
Appendix

A.1 Software code

We provide R code to implement the methods discussed in this paper. The associ-
ations of the genetic variants with the risk factor are denoted betaXG with standard
errors sebetaXG. The associations of the genetic variants with the outcome are de-
noted betaYG with standard errors sebetaYG. We assume that the genetic variants are
independently distributed unless otherwise stated.

Inverse-variance weighted (IVW) method:

betaIVW = sum(betaYG*betaXG*sebetaYG^-2)/sum(betaXG^2*sebetaYG^-2)

sebetaIVW.fixed = 1/sqrt(sum(betaXG^2*sebetaYG^-2))

This is the formula given in equation (2). Equivalently, the inverse-variance weighted
estimate can be calculated by weighted linear regression (equation 3):

betaIVW = summary(lm(betaYG~betaXG-1, weights=sebetaYG^-2))$coef[1]

sebetaIVW.fixed = summary(lm(betaYG~betaXG-1, weights=sebetaYG^-2))$coef[1,2]/

summary(lm(betaYG~betaXG-1, weights=sebetaYG^-2))$sigma

sebetaIVW.mult.random = summary(lm(betaYG~betaXG-1, weights=sebetaYG^-2))$coef[1,2]/

min(summary(lm(betaYG~betaXG-1, weights=sebetaYG^-2))$sigma,1)

In the fixed-effect model, we divide the reported standard error by the estimated
residual standard error, to fix the residual standard error to take the value 1 [21]. In
the multiplicative random-effects model, we divide by the estimated residual standard
error in the case of underdispersion (the variability in the genetic associations is less
than would be expected by chance alone). But in the case of overdispersion (that is,
heterogeneity of causal effect estimates), no correction is made. The point estimate is
unaffected by the choice of a fixed- or multiplicative random-effects model.

As a third alternative, the inverse-variance weighted estimate can be calculated by
meta-analysis:

library(meta)

betaIVW = metagen(betaYG/betaXG, abs(sebetaYG/betaXG))$TE.fixed

sebetaIVW.fixed = metagen(betaYG/betaXG, abs(sebetaYG/betaXG))$seTE.fixed

betaIVW.add.random = metagen(betaYG/betaXG, abs(sebetaYG/betaXG))$TE.random

sebetaIVW.add.random = metagen(betaYG/betaXG, abs(sebetaYG/betaXG))$seTE.random

While the causal estimates from the fixed-effect and multiplicative random-effects
analyses are the same, the estimate from the additive random-effects analysis differs.

Test for directional pleiotropy (intercept test from MR-Egger method):

betaYG = betaYG*sign(betaXG); betaXG = abs(betaXG)

interEGGER = summary(lm(betaYG~betaXG, weights=sebetaYG^-2))$coef[1,1]

seinterEGGER.random = summary(lm(betaYG~betaXG, weights=sebetaYG^-2))$coef[1,2]/

min(summary(lm(betaYG~betaXG, weights=sebetaYG^-2))$sigma, 1)

p.dpleio.random = 2*(1-pt(abs(interEGGER/seinterEGGER.random),df=length(betaXG)-2))
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The regression model is given in equation (4). Note that the first step in the anal-
ysis is to orientate the genetic variants in a consistent way. The p.dpleio variable is
the p-value for the test of directional pleiotropy. A low p-value indicates rejection of
the null hypothesis of balanced (or no) pleiotropy, in favour of the alternative hypoth-
esis that there is directional pleiotropy. The (multiplicative) random-effects analysis
is strongly preferred for MR-Egger; random-effects models are also preferred for the
inverse-variance weighted method if pleiotropy is suspected.

MR-Egger causal estimate and test of the causal null hypothesis:

betaYG = betaYG*sign(betaXG); betaXG = abs(betaXG)

betaEGGER = summary(lm(betaYG~betaXG, weights=sebetaYG^-2))$coef[2,1]

sebetaEGGER.fixed = summary(lm(betaYG~betaXG, weights=sebetaYG^-2))$coef[2,2]/

summary(lm(betaYG~betaXG, weights=sebetaYG^-2))$sigma

sebetaEGGER.random = summary(lm(betaYG~betaXG, weights=sebetaYG^-2))$coef[2,2]/

min(summary(lm(betaYG~betaXG, weights=sebetaYG^-2))$sigma, 1)

