRef Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM, Baskerville S, et al. MicroRNAs regulate brain morphogenesis in zebrafish. Science 2005, 308: 833–838.PubMedCrossRef
29.
Zurück zum Zitat Plucińska G, Paquet D, Hruscha A, Godinho L, Haass C, Schmid B, et al. In vivo imaging of disease-related mitochondrial dynamics in a vertebrate model system. J Neurosci 2012, 32: 16203–16212.PubMedPubMedCentralCrossRef Plucińska G, Paquet D, Hruscha A, Godinho L, Haass C, Schmid B, et al. In vivo imaging of disease-related mitochondrial dynamics in a vertebrate model system. J Neurosci 2012, 32: 16203–16212.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Takihara Y, Inatani M, Eto K, Inoue T, Kreymerman A, Miyake S, et al. In vivo imaging of axonal transport of mitochondria in the diseased and aged mammalian CNS. Proc Natl Acad Sci U S A 2015, 112: 10515–10520.PubMedPubMedCentralCrossRef Takihara Y, Inatani M, Eto K, Inoue T, Kreymerman A, Miyake S, et al. In vivo imaging of axonal transport of mitochondria in the diseased and aged mammalian CNS. Proc Natl Acad Sci U S A 2015, 112: 10515–10520.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Xu Y, Chen M, Hu B, Huang R, Hu B. In vivo imaging of mitochondrial transport in single-axon regeneration of zebrafish mauthner cells. Front Cell Neurosci 2017, 11: 4.PubMedPubMedCentralCrossRef Xu Y, Chen M, Hu B, Huang R, Hu B. In vivo imaging of mitochondrial transport in single-axon regeneration of zebrafish mauthner cells. Front Cell Neurosci 2017, 11: 4.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Yang LQ, Chen M, Ren DL, Hu B. Dual oxidase mutant retards mauthner-cell axon regeneration at an early stage via modulating mitochondrial dynamics in zebrafish. Neurosci Bull 2020, 36: 1500–1512.PubMedPubMedCentralCrossRef Yang LQ, Chen M, Ren DL, Hu B. Dual oxidase mutant retards mauthner-cell axon regeneration at an early stage via modulating mitochondrial dynamics in zebrafish. Neurosci Bull 2020, 36: 1500–1512.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Courchet J, Lewis TL Jr, Lee S, Courchet V, Liou DY, Aizawa S, et al. Terminal axon branching is regulated by the LKB1-NUAK1 kinase pathway via presynaptic mitochondrial capture. Cell 2013, 153: 1510–1525.PubMedPubMedCentralCrossRef Courchet J, Lewis TL Jr, Lee S, Courchet V, Liou DY, Aizawa S, et al. Terminal axon branching is regulated by the LKB1-NUAK1 kinase pathway via presynaptic mitochondrial capture. Cell 2013, 153: 1510–1525.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Huang YB, Hu CR, Zhang L, Yin W, Hu B. In vivo study of dynamics and stability of dendritic spines on olfactory bulb interneurons in Xenopus laevis tadpoles. PLoS One 2015, 10: e0140752.PubMedPubMedCentralCrossRef Huang YB, Hu CR, Zhang L, Yin W, Hu B. In vivo study of dynamics and stability of dendritic spines on olfactory bulb interneurons in Xenopus laevis tadpoles. PLoS One 2015, 10: e0140752.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Huang R, Chen M, Yang L, Wagle M, Guo S, Hu B. MicroRNA-133b negatively regulates zebrafish single mauthner-cell axon regeneration through targeting tppp3 in vivo. Front Mol Neurosci 2017, 10: 375.PubMedPubMedCentralCrossRef Huang R, Chen M, Yang L, Wagle M, Guo S, Hu B. MicroRNA-133b negatively regulates zebrafish single mauthner-cell axon regeneration through targeting tppp3 in vivo. Front Mol Neurosci 2017, 10: 375.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Ghibaudi M, Boido M, Vercelli A. Functional integration of complex miRNA networks in central and peripheral lesion and axonal regeneration. Prog Neurobiol 2017, 158: 69–93.PubMedCrossRef Ghibaudi M, Boido M, Vercelli A. Functional integration of complex miRNA networks in central and peripheral lesion and axonal regeneration. Prog Neurobiol 2017, 158: 69–93.PubMedCrossRef
37.
Zurück zum Zitat Kloosterman WP, Plasterk RHA. The diverse functions of microRNAs in animal development and disease. Dev Cell 2006, 11: 441–450.PubMedCrossRef Kloosterman WP, Plasterk RHA. The diverse functions of microRNAs in animal development and disease. Dev Cell 2006, 11: 441–450.PubMedCrossRef
38.
Zurück zum Zitat Thatcher EJ, Patton JG. Small RNAs have a big impact on regeneration. RNA Biol 2010, 7: 333–338.PubMedCrossRef Thatcher EJ, Patton JG. Small RNAs have a big impact on regeneration. RNA Biol 2010, 7: 333–338.PubMedCrossRef
39.
