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Background 

Etiology explained 

Research aiming to explain can be called causal or etiological and has been the cornerstone of 

modern research. Particularly in the medical field, most studies are causal in nature as they aim to 

understand why disease occurs and how best to treat it. The golden standard of etiological research 

has long been considered to be an experiment (e.g. a randomized controlled trial).[1] However, 

many causal questions cannot be answered with a trial due to, among other things, practical, 

monetary, and ethical constraints. In recent years causal inference knowledge has expanded greatly 

and many methods have been developed to approximate causal effects in observational data.[2]  

In a well-defined etiological study the researcher is interested in the causal effect of an exposure 

variable on an outcome. To find the most precise estimate of the causal effect, the exposed and 

unexposed patients should be (made) as similar as possible for characteristics that may influence the 

outcome. If not, the presence of confounding will give biased (untrue) causal effects. Confounding is 

the presence of other characteristics which influence both the exposure and outcome and thereby 

muddle the causal relationship.[3] A simple example is that grey hair is associated with mortality, 

however this relationship is completely explained by age, which is a (indirect) cause of both grey hair 

and death. To describe the causal structure of the study question and adjust for confounding 

variables, expert knowledge on the subject is essential.[4] The data itself cannot tell us which 

variables are confounders and which are in the causal pathway (mediators) between exposure and 

outcome, as the data can only reveal associations and not the direction of effect.[4, 5] When 

interested in the total causal effect we only want to adjust for confounders, as adjusting for 

mediators removes part of the exposure effect on the outcome. For instance, when researching the 

total causal effect of blood pressure on mortality, it is important to adjust for confounders such as 

age and BMI (as these factors potentially affect both blood pressure and mortality). If we were to 

select correction factors based on the data, for instance by including all factors univariately 

associated with the outcome/exposure or by using backward selection procedures, we might also 

adjust for cardiovascular disease and heart failure (as these factors are associated with both our 

exposure and outcome in the data). As this factor  lies along the causal pathway (hypertension can 

cause cardiovascular disease and heart failure which in turn may lead to death) we are over-

adjusting and we could erroneously conclude that hypertension does not affect mortality risk. 

However, if we want to look into why hypertension increases the risk of mortality, we may 

intentionally adjust for mediators, to assess how much of the effect of hypertension on mortality is 

due to heart failure. In such studies the aim is not to quantify the total causal effect but to 

disentangle the causal mechanism.     

With expert knowledge on the underlying causal structure we can account for confounding in the 

study design (e.g. through restriction, matching, Mendelian randomization or instrumental variable 
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analysis) or in the data analysis.[6-8] The most used methods in causal inference are multivariable 

regression techniques, in which we can calculate the exposure effect conditional on the presence of 

confounding factors, though more complex analytic methods such as propensity score matching or 

inverse probability weighting are also employed.[2] Though generally not advisable, data-driven 

confounder selection may be employed in small datasets, under the condition that the data has 

been pre-processed to entail that covariates fed into the statistical selection method are only 

potential confounders and free of mediators.[5, 9, 10]  

The hypothesized causal structure should be carefully considered prior to analysis, preferably using 

causal diagrams (directed acyclic graphs) which were first described in a hallmark paper by 

Greenland, Pearl and Robbins.[11] Causal diagrams can assist researchers in identifying confounding 

factors, colliders and covariates that act like instrumental variables. Whilst failing to correct for a 

confounding factor can introduce bias, conditioning on a collider (common effect of exposure and 

outcome) or instrument can also introduce and amplify bias.[12, 13] The presented results of 

etiological studies are the risk of the outcome in exposed compared to unexposed patients, with a 

focus on minimizing bias to obtain the most accurate estimate of the effect of each included factor. 

This is most often reported as a risk ratio, odds ratio or hazard ratio but may also be shown in terms 

of absolute risk. These results help us answer ‘what if’ questions about treatment or management 

and are imperative in furthering our understanding of health and disease. What if we dyed all grey 

hair brown, would survival improve? Our age-adjusted result gives us the (rather intuitive) answer: 

no.  