sigmaEGGER = summary(lm(betaYG~betaXG, weights=sebetaYG^-2))$sigma

betaEGGER.lower = ifelse(sigmaEGGER<1, min(betaEGGER-qnorm(0.975)*sebetaEGGER.random,

betaEGGER-qt(0.975,df=length(betaXG)-2)*sebetaEGGER.random*sigmaEGGER),

betaEGGER-qt(0.975,df=length(betaXG)-2)*sebetaEGGER.random)

betaEGGER.upper = ifelse(sigmaEGGER<1, max(betaEGGER+qnorm(0.975)*sebetaEGGER.random,

betaEGGER+qt(0.975,df=length(betaXG)-2)*sebetaEGGER.random*sigmaEGGER),

betaEGGER+qt(0.975,df=length(betaXG)-2)*sebetaEGGER.random)

p.causal.random = ifelse(sigmaEGGER<1, max(2*(1-pnorm(abs(betaEGGER/sebetaEGGER.random))),

2*(1-pt(abs(betaEGGER/sebetaEGGER.random/sigmaEGGER),df=length(betaXG)-2))),

2*(1-pt(abs(betaEGGER/sebetaEGGER.random),df=length(betaXG)-2)))

The p.causal variable is the p-value for the test of a causal effect. A low p-value
indicates rejection of the null hypothesis of no causal effect, in favour of the alternative
hypothesis that there is a causal effect of the risk factor on the outcome. The (slightly
convoluted) code for constructing a confidence interval and p-value ensures that the
confidence interval for the causal estimate is no wider (p-value is no more conservative)
using a random-effects analysis compared with a fixed-effect analysis when there is
underdispersion (that is, the residual standard error is less than 1). This could occur
with small numbers of variants as the random-effects analysis uses a t-distribution for
inference, whereas the fixed-effect analysis uses a normal distribution.

Median-based method:

weighted.median <- function(betaIV.in, weights.in) {

betaIV.order = betaIV.in[order(betaIV.in)]

weights.order = weights.in[order(betaIV.in)]

weights.sum = cumsum(weights.order)-0.5*weights.order

weights.sum = weights.sum/sum(weights.order)

below = max(which(weights.sum<0.5))

weighted.est = betaIV.order[below] + (betaIV.order[below+1]-betaIV.order[below])*

(0.5-weights.sum[below])/(weights.sum[below+1]-weights.sum[below])

return(weighted.est) }

weighted.median.boot = function(betaXG.in, betaYG.in, sebetaXG.in, sebetaYG.in, weights.in){

# the standard error is estimated based on 1000 bootstrap samples

med = NULL

for(i in 1:1000){

betaXG.boot = rnorm(length(betaXG.in), mean=betaXG.in, sd=sebetaXG.in)

betaYG.boot = rnorm(length(betaYG.in), mean=betaYG.in, sd=sebetaYG.in)

betaIV.boot = betaYG.boot/betaXG.boot
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med[i] = weighted.median(betaIV.boot, weights.in)

}

return(sd(med)) }

betaIV = betaYG/betaXG

weights = rep(1, length(betaXG)) # unweighted median

betaSIMPLEMED = weighted.median(betaIV, weights)

sebetaSIMPLEMED = weighted.median.boot(betaXG, betaYG, sebetaXG, sebetaYG, weights)

betaIV = betaYG/betaXG

weights = (sebetaYG/betaXG)^-2 # weighted median using inverse-variance weights

betaWEIGHTEDMED = weighted.median(betaIV, weights)

sebetaWEIGHTEDMED = weighted.median.boot(betaXG, betaYG, sebetaXG, sebetaYG, weights)

This is an alternative robust analysis method to MR-Egger based on summarized
data that gives consistent estimates under the condition that at least 50% of genetic
variants are valid instrumental variables (for the weighted median, that at least 50%
of the weight is from valid instrumental variables). See Bowden et al. [25] for more
details.