Zurück zum Zitat Kara N, Kent MR, Didiano D, Rajaram K, Zhao A, Summerbell ER, et al. The miR-216a-Dot1l regulatory axis is necessary and sufficient for Müller Glia reprogramming during retina regeneration. Cell Rep 2019, 28: 2037-2047.e4.PubMedPubMedCentralCrossRef Kara N, Kent MR, Didiano D, Rajaram K, Zhao A, Summerbell ER, et al. The miR-216a-Dot1l regulatory axis is necessary and sufficient for Müller Glia reprogramming during retina regeneration. Cell Rep 2019, 28: 2037-2047.e4.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Forman JJ, Legesse-Miller A, Coller HA. A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc Natl Acad Sci U S A 2008, 105: 14879–14884.PubMedPubMedCentralCrossRef Forman JJ, Legesse-Miller A, Coller HA. A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc Natl Acad Sci U S A 2008, 105: 14879–14884.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Hong P, Jiang M, Li H. Functional requirement of dicer1 and miR-17-5p in reactive astrocyte proliferation after spinal cord injury in the mouse. Glia 2014, 62: 2044–2060.PubMedCrossRef Hong P, Jiang M, Li H. Functional requirement of dicer1 and miR-17-5p in reactive astrocyte proliferation after spinal cord injury in the mouse. Glia 2014, 62: 2044–2060.PubMedCrossRef
44.
Zurück zum Zitat Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005, 120: 15–20.PubMedCrossRef Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005, 120: 15–20.PubMedCrossRef
45.
Zurück zum Zitat Garcia DM, Baek D, Shin C, Bell GW, Grimson A, Bartel DP. Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat Struct Mol Biol 2011, 18: 1139–1146.PubMedPubMedCentralCrossRef Garcia DM, Baek D, Shin C, Bell GW, Grimson A, Bartel DP. Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat Struct Mol Biol 2011, 18: 1139–1146.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Grimson A, Farh KKH, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP. MicroRNA targeting specificity in mammals: Determinants beyond seed pairing. Mol Cell 2007, 27: 91–105.PubMedPubMedCentralCrossRef Grimson A, Farh KKH, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP. MicroRNA targeting specificity in mammals: Determinants beyond seed pairing. Mol Cell 2007, 27: 91–105.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Li WY, Zhang WT, Cheng YX, Liu YC, Zhai FG, Sun P, et al. Inhibition of KLF7-targeting microRNA 146b promotes sciatic nerve regeneration. Neurosci Bull 2018, 34: 419–437.PubMedPubMedCentralCrossRef Li WY, Zhang WT, Cheng YX, Liu YC, Zhai FG, Sun P, et al. Inhibition of KLF7-targeting microRNA 146b promotes sciatic nerve regeneration. Neurosci Bull 2018, 34: 419–437.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Otaegi G, Pollock A, Hong J, Sun T. MicroRNA miR-9 modifies motor neuron columns by a tuning regulation of FoxP1 levels in developing spinal cords. J Neurosci 2011, 31: 809–818.PubMedPubMedCentralCrossRef Otaegi G, Pollock A, Hong J, Sun T. MicroRNA miR-9 modifies motor neuron columns by a tuning regulation of FoxP1 levels in developing spinal cords. J Neurosci 2011, 31: 809–818.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Bradke F, Fawcett JW, Spira ME. Assembly of a new growth cone after axotomy: The precursor to axon regeneration. Nat Rev Neurosci 2012, 13: 183–193.PubMedCrossRef Bradke F, Fawcett JW, Spira ME. Assembly of a new growth cone after axotomy: The precursor to axon regeneration. Nat Rev Neurosci 2012, 13: 183–193.PubMedCrossRef
51.
52.
Zurück zum Zitat Danos N, Lauder GV. Challenging zebrafish escape responses by increasing water viscosity. J Exp Biol 2012, 215: 1854–1862.PubMedCrossRef Danos N, Lauder GV. Challenging zebrafish escape responses by increasing water viscosity. J Exp Biol 2012, 215: 1854–1862.PubMedCrossRef
53.
Zurück zum Zitat Dunn TW, Gebhardt C, Naumann EA, Riegler C, Ahrens MB, Engert F, et al. Neural circuits underlying visually evoked escapes in larval zebrafish. Neuron 2016, 89: 613–628.PubMedPubMedCentralCrossRef Dunn TW, Gebhardt C, Naumann EA, Riegler C, Ahrens MB, Engert F, et al. Neural circuits underlying visually evoked escapes in larval zebrafish. Neuron 2016, 89: 613–628.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Gao Z, Pang Z, Chen Y, Lei G, Zhu S, Li G, et al. Restoring after central nervous system injuries: Neural mechanisms and translational applications of motor recovery. Neurosci Bull 2022, 38: 1569–1587.PubMedPubMedCentralCrossRef Gao Z, Pang Z, Chen Y, Lei G, Zhu S, Li G, et al. Restoring after central nervous system injuries: Neural mechanisms and translational applications of motor recovery. Neurosci Bull 2022, 38: 1569–1587.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Surin AM, Khiroug S, Gorbacheva LR, Khodorov BI, Pinelis VG, Khiroug L. Comparative analysis of cytosolic and mitochondrial ATP synthesis in embryonic and postnatal hippocampal neuronal cultures. Front Mol Neurosci 2013, 5: 102.PubMedPubMedCentralCrossRef Surin AM, Khiroug S, Gorbacheva LR, Khodorov BI, Pinelis VG, Khiroug L. Comparative analysis of cytosolic and mitochondrial ATP synthesis in embryonic and postnatal hippocampal neuronal cultures. Front Mol Neurosci 2013, 5: 102.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Han X, Xu J, Chen Z, Li P, Zhao L, Tao J, et al. Gas5 inhibition promotes the axon regeneration in the adult mammalian nervous system. Exp Neurol 2022, 356: 114157.PubMedCrossRef Han X, Xu J, Chen Z, Li P, Zhao L, Tao J, et al. Gas5 inhibition promotes the axon regeneration in the adult mammalian nervous system. Exp Neurol 2022, 356: 114157.PubMedCrossRef
