Online-Only Supplemental Material

related to the Article

Protein markers and risk of type 2 diabetes and prediabetes: a targeted proteomics approach in the KORA F4/FF4 study

<u>Authors:</u> Cornelia Huth^{1,2}, Christine von Toerne, Florian Schederecker, Tonia de las Heras Gala, Christian Herder, Florian Kronenberg, Christa Meisinger, Wolfgang Rathmann, Wolfgang Koenig, Melanie Waldenberger, Michael Roden, Annette Peters, Stefanie M. Hauck, Barbara Thorand

¹Institute of Epidemiology, Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Neuherberg, Germany

²German Center for Diabetes Research (DZD), München-Neuherberg, Germany

Corresponding author:

Cornelia Huth, PhD, MSE, Dipl.oec.troph.

e-mail: huth@helmholtz-muenchen.de

Targeted SRM-MS protein measurements (the description here in the Supplemental Material is complete and contains – in contrast to the description in the main article – some technical details which are not necessary to understand the article; the description here is intentionally partly redundant to the description in the main article)

The plasma samples of 271 persons of the subcohort had already been measured previously (lot 1) [1]. The remaining subcohort and all additional incident cases were newly measured in 2016 when the FF4 data became available (lot 2, n=621). These measurements were performed similarly as published for lot 1 [1] and are described together with the combined data preprocessing in detail below.

Plasma depletion and on-bead digestions The 621 lot 2 samples were randomly distributed into thirteen processing batches and quality control was performed as described for lot 1 [1]. All lot 2 sample preparation batches passed quality control. Depletion using ProteoMiner beads and tryptic digestion of lot 2 plasma were performed as previously described [1, 2] in the thirteen batches. After digestion, samples were stored at -80° C.

MS measurement and relative quantification Selected peptides established in [1] were measured by mass spectrometry (MS) in a targeted selection reaction monitoring (SRM) approach. SRM-assays were created for 24 proteins, including one spike-in control protein as

described in [1]. Isotope-labelled synthetic (heavy) peptides were used for each peptide as internal control to correct signal integration and for relative quantification as described in [1]. The heavy peptide mix was added to the digested sample prior to MS measurement. Liquid chromatography MSMS analysis was performed on an Ultimate3000 HPLC system (Thermo Fischer Scientific, Dreieich, Germany) coupled online to a QTrap4000 (ABSCIEX, Framingham, MT, USA) mass spectrometer by a nanospray ion source, as previously described [1] with the following changes: Peptides were separated on a 60 min non-linear gradient of 5% acetonitrile in 0.1% formic acid to 40% at a flow rate of 300 nl/min and the interface heater temperature was set to 150 °C. The signals were quantified by calculation of the area under the curve (AUC) of pre-specified collision-induced peptide dissociation products, the so-called transitions using the software Skyline. All transitions were monitored (and manually corrected if necessary) for correct peak integration and for identical retention time of associated light and heavy signals.

Relative quantification, normalization and quality control Data preprocessing was performed using R version 3.4.2 [3]. Coefficients of variation (CV) of pooled samples were calculated for all transition signals based on five replicate measurements per lot using the software AuDIT [4]. Transitions with a CV \geq 30% were excluded. A few measurements that were zero were randomly assigned a number between 1 and the minimum observation of the respective transition. Reduction from three to two transitions per peptide was performed as described [1]. Light (endogenous) to heavy (synthetic) ratios (LHRs) of the AUC-values were calculated, log₂-transformed, and averaged for all transitions of each peptide. Peptide-level LHR information was averaged per protein to yield relative protein levels. Within this process, the data was corrected for the technical covariates lot and batch, instrument maintenance and cleaning routines, day of analysis, time on autosampler and spike-in control peptide measurement results. Quality control of signals was based on CV results of lot 1 and lot 2 pools and 29 duplicate measurements of lot 2 samples. Only peptides demonstrating reliable reproducibility were included in the combined analysis, leaving a total of 30 peptides in lot 1 and 31 peptides in lot 2, and representing 14 candidate proteins (Supplemental Table 1). The SRM-MS signals of all analyzed transitions are shown in Supplemental Fig. 2 exemplarily for a plasma sample pool. The work-flow from plasma depletion, via SRM-MS measurement, to computation of multivariable adjusted odds ratios (ORs) is illustrated in Supplemental Fig. 3.