Robust IVW method:

The inverse-variance weighted (IVW) method can be performed using robust regression
(in particular, MM-estimation using Tukey’s bisquare objective function) rather than
standard linear regression:

library(robustbase)

betaIVW.robust = summary(lmrob(betaYG~betaXG-1, weights=sebetaYG^-2, k.max=500))$coef[1]

sebetaIVW.robust.fixed = summary(lmrob(betaYG~betaXG-1, weights=sebetaYG^-2, k.max=500))$coef[1,2]/

summary(lmrob(betaYG~betaXG-1, weights=sebetaYG^-2, k.max=500))$sigma

sebetaIVW.robust.random = summary(lmrob(betaYG~betaXG-1, weights=sebetaYG^-2, k.max=500))$coef[1,2]/

min(summary(lmrob(betaYG~betaXG-1, weights=sebetaYG^-2, k.max=500))$sigma,1)

This is another alternative robust analysis method based on summarized data that
downweights the contribution of heterogeneous genetic variants to the analysis model
by capping the contribution to the objective function in the regression analysis from
any single datapoint. See Burgess et al. [41] for more details.

Correlated variants:

If the genetic variants are correlated, these correlations should be accounted for in the
analysis using generalized weighted linear regression:

Omega = sebetaYG%o%sebetaYG*rho

betaIVW.correl = solve(t(betaXG)%*%solve(Omega)%*%betaXG)*t(betaXG)%*%solve(Omega)%*%betaYG

seIVW.correl.fixed = sqrt(solve(t(betaXG)%*%solve(Omega)%*%betaXG))

residIVW = betaYG-betaIVW.correl*betaXG

sebetaIVW.correl.random = sqrt(solve(t(betaXG)%*%solve(Omega)%*%betaXG))*

max(sqrt(t(residIVW)%*%solve(Omega)%*%residIVW/(length(betaXG)-1)),1)

betaEGGER.correl = solve(t(cbind(rep(1, length(betaXG)), betaXG))%*%solve(Omega)%*%

cbind(rep(1, length(betaXG)), betaXG))%*%

t(cbind(rep(1, length(betaXG)), betaXG))%*%solve(Omega)%*%betaYG

# first component is intercept term, second component is slope term (causal estimate)

residEGGER = betaYG-betaEGGER.correl[1]-betaEGGER.correl[2]*betaXG

varEGGER.correl.random = solve(t(cbind(rep(1, length(betaXG)), betaXG))%*%solve(Omega)%*%

cbind(rep(1, length(betaXG)), betaXG))*

max(sqrt(t(residEGGER)%*%solve(Omega)%*%residEGGER/(length(betaXG)-2)),1)

seinterEGGER.correl.random = sqrt(varEGGER.correl.random[1,1])

sebetaEGGER.correl.random = sqrt(varEGGER.correl.random[2,2])
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The matrix rho comprises the pairwise correlations between the genetic associations
(in particular, the genetic associations with the outcome). Provided that are genetic
associations estimated in the same participants, these are equal to the correlations
between the genetic variants themselves.

The generalized weighted linear regression can also be performed using the standard
linear regression command after weighting the data by a Cholesky decomposition:

Omega = sebetaYG%o%sebetaYG*rho

c_betaXG = solve(t(chol(Omega)))%*%betaXG

c_betaYG = solve(t(chol(Omega)))%*%betaYG

c_inter = solve(t(chol(Omega)))%*%rep(1, length(betaXG))

betaIVW.correl = lm(c_betaYG~c_betaXG-1)$coef[1]

sebetaIVW.correl.fixed = sqrt(1/(t(betaXG)%*%solve(Omega)%*%betaXG))

sebetaIVW.correl.random = sqrt(1/(t(betaXG)%*%solve(Omega)%*%betaXG))*

max(summary(lm(c_betaYG~c_betaXG-1))$sigma,1)

interEGGER.correl = lm(c_betaYG~c_inter+c_betaXG-1)$coef[1]

betaEGGER.correl = lm(c_betaYG~c_inter+c_betaXG-1)$coef[2]

seinterEGGER.correl.random = sqrt(solve(t(cbind(rep(1, length(betaXG)), betaXG))%*%solve(Omega)%*%

cbind(rep(1, length(betaXG)), betaXG))[1,1])*

max(summary(lm(c_betaYG~c_inter+c_betaXG-1))$sigma,1)

sebetaEGGER.correl.random = sqrt(solve(t(cbind(rep(1, length(betaXG)), betaXG))%*%solve(Omega)%*%

cbind(rep(1, length(betaXG)), betaXG))[2,2])*

max(summary(lm(c_betaYG~c_inter+c_betaXG-1))$sigma,1)

The value of the intercept differs between the two versions of the method, but the
same causal estimate is same in both cases.