57.
Zurück zum Zitat Li P, Jia Y, Tang W, Cui Q, Liu M, Jiang J. Roles of non-coding RNAs in central nervous system axon regeneration. Front Neurosci 2021, 15: 630633.PubMedPubMedCentralCrossRef Li P, Jia Y, Tang W, Cui Q, Liu M, Jiang J. Roles of non-coding RNAs in central nervous system axon regeneration. Front Neurosci 2021, 15: 630633.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Li S, Zhang R, Yuan Y, Yi S, Chen Q, Gong L, et al. MiR-340 regulates fibrinolysis and axon regrowth following sciatic nerve injury. Mol Neurobiol 2017, 54: 4379–4389.PubMedCrossRef Li S, Zhang R, Yuan Y, Yi S, Chen Q, Gong L, et al. MiR-340 regulates fibrinolysis and axon regrowth following sciatic nerve injury. Mol Neurobiol 2017, 54: 4379–4389.PubMedCrossRef
59.
Zurück zum Zitat Tedeschi A, Bradke F. Spatial and temporal arrangement of neuronal intrinsic and extrinsic mechanisms controlling axon regeneration. Curr Opin Neurobiol 2017, 42: 118–127.PubMedCrossRef Tedeschi A, Bradke F. Spatial and temporal arrangement of neuronal intrinsic and extrinsic mechanisms controlling axon regeneration. Curr Opin Neurobiol 2017, 42: 118–127.PubMedCrossRef
60.
Zurück zum Zitat Theis T, Yoo M, Park CS, Chen J, Kügler S, Gibbs KM, et al. Lentiviral delivery of miR-133b improves functional recovery after spinal cord injury in mice. Mol Neurobiol 2017, 54: 4659–4671.PubMedCrossRef Theis T, Yoo M, Park CS, Chen J, Kügler S, Gibbs KM, et al. Lentiviral delivery of miR-133b improves functional recovery after spinal cord injury in mice. Mol Neurobiol 2017, 54: 4659–4671.PubMedCrossRef
61.
Zurück zum Zitat Yu YM, Gibbs KM, Davila J, Campbell N, Sung S, Todorova TI, et al. MicroRNA miR-133b is essential for functional recovery after spinal cord injury in adult zebrafish. Eur J Neurosci 2011, 33: 1587–1597.PubMedPubMedCentralCrossRef Yu YM, Gibbs KM, Davila J, Campbell N, Sung S, Todorova TI, et al. MicroRNA miR-133b is essential for functional recovery after spinal cord injury in adult zebrafish. Eur J Neurosci 2011, 33: 1587–1597.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Lewis TL Jr, Turi GF, Kwon SK, Losonczy A, Polleux F. Progressive decrease of mitochondrial motility during maturation of cortical axons in vitro and in vivo. Curr Biol 2016, 26: 2602–2608.PubMedPubMedCentralCrossRef Lewis TL Jr, Turi GF, Kwon SK, Losonczy A, Polleux F. Progressive decrease of mitochondrial motility during maturation of cortical axons in vitro and in vivo. Curr Biol 2016, 26: 2602–2608.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Li S, Xiong GJ, Huang N, Sheng ZH. The cross-talk of energy sensing and mitochondrial anchoring sustains synaptic efficacy by maintaining presynaptic metabolism. Nat Metab 2020, 2: 1077–1095.PubMedPubMedCentralCrossRef Li S, Xiong GJ, Huang N, Sheng ZH. The cross-talk of energy sensing and mitochondrial anchoring sustains synaptic efficacy by maintaining presynaptic metabolism. Nat Metab 2020, 2: 1077–1095.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Au NPB, Ma CHE. Neuroinflammation, microglia and implications for retinal ganglion cell survival and axon regeneration in traumatic optic neuropathy. Front Immunol 2022, 13: 860070.PubMedPubMedCentralCrossRef Au NPB, Ma CHE. Neuroinflammation, microglia and implications for retinal ganglion cell survival and axon regeneration in traumatic optic neuropathy. Front Immunol 2022, 13: 860070.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Nakamura DS, Gothié JDM, Kornfeld SF, Kothary R, Kennedy TE. Expression and subcellular localization of mitochondrial docking protein, syntaphilin, in oligodendrocytes and CNS myelin sheath. Glia 2023, 71: 2343–2355.PubMedCrossRef Nakamura DS, Gothié JDM, Kornfeld SF, Kothary R, Kennedy TE. Expression and subcellular localization of mitochondrial docking protein, syntaphilin, in oligodendrocytes and CNS myelin sheath. Glia 2023, 71: 2343–2355.PubMedCrossRef
Metadaten
Titel
Reprogramming miR-146b-snphb Signaling Activates Axonal Mitochondrial Transport in the Zebrafish M-cell and Facilitates Axon Regeneration After Injury
verfasst von
Xin-Liang Wang
Zong-Yi Wang
Xing-Han Chen
Yuan Cai
Bing Hu
Publikationsdatum
08.12.2024
Verlag
Springer Nature Singapore
Erschienen in
Neuroscience Bulletin
Print ISSN: 1673-7067
Elektronische ISSN: 1995-8218
DOI
https://doi.org/10.1007/s12264-024-01329-5