GDRS adaptations

In contrast to the originally published version [5, 6], the adapted version of the GDRS used in the present analysis did not include dietary information on meat, fiber and coffee consumption, because this data was unavailable in KORA F4. Additionally, smoking status was analyzed using three instead of the originally proposed five categories to avoid statistically instable results due to small number of participants in some categories, and the physical inactivity variable only included sports but not gardening and biking. Regarding parental history, we included the additional category 'unknown', which incorporates a higher type 2 diabetes risk, separately from the category 'no parental history' [7]. Although the latter more detailed assessment should individually result in a higher predictive performance, altogether the aforementioned necessary adaptations are likely to lead to a slightly lower predictive performance of the used GDRS_{adapted} reference model compared to the originally proposed model.

Supplemental References

1. von Toerne C, Huth C, de Las Heras Gala T, Kronenberg F, Herder C, Koenig W et al. MASP1, THBS1, GPLD1 and ApoA-IV are novel biomarkers associated with prediabetes: the KORA F4 study. Diabetologia. 2016;59:1882-92.

2. von Toerne C, Kahle M, Schafer A, Ispiryan R, Blindert M, Hrabe De Angelis M et al.
Apoe, Mbl2, and Psp Plasma Protein Levels Correlate with Diabetic Phenotype in NZO Mice
- An Optimized Rapid Workflow for SRM-Based Quantification. J Proteome Res.
2013;12:1331-43.

3. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; 2017.

4. Abbatiello SE, Mani DR, Keshishian H, Carr SA. Automated detection of inaccurate and imprecise transitions in peptide quantification by multiple reaction monitoring mass spectrometry. Clin Chem. 2010;56:291-305.

5. DIfE - Deutscher Diabetes-Risiko-Test (DRT). Diabetologie und Stoffwechsel.
 2016;11:S204-S6.

6. Paprott R, Muhlenbruch K, Mensink GB, Thiele S, Schulze MB, Scheidt-Nave C et al. Validation of the German Diabetes Risk Score among the general adult population: findings from the German Health Interview and Examination Surveys. BMJ Open Diabetes Res Care. 2016;4:e000280.

7. Thorand B, Liese AD, Metzger MH, Reitmeir P, Schneider A, Lowel H. Can inaccuracy of reported parental history of diabetes explain the maternal transmission hypothesis for diabetes? Int J Epidemiol. 2001;30:1084-9.

SUPPLEMENTAL TABLES

Supplemental Table 1 Plasma proteins and their peptides, measured by SRM-MS and investigated for association with incident type 2 diabetes and incident prediabetes

Protein ID and Peptide sequence [amino acid position]	Protein Symbol	Protein Name
ENSP00000320709	ADIPOQ	adiponectin
K.GDIGETGVPGAEGPR.G [77, 91]		
ENSP00000350425	apoA-IV	apolipoprotein A-IV
K.SELTQQLNALFQDK.L [51, 64]		
K.LGEVNTYAGDLQK.K [65, 77]		
R.ISASAEELR.Q [255, 263]		
ENSP00000466775	apoC-II	apolipoprotein C-II
K.ESLSSYWESAK.T [41, 51]		
K.TAAQNLYEK.T [52, 60]		
K.TYLPAVDEK.L [61, 69]		
ENSP00000227667	apoC-III	apolipoprotein C-III
R.GWVTDGFSSLK.D [60, 70]		
ENSP00000252486	apoE	apolipoprotein E
K.SELEEQLTPVAEETR.A [93, 107]		
R.AATVGSLAGQPLQER.A [209, 223]		
K.LEEQAQQIR.L [260, 268]		
ENSP00000357156	CD5L	CD5 molecule-like
R.EATLQDCPSGPWGK.N [211, 224]		
K.NTCNHDEDTWVECEDPFDLR.L [225, 244]		
R.LVGGDNLCSGR.L [245, 255]		
ENSP00000255030	CRP	C-reactive protein,
K.ESDTSYVSLK.A [31, 40]		pentraxin-related
R.GYSIFSYATK.R [65, 74]		
ENSP00000230036	GPLD1	glycosylphosphatidylinositol
R.IADVTSGLIGGEDGR.V [742, 756] ^a		specific phospholipase D1
K.AQYVLISPEASSR.F [786, 798]		
R.FGSSLITVR.S [799, 807] ^b		
ENSP00000336792/ENSP00000296280	MASP	mannan-binding lectin serine
R.TGVITSPDFPNPYPK.S [193, 207]		peptidase
R.AAGNECPELQPPVHGK.I [295, 310]		
R.SLPTCLPVCGLPK.F [427, 439]		
ENSP00000363079	MBL2	mannose-binding lectin
K.WLTFSLGK.Q [124, 131]⁵		(protein C) 2, soluble
K.FQASVATPR.N [157, 165] ^b		
R.NAAENGAIQNLIK.E [166, 178]		