Outlier detection (Cook’s distance and Studentized residuals):

Cook’s distance and Studentized residuals can be calculated for each genetic variant in
the analysis:

cooks.distance(lm(betaYG~betaXG-1, weights=sebetaYG^-2))

rstudent(lm(betaYG~betaXG-1, weights=sebetaYG^-2)) # IVW method

cooks.distance(lm(betaYG~betaXG, weights=sebetaYG^-2))

rstudent(lm(betaYG~betaXG, weights=sebetaYG^-2)) # MR-Egger method

Plots of various diagnostic tools for detecting outliers and influential points (includ-
ing Cook’s distance against standardized residuals) can be produced by the command
plot(lm(betaYG~betaXG-1, weights=sebetaYG^-2)) or similar.
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A.2 Consistency of IVW and MR-Egger methods and the In-
SIDE assumption

The genetic association with the outcome can be decomposed into the sum of a direct
(pleiotropic) effect and an indirect (causal) effect:

βY j = αj + θβXj (7)

where αj is the effect of the genetic variant on the outcome that is not mediated via
the risk factor of interest, and θ is the causal effect of the risk factor on the outcome.

For each genetic variant Gj, the ratio causal estimate is equal to:

β̂Y j

β̂Xj

N→∞
−−−→

βY j

βXj

=
αj + θβXj

βXj

= θ +
αj

βXj

, (8)

where N is the sample size. A valid instrumental variable has no direct effect on the
outcome (αj = 0), so the ratio estimate for a valid instrument is consistent for the
causal effect θ. The IVW estimate is a weighted average of the ratio estimates, and so
is also consistent for the causal effect when all instruments are valid.

More generally, the IVW estimate is:

∑

j β̂Y jβ̂Xj se(β̂Y j)
−2

∑

j β̂
2

Xj se(β̂Y j)−2
N→∞
−−−→ θ +

∑

j αjβXj se(β̂Y j)
−2

∑

j β
2

Xj se(β̂Y j)−2
. (9)

Therefore the asymptotic bias of the IVW estimate is zero if
∑

j αjβXj se(β̂Y j)
−2 = 0;

otherwise the IVW estimate is a biased estimate of the causal effect.
The MR-Egger estimate is a consistent estimate of the causal effect under the

condition that the pleiotropic effects of the genetic variants αj are uncorrelated with
the associations of the genetic variants with the exposure βXj [9]. Specifically, we
require the weighted covariance covw(α,βX) to be zero:

covw(α,βX) =

∑

j(αj − ᾱw)(βXj − β̄Xw) se(β̂Y j)
−2

∑

j se(β̂Y j)−2
= 0 (10)

where β̄Xw is the weighted mean of the βXj, ᾱw is the weighted mean of the αj, and
bold symbols represent vectors across the genetic variants. The slope coefficient from
the weighted regression analysis is:

θ̂1E =
covw(β̂Y , β̂X)

varw(β̂X)

N→∞
−−−→

covw(βY ,βX)

varw(βX)
=

covw(α,βX)

varw(βX)
+ θ

covw(βX ,βX)

varw(βX)
(11)

which is equal to θ under the InSIDE assumption, where varw is the weighted variance
function.

Under the InSIDE assumption, the intercept term in the MR-Egger analysis can
be interpreted as the average pleiotropic effect of the genetic variants included in the
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analysis. The intercept term is zero when there is balanced pleiotropy (that is, the

weighted average pleiotropic effect ᾱw =

∑

j αj se(β̂Y j)
−2

∑

j se(β̂Y j)−2
is zero) and the InSIDE

assumption is satisfied. In this case, the MR-Egger and IVW estimates will coincide,
and the IVW estimate will also be consistent; these two conditions imply that the bias
term for the IVW estimate

∑

j αjβXj se(β̂Y j)
−2 is zero.

