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Methods 

Mammary cell subpopulation gene signatures 

 Gene expression measurements from fluorescence-activated cell sorting (FACS) enriched 

mammary cell subpopulations were obtained from three human and two murine published 

studies: GSE16997 [1], GSE19446 [2], GSE27027 [3], GSE35399 [4], and GSE50470 [5]. The 

human and murine datasets were separately combined using distance weighted discrimination 

(DWD) normalization to adjust for systemic microarray data biases between studies [6]. FACS 

subpopulation gene signatures were then derived within the human and murine dataset separately 

using a common approach.  First, genes highly expressed within each FACS subpopulation were 

identified using a two-class (subpopulation X versus all others) Significance Analysis of 

Microarrays (SAM) analysis [7,8], with genes highly expressed and with a false discovery rate 

(FDR) of <5% being considered significant. Next, the intersection of each study’s subpopulation 

gene signature was identified (e.g. aMaSC-Lim09 ∩ aMaSC-Shehata ∩ aMaSC-Prat).  The 

intersecting gene set for each cell type was then further limited to genes uniquely found in the 

subpopulation of interest by removing genes found in any other subpopulation’s gene set (e.g. 

removing members of aStr-Lim09 ∪ aStr-Shehata ∪ aStr-Prat ∪ LumProg-Lim09 ∪ LumProg-

Shehata ∪ LumProg-Prat ∪ MatureLum-Lim09 ∪ MatureLum-Shehata ∪ MatureLum-Prat from 

the aMaSC intersecting gene set) and by removing genes associated with the myoepithelial 

subpopulation using a published myoepithelial gene signature produced using the same approach 

as those derived here [9]. Through this process, a consensus gene signature was produced for 

each mammary cell FACS subpopulation, for each species, which we designated as ‘enriched’ 

(e.g. aMaSC-HsEnriched). 

 Each FACS ‘enriched’ signature was further refined by supervised clustering using the 

human UNC308 breast tumor dataset to identify subpopulation ‘features’ [8]. The purpose of this 

process was to identify clusters of genes highly correlated across a diverse human tumor dataset, 

as these gene features are more likely regulated by similar factors and therefore, may by more 

clinically useful than the entire enriched signature. These refined features (e.g. fMaSC-feature1 

for example) were defined as having at least ten genes with a Pearson correlation greater than 0.5 

across all tumors in the UNC308 dataset [10]. Expression scores for both the ‘enriched’ and 

‘feature’ gene signatures were determined by calculating the mean expression of the signature 

within each tumor; all gene signature lists are provided in Supplemental Table 1. Signatures were 
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separately standardized to have an average expression value of zero and a standard deviation of 

one (N(0,1)) to allow for across signature comparisons. 

 

Comparison of human and murine normal mammary populations 

 To identify possible commonalities between human and mouse normal mammary FACS 

populations, we used the gene set analysis (GSA) R package v1.03 [11] and R v2.12.2. Murine 

populations were analyzed for significant overlap with each HsEnriched gene signature. 

Significant overlap was defined as having p ≤ 0.05 and FDR ≤ 0.1 to control for multiple 

comparisons [11]. 

 

Mammary cell subpopulation centroids 

Human mammary cell subpopulation centroids were created using the union of the 

‘enriched’ epithelial gene signatures (aMaSC-HsEnriched ∪ LumProg-HsEnriched ∪ 

MatureLum-HsEnriched). The DWD single sample predictor (SSP) function [6] was used to 

calculate the shortest Euclidean distance between each tumor and each epithelial cell enriched 

centroid using three human datasets comprising over 3000 patients: UNC308 [8], Combined855 

[12], and Metabric2136 [13]. To gauge the strength of each mammary subpopulation association, 

the silhouette width was calculated for each sample using R v3.0.1 and the ‘cluster’ package. 

Samples with a positive silhouette width were considered to have strong association. Similarly, 

this process was repeated using the murine cell subpopulation dataset to calculate Euclidean 

distances for a murine expression dataset comprising 27 models of mammary carcinoma and 

normal mammary tissue [14]. 

Chemotherapy response 

 Logistic regression analysis was used to determine if gene signatures derived from 

normal cell populations were capable of predicting pathological complete response (pCR) in 

breast cancer patients treated with neoadjuvant anthracycline and taxane chemotherapy 

regimens. For this purpose, a combined breast cancer gene expression dataset was created from 

three public datasets (GSE25066 [15], GSE32646 [16], and GSE41998 [17]). Only neoadjuvant 

anthracycline and taxane treated patients with complete clinical data (Age, ER status, PR status, 

HER2 status, tumor stage and pCR) were considered in the analysis, resulting in a dataset of 702 

patients. The three datasets were combined using DWD normalization to adjust for systemic 
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microarray data biases between studies [6], with the clinical characteristics found in 

Supplemental Table 2. The significance of each mammary subpopulation gene signature and 

several published predictors of pCR was determined using a series of stepwise tests. First, the 

ability for each signature to predict pCR was determined with a univariate analysis (UVA) using 

R v3.0.1 (Supplemental Table 3). Those signatures that were significant (p<0.05) were then 

considered in a multivariate analysis (MVA) with several clinical variables (Age, ER status, PR 

status, HER2 status, tumor stage, PAM50 subtype [18], and PAM50 proliferation score [18]) to 

determine if each mammary subpopulation gene signature added new information for predicting 

pCR (Supplemental Table 4). 
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