Supplemental Table 1 – continued

Protein ID and Peptide sequence [amino acid position]	Protein Symbol	Protein Name
ENSP00000261336	PZP	pregnancy-zone protein
K.GSFALSFPVESDVAPIAR.M [517, 534]		
K.TLLVEAEGIEQEK.T [907, 919]		
ENSP00000360519	RBP4	rating hinding protain 4 plasma
K.YWGVASFLQK.G [107, 116] ^a		retinoi binding protein 4, plasma
R.LIVHNGYCDGR.S [184, 194]		
ENSP00000369816	SHBG	aay barmana hinding glabulin
R.IALGGLLFPASNLR.L [169, 182]		sex normone-binding globulin
K.QAEISASAPTSLR.S [202, 214]		
ENSP00000260356	THBS1	thrombospondin 1
K.GGVNDNFQGVLQNVR.F [201, 215]		
R.TIVTTLQDSIR.K [288, 298]		
Control protein	Rubisco	ribulose-1.5-bisphosphate
K.TFQGPPHGIQVER.D [146, 158]		carboxylase oxygenase
R.FLFCAEALYK.A [217, 226]		(spinach)
R.DITLGFVDLLR.D [339, 349]		
R.VALEACVQAR.N [421, 430]		

^aExclusively used in lot 1 data

^bExclusively used in lot 2 data

Supplemental Table 2 Multivariable adjusted logistic regression results for association between the 14 proteins (per one sex-specific SD increase) and incident type 2 diabetes as well as incident prediabetes.