As a technical aside, in the original description of MR-Egger, the InSIDE assump-
tion was presented as the independence between the distribution of pleiotropic effects
and the distribution of associations of the genetic variants with the exposure [9]. This
is a population version of the InSIDE assumption, and requires the genetic variants to
be conceptualized as being sampled from a population of genetic variants. Consistency
of the MR-Egger estimate under the population version of the InSIDE assumption re-
quires the number of instruments to tend to infinity. In contrast, the version of the
InSIDE assumption used in the proofs of consistency above is that the weighted covari-
ance between the pleiotropic effects and associations of the genetic variants with the
exposure is zero for the particular set of genetic variants in the analysis; this is a finite-
sample version of the InSIDE assumption. This distinction also affects the definition
of balanced and directional pleiotropy: in the population version, balanced pleiotropy
is defined as the weighted mean of the distribution of pleiotropic effects equalling zero;
in the finite-sample version, balanced pleiotropy is defined as the weighted mean of the
pleiotropic effects equalling zero for the genetic variants included in the analysis.
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A.3 Additional detail on applied examples

Plasma urate and coronary heart disease risk: Web Table A1 provides the
genetic variants taken from White et al. [10] and their associations with plasma urate
(in standard deviation units) and coronary heart disease risk (log odds ratios). These
associations are displayed graphically in Figure 2 (right panel). Associations with
plasma urate are taken from White et al.; associations with coronary heart disease
risk are taken from the CARDIoGRAMplusC4D consortium 2015 data release [23]
(data available at www.caridogramplus4d.org). This differs slightly from the genetic
associations with coronary heart disease risk used by White et al., who used data from
the CARDIoGRAMplusC4D consortium 2013 data release meta-analysed with data
from the UCLEB consortium. This table is adapted from White et al. (Supplementary
Table S3).
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Genetic Gene Effect Plasma urate Coronary heart disease
variant Chr Position region allele Beta (SD units) SE Beta (log odds ratio) SE

rs1471633 1 144435096 PDZK1 A 0.0568 0.0050 0.01709 0.00960
rs1260326 2 27584444 GCKR T 0.0693 0.0049 -0.00326 0.00962
rs12498742 4 9553150 SLC2A9 A 0.3600 0.0051 0.01193 0.01112
rs2231142 4 89271347 ABCG2 T 0.1896 0.0077 0.02353 0.01490
rs675209 6 7047083 RREB1 T 0.0556 0.0059 0.01584 0.01027
rs1165151 6 25929595 SLC17A1 T 0.0779 0.0042 0.01636 0.00940
rs1171614 10 61139544 SLC16A9 T 0.0790 0.0070 0.01200 0.01242
rs2078267 11 64090690 SLC22A11 T 0.0732 0.0058 -0.00110 0.00980
rs478607 11 64234639 NRXN2 A 0.0264 0.0056 -0.00546 0.01276
rs3741414 12 56130316 INHBC T 0.0649 0.0068 0.01213 0.01216
rs11264341 1 153418117 TRIM46 T 0.050 0.006 0.01689 0.00970
rs17050272 2 121022910 INHBB A 0.035 0.006 -0.00599 0.01026
rs6770152 3 53075254 SFMBT1 T 0.044 0.005 0.01904 0.00932
rs17632159 5 72467238 TMEM171 C 0.039 0.006 0.00274 0.01027
rs729761 6 43912549 VEGFA T 0.047 0.006 0.01258 0.01120
rs1178977 7 72494985 BAZ1B A 0.047 0.007 0.00646 0.01256
rs10480300 7 151036938 PRKAG2 T 0.035 0.006 0.01703 0.01144
rs2941484 8 76641323 HNF4G T 0.044 0.005 -0.00992 0.00930
rs10821905 10 52316099 A1CF A 0.057 0.007 0.02326 0.01214
rs642803 11 65317196 OVOL1 T 0.036 0.005 0.03611 0.00935
rs653178 12 110492139 ATXN2 T 0.035 0.005 0.06443 0.01037
rs1394125 15 73946038 UBE2Q2 A 0.043 0.006 -0.00616 0.01073
rs6598541 15 97088658 IGF1R A 0.043 0.006 0.00611 0.00945
rs7193778 16 68121391 NFAT5 T 0.046 0.008 0.00933 0.01360
rs7188445 16 78292488 MAF A 0.032 0.005 -0.00686 0.01056
rs7224610 17 50719787 HLF A 0.042 0.005 -0.00601 0.00975
rs742132 6 25715550 LRRC16A A 0.054 0.0092 0.00863 0.01006
rs2307394 2 148432898 ORC4L T 0.029 0.005 0.03780 0.00994
rs17786744 8 23832951 STC1 A 0.029 0.005 0.00521 0.00998
rs2079742 17 56820479 BCAS3 T 0.043 0.008 0.02360 0.01214
rs164009 17 71795264 QRICH2 A 0.028 0.005 0.01841 0.00943