Kompaktes Leitlinien-Wissen Neurologie (Link öffnet in neuem Fenster)

Mit medbee Pocketcards schnell und sicher entscheiden.
Leitlinien-Wissen kostenlos und immer griffbereit auf ihrem Desktop, Handy oder Tablet.

Neu im Fachgebiet Neurologie

Kaum Vorteile durch intraarterielle Lyse während Thrombektomie

Nach der Thrombektomie kleinere Fragmente über eine intraarterielle Lyse auflösen – dies könnte die Schlaganfalltherapie verbessern. Zwei aktuelle Studien ergeben für die periprozedurale Lyse jedoch keine großen Vorteile. Die Frage, wie viel sie nützt, bleibt weiter offen.

Nasenstimulation lindert chronische Migräne

Wird die Naseninnenseite durch Vibrationen stimuliert, kann dies offenbar die Zahl der Migränetage von Menschen mit chronischer Migräne deutlich senken. Darauf deuten die Resultate einer randomisiert-kontrollierten deutsch-finnischen Untersuchung.

Stumme Schlaganfälle − ein häufiger Nebenbefund im Kopf-CT?

In 4% der in der Notfallambulanz initiierten zerebralen Bildgebung sind „alte“ Schlaganfälle zu erkennen. Gar nicht so selten handelt es sich laut einer aktuellen Studie dabei um unbemerkte Insulte. Bietet sich hier womöglich die Chance auf ein effektives opportunistisches Screening?

Die elektronische Patientenakte kommt: Das sollten Sie jetzt wissen

Am 15. Januar geht die „ePA für alle“ zunächst in den Modellregionen an den Start. Doch schon bald soll sie in allen Praxen zum Einsatz kommen. Was ist jetzt zu tun? Was müssen Sie wissen? Wir geben in einem FAQ Antworten auf 21 Fragen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.