Protein	Incident Type 2 Diabetes			Ir	Incident (Pre)diabetes ^a			
Adjustment	vs No	vs Non-Cases (<i>n</i> =123 vs 660)		vs Ne	vs Non-Cases (<i>n</i> =255 vs 446)			
	OR	95% CI	p value	OR	95% CI	p value		
adiponectin								
Model 1	0.713	[0.570, 0.893]	0.003	0.936	[0.778, 1.127]	0.486		
Model 2a	0.785	[0.617, 0.999]	0.049	0.994	[0.820, 1.205]	0.951		
Model 2b	0.843	[0.652, 1.090]	0.193	1.043	[0.854, 1.273]	0.682		
Model 3a	0.709	[0.561, 0.894]	0.004	0.996	[0.824, 1.205]	0.970		
Model 3b	0.773	[0.605, 0.986]	0.038	1.052	[0.863, 1.282]	0.614		
apoA-IV								
Model 1	1.056	[0.851, 1.311]	0.621	1.064	[0.892, 1.268]	0.490		
Model 2a	1.099	[0.882, 1.369]	0.400	1.064	[0.890, 1.270]	0.497		
Model 2b	1.016	[0.802, 1.288]	0.892	0.986	[0.821, 1.185]	0.885		
Model 3a	1.077	[0.861, 1.347]	0.514	1.043	[0.870, 1.250]	0.647		
Model 3b	0.994	[0.782, 1.263]	0.960	0.973	[0.808, 1.172]	0.773		
apoC-II								
Model 1	1.279	[1.029, 1.591]	0.027	1.064	[0.895, 1.264]	0.484		
Model 2a	1.092	[0.847, 1.407]	0.499	1.037	[0.843, 1.274]	0.733		
Model 2b	1.113	[0.845, 1.466]	0.447	1.021	[0.825, 1.262]	0.851		
Model 3a	1.309	[1.046, 1.637]	0.018	1.037	[0.867, 1.240]	0.688		
Model 3b	1.288	[1.009, 1.643]	0.042	1.009	[0.838, 1.214]	0.928		
apoC-III								
Model 1	1.302	[1.009, 1.681]	0.042	1.041	[0.854, 1.269]	0.691		
Model 2a	1.048	[0.759, 1.448]	0.775	1.002	[0.781, 1.284]	0.990		
Model 2b	1.110	[0.784, 1.571]	0.556	0.976	[0.755, 1.263]	0.855		
Model 3a	1.376	[1.056, 1.794]	0.018	1.028	[0.838, 1.262]	0.791		
Model 3b	1.364	[1.026, 1.812]	0.032	0.998	[0.805, 1.236]	0.983		
apoE								
Model 1	1.318	[1.093, 1.589]	0.004	1.131	[0.974, 1.315]	0.107		
Model 2a	1.187	[0.968, 1.455]	0.099	1.107	[0.944, 1.298]	0.213		
Model 2b	1.267	[1.013, 1.583]	0.038	1.126	[0.956, 1.326]	0.156		
Model 3a	1.329	[1.095, 1.612]	0.004	1.094	[0.936, 1.279]	0.257		
Model 3b	1.376	[1.112, 1.702]	0.003	1.103	[0.938, 1.297]	0.235		
CD5L								
Model 1	1.070	[0.862, 1.329]	0.539	1.048	[0.882, 1.245]	0.592		
Model 2a	1.054	[0.842, 1.318]	0.647	1.084	[0.908, 1.294]	0.371		
Model 2b	1.171	[0.917, 1.497]	0.206	1.133	[0.943, 1.361]	0.183		
Model 3a	1.066	[0.854, 1.330]	0.573	1.089	[0.910, 1.303]	0.352		
Model 3b	1.171	[0.918, 1.494]	0.203	1.132	[0.940, 1.363]	0.192		

Protein	Incident Type 2 Diabetes			In	Incident (Pre)diabetes ^a			
Adjustment	vs Non-Cases (<i>n</i> =123 vs 660)		vs No	vs Non-Cases (<i>n</i> =255 vs 446)				
-	OR	95% CI	p value	OR	95% CI	p value		
CRP								
Model 1	1.142	[0.913, 1.428]	0.244	1.117	[0.934, 1.336]	0.224		
Model 2a	1.114	[0.881, 1.409]	0.366	1.069	[0.889, 1.285]	0.479		
Model 2b	1.040	[0.808, 1.339]	0.760	1.097	[0.907, 1.327]	0.342		
Model 3a	1.161	[0.919, 1.465]	0.210	1.105	[0.916, 1.333]	0.296		
Model 3b	1.067	[0.830, 1.372]	0.612	1.129	[0.930, 1.369]	0.219		
GPLD1								
Model 1	1.156	[0.917, 1.457]	0.221	1.114	[0.927, 1.339]	0.251		
Model 2a	1.128	[0.888, 1.432]	0.324	1.126	[0.930, 1.362]	0.223		
Model 2b	1.164	[0.910, 1.489]	0.228	1.116	[0.920, 1.355]	0.266		
Model 3a	1.182	[0.932, 1.499]	0.169	1.127	[0.930, 1.366]	0.222		
Model 3b	1.206	[0.942, 1.542]	0.137	1.111	[0.914, 1.352]	0.290		
MASP								
Model 1	1.358	[1.100, 1.677]	0.004	1.232	[1.033, 1.470]	0.020		
Model 2a	1.306	[1.052, 1.621]	0.016	1.241	[1.036, 1.486]	0.019		
Model 2b	1.274	[1.013, 1.601]	0.038	1.284	[1.063, 1.551]	0.009		
Model 3a	1.375	[1.112, 1.702]	0.003	1.239	[1.031, 1.490]	0.022		
Model 3b	1.341	[1.068, 1.683]	0.011	1.277	[1.053, 1.549]	0.013		
MBL2								
Model 1	1.075	[0.814, 1.421]	0.609	0.997	[0.804, 1.237]	0.981		
Model 2a	1.069	[0.804, 1.420]	0.646	0.969	[0.780, 1.205]	0.778		
Model 2b	1.122	[0.818, 1.539]	0.475	0.967	[0.769, 1.214]	0.770		
Model 3a	1.052	[0.793, 1.396]	0.727	0.964	[0.771, 1.205]	0.747		
Model 3b	1.094	[0.802, 1.493]	0.569	0.965	[0.763, 1.220]	0.765		
PZP								
Model 1	0.879	[0.734, 1.053]	0.161	1.049	[0.906, 1.213]	0.522		
Model 2a	0.895	[0.744, 1.076]	0.237	1.038	[0.895, 1.204]	0.622		
Model 2b	0.863	[0.706, 1.054]	0.149	1.040	[0.892, 1.213]	0.613		
Model 3a	0.878	[0.731, 1.056]	0.167	1.062	[0.914, 1.235]	0.429		
Model 3b	0.841	[0.689, 1.027]	0.089	1.064	[0.910, 1.245]	0.436		
RBP4								
Model 1	1.173	[0.944, 1.457]	0.150	0.933	[0.787, 1.106]	0.427		
Model 2a	1.072	[0.853, 1.348]	0.551	0.939	[0.785, 1.123]	0.489		
Model 2b	1.032	[0.802, 1.327]	0.809	0.958	[0.796, 1.152]	0.648		
Model 3a	1.159	[0.930, 1.443]	0.188	0.969	[0.813, 1.155]	0.729		
Model 3b	1.124	[0.882, 1.433]	0.344	0.983	[0.820, 1.178]	0.850		
SHBG								
Model 1	0.863	[0.723, 1.031]	0.105	0.988	[0.852, 1.144]	0.867		
Model 2a	0.958	[0.792, 1.158]	0.656	0.991	[0.851, 1.155]	0.911		
Model 2b	1.146	[0.928, 1.416]	0.204	1.040	[0.889, 1.216]	0.624		
Model 3a	0.875	[0.728, 1.052]	0.155	0.943	[0.808, 1.099]	0.450		
Model 3b	1.043	[0.853, 1.276]	0.681	0.991	[0.846, 1.161]	0.910		