Web Table A1: Genetic variants in different gene regions: genetic variant from White et al. [10],
chromosome (Chr), position and nearest gene region, effect allele, per allele associations with
plasma urate (standard deviation [SD] units) and coronary heart disease risk (log odds ratio)
with corresponding standard errors (SE).
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High-density lipoprotein cholesterol and coronary heart disease risk: Fig-
ure 7 (reproduced here as Web Figure A1) shows associations with high-density lipopro-
tein (HDL) cholesterol taken from the Global Lipids Genetics Consortium (GLGC) [50]
and with coronary heart disease (CHD) risk taken from the CARDIoGRAM consortium
[51] from all genetic variants that were associated with HDL-cholesterol at a genome-
wide level of significance (p < 5× 10−8) in the GLGC dataset. Associations with both
HDL-cholesterol and CHD risk were obtained from Do et al. [52]. The inverse-variance
weighted (IVW) estimate (solid line) and MR-Egger estimate (dashed line) are also dis-
played. The IVW estimate suggests a protective effect of HDL-cholesterol on CHD risk,
whereas the MR-Egger estimate is compatible with the null and directional pleiotropy
is detected.
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Web Figure A1: Graph showing further real example in which inverse-variance weighted
estimate (solid line) and MR-Egger estimate (dashed line) differ substantially. Each
point represents the per allele associations of a single genetic variant (lines from each
point are 95% confidence intervals for the associations). Associations with HDL-
cholesterol are in standard deviation units and associations with CHD risk are log
odds ratios.
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A.4 Finite-sample InSIDE assumption for uncorrelated and
correlated variants

With a fixed number of uncorrelated genetic variants (hence finite-sample), consistency
in the MR-Egger causal estimate requires the weighted covariance covw(α,βX) to be
zero, where:

covw(α,βX) =

∑

j(αj − ᾱw)(βXj − β̄Xw) se(β̂Y j)
−2

∑

j se(β̂Y j)−2
= 0

where β̄Xw is the weighted mean of the βXj, ᾱw is the weighted mean of the αj, and
bold symbols represent vectors across the genetic variants [41]. The slope coefficient
from the weighted regression analysis is:

θ̂1E =
covw(β̂Y , β̂X)

varw(β̂X)

N→∞
−−−→

covw(βY ,βX)

varw(βX)
=

covw(α,βX)

varw(βX)
+ θ

covw(βX ,βX)

varw(βX)

With a fixed number of correlated genetic variants, coefficients from the MR-Egger
generalized weighted linear regression are:

(

θ̂0E

θ̂1E

)

= [(1 β̂X)
TΩ−1(1 β̂X)]

−1(1 β̂X)
TΩ−1β̂Y

where 1 is a vector of 1s, and (1β̂X) is a J by 2 matrix. The MR-Egger causal estimate
tends (as the sample size increases to infinity) to:

θ̂1E
N→∞
−−−→

(βT
XΩ

−1βY )(1
TΩ−11)− (βT

XΩ
−11)(βT

YΩ
−11)

(βT
XΩ

−1βX)(1TΩ−11)− (βT
XΩ

−11)(βT
XΩ

−11)

Decomposing the genetic associations with the outcome into the causal and pleiotropic
components (βY = α+ θβX), we obtain:

θ̂1E
N→∞
−−−→ θ +

(βT
XΩ

−1α)(1TΩ−11)− (βT
XΩ

−11)(αTΩ−11)

(βT
XΩ

−1βX)(1TΩ−11)− (βT
XΩ

−11)(βT
XΩ

−11)

This is equal to θ if:

(βT
XΩ

−1α)(1TΩ−11)− (βT
XΩ

−11)(αTΩ−11) = 0.

This condition can also be written as:

∑

j1

∑

j2

βXj1αj2Ψj1,j2 ×

∑

j1

∑

j2

Ψj1,j2 −

∑

j1

∑

j2

βXj1Ψj1,j2 ×

∑

j1

∑

j2

αj1Ψj1,j2 = 0,

where Ψ = Ω−1. When the variants are uncorrelated, only the diagonal elements of Ω
and Ψ are non-zero, and these conditions simplify to the same weighted covariance as
above.
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