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2-Desaza-annomontine impedes angiogenesis through reduced VEGFR2 expression derived from
inhibition of CDC2-like kinases.
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Supplementary Fig. 1 Structures of C81, MU1210 and T3 CLK
Structures were drawn using ChemSketch (ACD/Labs).
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Supplementary Fig. 2 Laser spot size in CNV model

ale Representative infrared (IR) fundus images at indicated time points and treatments post laser injury. Lower
panel shows OCT scan from one laser spot. Scale bar: 200 um. b-d/f-h Quantification of laser spot size. b-d n =
19-25 eyes, f-h n =10-15 eyes. Data show mean + SD, two-tailed unpaired Student’s t test; *p <0.05
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Supplementary Fig. 3 Effect of C81 on proliferation chemotactic migration and tube formation of HUVECs
a Quantification of proliferation of HUVECs in a crystal violet assay. b Distribution of HUVECs in the indicated
stages of the cell cycle quantified through Propidium iodide staining and Flow cytometry. ¢ quantification of
migration of HUVECs along a 0-20 % FCS gradient by crystal violet staining. d Quantification of directedness,
forward migration index in parallel to the chemoattractant, accumulated distance, Euclidian distance, and velocity
of scarcely seeded HUVECs along a 0-20 % FCS gradient over 20 h. e/f Quantification of tube formation for
number of junctions (e) or number of master segments (f). g representative images of HUVEC tubes on Matrigel.
a-d/e/f Data show mean £ SD, a IC50 was calculated using a nonlinear regression with a variable slope b/d two-
way ANOVA with Dunnett’'s post hoc test testing for a simple effect within cell cycle stages (b) or mode of
quantification (d). c/e/f One-way ANOVA with Dunnett’s post hoc analysis comparing treatments and no-gradient
control vs vehicle control (¢) or comparing treatments to vehicle control (e/f). *p <0.05 vs vehicle control within
cell cycle stage (b), vehicle control (c/elf) or mode of quantification (d). g Scalebar represents 100 um.



o8 20009 * *
=i,
85 1500 :
o
%) 5 **
T = 1000+
E g_ * * *
£= 5004 yg
S @ 0 T T
- - 3 10 C8l[uMm]
b - + + +  VEGF 10 ng/ml
*
2
3T
a9
" o *
“— C *
o o
= 0 %o
D
Qo o
[S o
= *
c *»
T
10 C81[uM]
- + + +  VEGF 10 ng/ml
e cr :
d
150+ * * x
B 1004 B 2 .
P\i sle
g 0, [ :
E [
2 04 ole . ®
E [ ]
'50 : T T T T L] 1 T
- -031 3 5 810 C81[uM]
-+ + + + + + + fullmedium
f
150+ IC50:4.53 UM

proliferation [% ctrl]
a1
o
1

1
0.1 100 C81 [uM]

-50+

Supplementary Fig. 4 C81 inhibits angiogenic key steps in vitro in HMEC-1

a/b Quantification of HMEC-1 spheroids pretreated for 30 min with the indicated concentrations of C81/vehicle
control and stimulated with VEGF for 20 h for accumulated sprouting length per spheroid (a) and number of
sprouts per spheroid (b). ¢ Representative images of collagen embedded HMEC-1 spheroids at the end of
treatment. d Quantification of scratches for closed surface area under treatment of C81, negative ctrl served as
a baseline. e Representative images of scratches after incubation. f Quantification of proliferation of HMEC-1 in
a crystal violet assay
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Supplementary Fig. 5 Unedited images of IGCs in HUVECs

Immunofluorescence pictures of HUVECs stained with Hoechst 33342 for the nuclei and anti-p-SR proteins to
mark interchromatin granule clusters. Altered distribution can be observed when HUVECs are treated with C81
or MU1210 for 6 h.
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Supplementary Fig. 6 Quantification of CLK1-4 knockdowns and additional quantification of knockdown
spheroids

a-d Relative quantification of CLK1-4 mRNA expression, normalized to GAPDH, 72 h after the indicated
knockdown was induced in HUVECSs. e-h Quantification of HUVEC spheroids embedded into collagen 72 h after
the indicated knockdown was induced, pretreated for 30 min with the indicated concentrations of C81/vehicle
control and stimulated with VEGF for 20 h for number of sprouts per spheroid. a-h Data are represented as mean
+ SD, n = 3 donors (a-e/g) or n = 4 donors (f/h). a-d unpaired student’s t-test; e-h one-way ANOVA with Tuckey’s
post hoc test. a-h *p < 0.05 compared to non-targeting control (a-d) or VEGF non targeting control (e-h); e-h #p
< 0.05 compared to knockdown cells stimulated with VEGF, only used to compare treatments of knockdown cells.
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Supplementary Fig. 7 RNA-Seq of C81 treated cells detects multiple affected biological processes, and
notably WNT/B-catenin as an affected signaling pathway

GO-Term analysis of biological processes affected by 6 h treatment of HUVECs with 10 puM C81 compared to
vehicle control, detected using short read RNA-Seq. N = 3 donors.
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Supplementary Fig. 8 B-Catenin knockdown efficiency

Semiquantitative analysis of B-catenin protein expression, normalized to B-actin, using densitometry in
Fiji/lmageJ in HUVECSs 48 h after knockdown was induced. C81 was added for the final 10 h of the incubation.
Data are depicted as mean + SD, one-way ANOVA with Dunnett’s post hoc test, *p < 0.05 compared to the non-
targeting control.