Supplemental Table 2 – continued

Protein	Inc	ident Type 2 Dial	oetes	In	Incident (Pre)diabetes ^a			
Adjustment	vs Non-Cases (<i>n</i> =123 vs 660)			vs No	vs Non-Cases (<i>n</i> =255 vs 446)			
	OR	95% CI	p value	OR	95% CI	p value		
THBS1								
Model 1	1.010	[0.810, 1.259]	0.931	1.039	[0.865, 1.247]	0.685		
Model 2a	1.015	[0.809, 1.274]	0.897	1.016	[0.843, 1.223]	0.870		
Model 2b	0.966	[0.760, 1.226]	0.774	0.997	[0.823, 1.208]	0.977		
Model 3a	1.035	[0.825, 1.299]	0.765	1.011	[0.836, 1.223]	0.912		
Model 3b	0.980	[0.772, 1.245]	0.870	0.991	[0.815, 1.205]	0.924		

Supplemental Table 2 continued

Statistically significant results are printed in bold.

Model 1: adjusted for age, sex, waist, height

Model 2a: adjusted for age, sex, waist circumference, height, smoking, physical inactivity,

actual hypertension, triglyceride level, total cholesterol/HDL-cholesterol ratio

Model 2b: adjusted for model 2a covariates + HbA1c

Model 3a: adjusted for age, sex, waist circumference, height, smoking, physical inactivity, actual hypertension, parental history of diabetes, sibling history of diabetes

Model 3b: adjusted for model 3a covariates + HbA1c

^aThe outcome 'incident (pre)diabetes' includes 32 incident type 2 diabetes cases who converted directly from normoglycemia to type 2 diabetes

Supplemental Table 3 Sensitivity analysis: Multivariable adjusted logistic regression results for association between the 14 proteins (per one sex-specific SD increase) and incident prediabetes after exclusion of the 32 incident type 2 diabetic participants

