### Supplementary Material for

### A Xenograft Model for Venous Malformation

Jillian Goines<sup>1</sup>, Xian Li<sup>1</sup>, Yuqi Cai<sup>1</sup>, Paula Mobberley-Schuman<sup>2</sup>, Megan Metcalf<sup>2</sup>, Steven J. Fishman<sup>3</sup>, Denise M. Adams<sup>4</sup>, Adrienne M. Hammill<sup>2,5</sup>, and Elisa Boscolo<sup>1,5\*</sup>

<sup>1</sup> Division of Experimental Hematology and Cancer Biology, and <sup>2</sup> Division of Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA

<sup>3</sup> Departments of Surgery, <sup>4</sup>Department of Hematology, and the Vascular Anomalies Center, Boston Children's Hospital,

Harvard Medical School, Boston, MA, USA

<sup>5</sup> Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA

\*Corresponding author: elisa.boscolo@cchmc.org

### The PDF File includes:

- Fig. S1. Morphology of cultured patient-derived EC at low and high passage.
- Fig. S2. TIE2 and PIK3CA sequencing of 7 VMK-EC clonal populations.
- Fig. S3. Histology of patient Venous Malformation.
- Fig. S4. Lesion explants from injected HUVEC-TIE2-L914F and control HUVEC-TIE2-WT (wild type).
- Fig. S5. IB4 staining of VM xenograft lesion sections.
- Fig. S6. Staining of control tissues.
- Table S1. List of Primers for DNA Sanger sequencing.



**Supplemental Fig.S1. Morphology of cultured patient-derived EC at low and high passage.** Morphological analysis of Venous Malformation endothelial cells (VM-EC) from different patients (VM1, VMG, VMK) at low passage (p3) and high passage (p7).



Supplemental Fig. S2. *TIE2* and *PIK3CA* sequencing of 7 VMK EC clonal populations. DNA Sanger sequencing of VMK EC clone derived from 1 single cell. Presence of a double peak at *TIE2* c.2743C>T (p.R915C) (left) and c.1636C>A (p.Q546K) (right) in VMK EC population and in 7/7clonal populations. HUVEC did not show peaks for these variants.



# Supplemental Fig.S3. Histology of patient Venous Malformation.

Patient-derived Venous Malformation tissue subjected to hematoxylin and eosin staining (H&E) (left), immunohistochemical staining for Ulex europaeus Agglutinin I (UEA) (brown color) (top, right) and immunofluorescence staining for UEA (red) and smooth muscle alpha-actin ( $\alpha$ SMA) (green) (bottom, right). Scale bar 100 $\mu$ m.



В

HUVEC-TIE2-L914F



### Supplemental Fig.S4. Lesion explants from injected HUVEC-TIE2-L914F and control HUVEC-TIE2-WT (wild type).

HUVEC-TIE2-L914F and HUVEC-TIE2-WT cells were injected subcutaneously on both backsides of immunedeficient mice. A- Lesion explant photo, B- staining of hematoxylin and eosin (H&E) (top), immunohistochemistry (IHC) of Ulex europaeus I (UEA) (middle), and immunofluorescence (IF) of UEA (red) and  $\alpha$ SMA (green), nuclei (blue) (bottom); Scale bars: H&E, IHC and IF 100 $\mu$ m

Α



## Supplemental Fig.S5. IB4 staining of VM xenograft lesion sections.

VM-EC xenograft explants subjected to immunofluorescence staining for Griffonia simplicifolia Isolectin B4 (IB4) (red), DAPI for nuclei (blue). Controls are HUVEC, HUVEC-TIE2-L914F explants, human foreskin, patient-derived infantile hemangioma and mouse heart (positive control for IB4). Scale bar 50µm.

# Foreskin Hemangioma Mouse Heart Image: Second s

## Supplemental Fig.S6. Staining of control tissues.

Human foreskin, patient-derived infantile hemangioma and mouse heart subjected to hematoxylin and eosin staining (H&E) (top), immunohistochemical (IHC) staining for Ulex europaeus Agglutinin I (UEA) (brown color) (center), and immunofluorescence (IF) staining for UEA (red) and smooth muscle alpha-actin ( $\alpha$ SMA) (green) (bottom). Scale bar H&E, IHC 100 $\mu$ m; IF 50 $\mu$ m.

# Supplemental Table S1. List of Primers for DNA Sanger sequencing.

| Primer                      | Sequence                          |
|-----------------------------|-----------------------------------|
| TIE2 Exon 17 mutations      | F- 5' TGGTGTTGCTAGATGTGTTT        |
|                             | R- 5' TTTTGGCTCAAGTAGTCCAT        |
| PIK3CA Exon 21 mutations    | F- 5' ACATTCGAAAGACCCTAGCC        |
|                             | R- 5' ATGCTGTTCATGGATTGTGC        |
| PIK3CA Exon 8 mutations [1] | F- 5' GGGGAAAAAGGAAAGAATGG        |
|                             | R- 5' TGCTGAACCAGTCAAACTCC        |
|                             | Seq- 5' TGAATTTTCCTTTTGGGGAAG     |
| PIK3CA Exon 10 mutations    | F- 5' GATTGGTTCTTTCCTGTCTCTG      |
|                             | R- 5' CCACAAATATCAATTTACAACCATTG  |
|                             | Seq- 5' TTGCTTTTTCTGTAAATCATCTGTG |
| CD31 (qRT-PCR)              | F- 5' GACATGGCAACAAGGCTGTG        |
|                             | R- 5' CGGGCTTGGAAAATAGTTCTGT      |
| VWF (qRT-PCR)               | F- 5' CCGATGCAGCCTTTTCGGA         |
|                             | R- 5' TCCCCAAGATACACGGAGAGG       |
| VE-Cadherin (qRT-PCR)       | F- 5' GTTCACGCATCGGTTGTTCAA       |
|                             | R- 5' CGCTTCCACCACGATCTCATA       |
| 18S (qRT-PCR)               | F- 5' GTCTGTGATGCCCTTAGATG        |
|                             | R- 5' AGCTTATGACCCGCACTTAC        |

# BIBLIOGRAPHY

1. Samuels, Y., et al., *High frequency of mutations of the PIK3CA gene in human cancers.* Science, 2004. **304**(5670): p. 554.