SUPPLEMENTARY INFORMATION

Journal of the Association for Research in Otolaryngology

Swept Along: Measuring Otoacoustic Emissions Using Continuously Varying Stimuli

Christopher A. Shera

Auditory Research Center
Caruso Department of Otolaryngology and Department of Physics \& Astronomy
University of Southern California, Los Angeles, California, USA
apg.mechanicsofhearing.org; christopher.shera@usc.edu

Caption for the Lorenz Attractor Video (Online Resource 2)

The supplemental video and its soundtrack ${ }^{1}$ were created by solving the coupled system of Lorenz equations [1],

$$
\frac{d}{d t}\left[\begin{array}{l}
x \tag{1}\\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
\sigma(y-x) \\
x(\rho-z)-y \\
x y-\beta z
\end{array}\right],
$$

using standard parameters $(\{\sigma, \rho, \beta\}=\{10,28,8 / 3\})$ and initial conditions $\left(\{x, y, z\}_{0}=\{20,5,-5\}\right)$. The equations were solved numerically using the Runge-Kutta method [2] (implemented as ode23 in MATLAB) on the time interval $[0,36] \mathrm{s}$ using a sampling rate of 16 kHz . The instantaneous frequency trajectories, $f_{1}(t)$ and $f_{2}(t)$, were obtained from the solutions $x(t)$ and $z(t)$ using the equations

$$
\left[\begin{array}{l}
f_{1}(t) \tag{2}\\
f_{2}(t)
\end{array}\right]=f_{0}\left[\begin{array}{c}
2^{x(t) / 30} \\
\frac{5}{2} 2^{[z(t)-25] / 30}
\end{array}\right],
$$

with $f_{0}=600 \mathrm{~Hz}$. Finally, the stimulus waveforms were computed as

$$
\left[\begin{array}{l}
s_{1}(t) \tag{3}\\
s_{2}(t)
\end{array}\right]=\sin \left(2 \pi \int_{0}^{t}\left[\begin{array}{l}
f_{1}\left(t^{\prime}\right) \\
f_{2}\left(t^{\prime}\right)
\end{array}\right] d t^{\prime}\right) .
$$

The two waveforms were subsequently summed, tapered at onset and offset, and sped up by a factor of 3 for monaural playback. The video is therefore $36 / 3=12 \mathrm{~s}$ in duration when played at the sampling rate of $3 \cdot 16=48 \mathrm{kHz}$.

Caption for the Lissajous Audio File (Online Resource 3)

The supplemental audio file was created by first defining the following functions

$$
\begin{equation*}
f_{\mathrm{DP}}(t)=f_{\mathrm{DP}_{1}}\left(\frac{f_{\mathrm{DP}_{2}}}{f_{\mathrm{DP}_{1}}}\right)^{\Lambda\left(2 \pi N_{\mathrm{DP}} t / T\right)} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
r(t)=r_{1}\left(\frac{r_{2}}{r_{1}}\right)^{\Lambda\left(2 \pi N_{r} t / T\right)} \tag{5}
\end{equation*}
$$

In these equations, the parameters $f_{\mathrm{DP}_{\{1,2\}}}$ represent the desired minimum and maximum values, respectively, of the DP frequency, $f_{\mathrm{DP}}=2 f_{1}-f_{2}$. Similarly, the parameters $r_{\{1,2\}}$ represent the desired range of primary frequency ratios, $r=f_{2} / f_{1}$. The parameters N_{DP} and N_{r} specify the desired number of complete Lissajous "orbits" traversed during the time T, where T is the total stimulus duration. The function $\Lambda(t)$ represents a sawtooth waveform in sine phase with range $[0,1]$ and period 2π. For example,

$$
\begin{equation*}
\Lambda(t)=\frac{1}{2}\left\{1+\frac{2}{\pi} \sin ^{-1}[\sin (t-\pi / 2)]\right\} . \tag{6}
\end{equation*}
$$

[^0]With these definitions, the instantaneous frequencies $f_{1}(t)$ and $f_{2}(t)$ were obtained using the equations

$$
\begin{equation*}
f_{2}(t)=\frac{f_{\mathrm{DP}}(t)}{2 / r(t)-1}, \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{1}(t)=f_{2}(t) / r(t) . \tag{8}
\end{equation*}
$$

The stimulus signals were then computed as

$$
\left[\begin{array}{l}
s_{1}(t) \tag{9}\\
s_{2}(t)
\end{array}\right]=\sin \left(2 \pi \int_{0}^{t}\left[\begin{array}{l}
f_{1}\left(t^{\prime}\right) \\
f_{2}\left(t^{\prime}\right)
\end{array}\right] d t^{\prime}\right) .
$$

The two stimulus signals were subsequently sampled at 48 kHz using the parameters $f_{\mathrm{DP}_{\{1,2\}}}=$ $\{0.5,2\} \mathrm{kHz}, r_{\{1,2\}}=\{1,4\}, N_{\mathrm{DP}}=5, N_{r}=9.5$, and $T=20 \mathrm{~s}$. With these parameters, the equivalent instantaneous sweep rate is ± 1 oct/s at the DP frequency. Finally, the resulting waveforms were summed for monoaural playback and tapered at onset and offset.

References

[1] Lorenz EM (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130-141
[2] Forsythe GE, Malcolm MA, Moler CB (1977) Computer Methods for Mathematical Computations. Prentice Hall: Englewood Cliffs, New Jersey

[^0]: ${ }^{1}$ The supplemental video and audio files can also be found on the Auditory Physics Group website:

 - apg.mechanicsofhearing.org/downloads/sounds/Swept-Along-Lorenz.mp4
 - apg.mechanicsofhearing.org/downloads/sounds/Swept-Along-Lissajous.mp4