Protein	Incident Prediabetes					
Adjustment	vs Non-Cases (<i>n</i> =223 vs 446)					
	OR	95% CI	p value			
adiponectin						
Model 1	0.973	[0.803, 1.180]	0.784			
Model 2a	1.051	[0.859, 1.286]	0.629			
apoA-IV						
Model 1	1.065	[0.886, 1.279]	0.504			
Model 2a	1.061	[0.881, 1.277]	0.534			
apoC-II						
Model 1	1.082	[0.905, 1.294]	0.385			
Model 2a	1.062	[0.858, 1.314]	0.580			
apoC-III						
Model 1	1.056	[0.861, 1.294]	0.603			
Model 2a	1.027	[0.797, 1.325]	0.836			
apoE						
Model 1	1.146	[0.981, 1.338]	0.086			
Model 2a	1.128	[0.955, 1.332]	0.155			
CD5L			0 40 4			
Model 1	1.037	[0.867, 1.241]	0.691			
Model 2a	1.067	[0.888, 1.283]	0.488			
CRP	1 1 40	F0 055 1 0001	0.1.40			
Model 1	1.149	[0.955, 1.383]	0.142			
Model 2a	1.099	[0.908, 1.330]	0.332			
GPLDI Madalal	1 007	[0 000 1 212]	0.200			
Model 1	1.08/	[0.900, 1.313]	0.388			
Model 2a	1.101	[0.905, 1.340]	0.330			
MASP Model 1	1 941	[1 0.27 1 700]	0.020			
Model 1	1.241	[1.034, 1.400]	0.020			
MBL 2	1,240	[1.030, 1.505]	0.020			
Model 1	1.013	[0.810 1.267]	0 907			
Model 2a	0.082	[0.310, 1.207] [0.784, 1.231]	0.907			
P7P	0.702	[0.704, 1.231]	0.070			
Model 1	1 072	[0 923 1 245]	0 361			
Model 2a	1.072	[0.925, 1.215] [0.905, 1.227]	0.499			
RBP4	2.001	[0.200, 1.227]				
Model 1	0.923	[0.775, 1.100]	0.372			
Model 2a	0.930	[0.774, 1.118]	0.439			
SHBG		[
Model 1	0.975	[0.837, 1.135]	0.745			
Model 2a	0.977	[0.834, 1.144]	0.775			

Supplemental Table 3 continued

Protein Adjustment	Incident Prediabetes vs Non-Cases (<i>n</i> =223 vs 446)					
	OR	95% CI	p value			
THBS1						
Model 1	1.044	[0.865, 1.260]	0.654			
Model 2a	1.018	[0.840, 1.233]	0.858			

Statistically significant results are printed in bold.

Model 1: adjusted for age, sex, waist, height

Model 2a: adjusted for age, sex, waist circumference, height, smoking, physical inactivity,

actual hypertension, triglyceride level, total cholesterol/HDL-cholesterol ratio

Supplemental Table 4 AUC-estimates for study data as it is (not using bootstrap-validation) of selected proteins for incident type 2 diabetes and incident (pre)diabetes

Incident Type 2 Diabetes (n=783)							Incident	(Pre)diabetes	s (<i>n</i> =701)	
Basic Prediction Model	Selected Proteins	Basic AUC (95% CI)	Extended AUC (95% CI)	Delta AUC	p value DeLong- Test	Selected Proteins	Basic AUC (95% CI)	Extended AUC (95% CI)	Delta AUC	p value DeLong- Test
GDRS _{adapted} ^a	MASP, adiponectin, apoE	0.790 (0.751, 0.829)	0.818 (0.780, 0.856)	0.028	0.011	MASP	0.752 (0.716, 0.788)	0.756 (0.720, 0.791)	0.004	0.367
Age + sex + HbA1c	MASP, adiponectin, apoE	0.821 (0.780, 0.862)	0.841 (0.802, 0.879)	0.019	0.010	MASP, CRP	0.726 (0.687, 0.764)	0.743 (0.706, 0.780)	0.017	0.062
$GDRS_{adapted} + HbA1c^b$	MASP, adiponectin, apoE, PZP	0.850 (0.815, 0.886)	0.860 (0.825, 0.896)	0.010	0.123	MASP	0.781 (0.747, 0.816)	0.786 (0.752, 0.820)	0.004	0.299

AUC = area under the receiver operating characteristic curve: Basic AUC without proteins, Extended AUC with selected proteins.

Statistically significant results are printed in bold.

^aModel 3a: GDRS_{adapted} prediction variables: age, sex, waist circumference, height, smoking, physical inactivity, actual hypertension,

parental history of diabetes, sibling history of diabetes

^bModel 3b

SUPPLEMENTAL FIGURE

Supplemental Fig. 1 Illustration of the case-cohort design for (A) incident type 2 diabetes (left part of the figure) and (B) incident (pre)diabetes (right part of the figure). The sample sizes of the baseline source population and the analyzed participants are presented in detail. (A): At KORA FF4 incident type 2 diabetic cases and non-cases were at KORA F4 nondiabetic (normoglycemic or prediabetic). Plasma KORA F4 samples were measured. (B): At KORA FF4 incident (pre)diabetic cases and non-cases were at KORA F4 normoglycemic. Plasma KORA F4 samples were measured.

37.0

37.0

Peptide ISASAEELR

apoC-III Peptide DALSSVQESQVAQQAR

Ratio: 1.7

22.8 23.0 23.2

100

0

Peptide LVGGDNLCSGR

0

34.5

Ratio: 0.49

35.0

35.5

Light Signal

MASP Peptide TGVITSPDFPNPYPK

SHBG Peptide IALGGLLFPASNLR

Supplemental Fig. 2 This multipanel figure displays endogenous (light) and synthetic (heavy) transitions for the 31 peptides which represent the 14 proteins quantified in this study. For example, the v10 and v7 transitions were used for quantification of the adiponectin peptide GDIGETGVPGAEGPR. Because the figure shows all used transitions, three transitions are shown in case different transitions were used in lot 1 and lot 2 measurements (e.g. for the apoA-IV peptide ISASAEELR). The actual mass-to-charge (m/z) values measured by the mass spectrometer for each transition are displayed in the small boxes above the transition curves. For example, for adiponectin the m/z value of the endogenous peptide's y10 transition is 940.4847. The m/z values of the heavy transitions are about 8 or 10 units higher compared to the light transitions, dependent on the heavy isotopes used in the purchased heavy peptides. For example, for adiponectin the m/z value of the y10 transition of the heavy peptide is 950.4929. The displayed data originate from a pooled sample used for quality control. The x-axis displays the retention time, which confirms matching of light and heavy signals. The y-axis displays an arbitrary intensity used for relative quantification. This intensity is peptide dependent and can only be compared between samples, not across peptides. The transition signals are quantified by calculation of the area under the curve (AUC), using the software Skyline. The heavy peptides were spiked in to generate light to heavy AUC ratios of roughly 1. On this basis, quantification is most exact. The ratios (displayed at the bottom of each transition panel) vary from 1 due to technical reasons. The subsequent computations yielding relative protein concentrations are depicted in suppl. fig. 3.

Supplemental Fig. 3 This schematic workflow displays the major SRM-MS data analysis steps, described in detail in the methods subchapters 'targeted SRM-MS protein measurements' and 'statistical analysis'. After sample preparation and mass spectrometric measurement, the signal intensities of all selected transitions of all used endogenous (light) and synthetic (heavy) peptides are recorded and quantified with the Skyline software. The transition signals of all investigated peptides are displayed in suppl. fig. 2. Panel 3 of this figure shows the signal intensities of one pooled sample exemplarily for one peptide and separately for the light and heavy transitions. The area under the curve (AUC) information from up to three transitions per peptide were exported from the Skyline software to R. Only the two transitions having the most similar information were subsequently used. Light to heavy ratios (LHRs) of the AUC-values were calculated, log₂-transformed, averaged for the transitions of each peptide and corrected for technical covariates. The peptide-level LHR information was averaged per protein and divided by the sex-specific standard deviation to yield relative protein levels. Panel 4 displays boxplots for the unadjusted relative concentrations of all investigated proteins, separately for incident type 2 diabetic cases (T2D) and non-cases (NC). Panel 5 illustrates the age- and sex-adjusted odds ratios for incident type 2 diabetes per 1 SD increased protein level. Statistically significant results in panels 5 and 6 (p<0.05) are displayed in bold. The multivariable adjusted panel 6 odds ratio figure is the same as shown in figure 2 of the main manuscript.