Prediction clarified 

In medical research prediction models are either prognostic or diagnostic, where prognostic models 

generally provide individual risk estimates of a future binary outcome and diagnostic models predict 

the current presence or absence of a condition.[14] The past decade has seen an almost exponential 

surge in the number of medical prediction studies.[15] Ideally, prognostic questions are answered in 

observational prospective cohort studies. Though data from existing trials may be used this is often 

less favorable as strict selection criteria limit generalizability.[14] Prediction studies are particularly 

valued for their applied utility, as they may be employed to improve individualized decision-making, 

selection of high or low-risk patient groups, and personalized medicine.[16]  

In essence a prediction model is an algorithm which converts an individual’s characteristics into a 

prognosis or diagnosis.  A precursor to prediction modelling may be identifying predictors. Predictor 

finding studies (or prognostic factor finding studies) don’t aim to develop a full prediction model but 

instead have the goal to identify predictors that contribute added value (over and above existing 

predictors) to an improved risk stratification or future prediction model.[17] Ideally, the predictive 

value of these factors is assessed in addition to readily available known predictors that are currently 

used. What predictor finding studies and prediction model studies have in common, is that they  do 

not aim to uncover causal effects. A good prediction model predicts outcome with the highest 

accuracy using readily available predictors. These predictors may be any variable associated with the 

outcome, causally or otherwise. Though expert knowledge (including causal understanding) and 

previous research help in selecting relevant predictors, accurate prediction models can be built using 

only the underlying data as input. Such data-driven methods range from as choosing predictors a 

priori and developing a statistical model that includes all of them; to selection procedures such as 

backwards selection or those that incorporate penalization such as  lasso and elastic net; and to 

machine learning algorithms such as decision trees, random forests, support vector machines, neural 

networks).[15] 
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Importantly, this means that we cannot interpret predictors as causal.[14] Though this sounds rather 

intuitive, in practice it is tempting to do so. For instance when filling in a prediction model of 

mortality risk, blood pressure may be a predictor. When calculating the mortality risk for an 

individual with hypertension, it is compelling to check what would happen to this person’s prognosis 

if we could lower the blood pressure a bit further. However, the difference in prognosis when 

reporting different blood pressure values does not reflect an actual risk reduction if we modify this 

predictor. Even if a model included all confounders for the effect of interest and no colliders, we are 

fundamentally unable to identify individual causal effects and can only identify average causal 

effects. However,  as the prediction model likely contains various mediators (such as heart failure) 

between blood pressure and mortality and the model may lack important confounders for this 

association, we absolutely cannot deduce a causal effect. This becomes apparent if we think of a 

prediction model that includes the use of antihypertensive drugs as predictor. As the use of certain 

drugs (or lack thereof) can tell us quite a bit about a patient’s general health status, it makes sense 

that such variables may be potent predictors and that, in observational data, the use of 

antihypertensive drugs are positively associated with mortality. This does not mean that an 

individual’s prognosis would improve if they discontinue their antihypertensive medication, 

contrarily in all likelihood their prognosis would worsen.  

Indeed, the main focus of prediction model studies is not the predictors included in the model or 

their effect sizes, but rather the overall predictive performance of the model in terms of calibration, 

discrimination and clinical utility of the model’s predicted values in individuals.[18]   To this end, 

measures such as C-statistic (area under the curve), calibration-in-the-large, calibration slope, and 

net benefit are often used.[19]. Prediction models can help us group patients into high and low risk 

individuals and personalize medical practice by providing individual diagnosis or prognosis estimates. 

[20] 
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Figure S1: flowchart of study inclusion 
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Articles screened 

n = 421 

217 articles excluded based on 

title/abstract 

• 54 trial/experiment 

• 46 descriptive study 

• 39 fundamental/animal/GWAS study 

• 32 editorial/opinion/commentary 

• 18 methodological/non-clinical study 

• 16 systematic review/meta-analysis  

• 6 qualitative/case-report/case-series 

• 6 impact/simulation/cost-
effectiveness study 

 

24 full-text articles excluded 

• 12 descriptive study 

• 5 impact/simulation/cost-
effectiveness study 

• 4 fundamental/animal/GWAS study 

• 2 systematic review/meta-analysis 

• 1 trial/experiment 
 

Clinical 

Epidemiology 

(6 journals) 

n = 57 

Cardiology 

 

(6 journals) 

n = 80 

Clinical 

Neurology 

(8 journals) 

n = 84 

General & 

Internal 

(7 journals) 

n = 82 

Nephrology 

 

(5 journals) 

n = 51 

Surgery 

 

(6 journals) 

n = 67 

Full-text eligibility assessment 

n = 204 

Articles included 

n = 180 

(n=30 from each medical field) 
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Table S1: Signaling questions for identifying conflation between etiology and prediction in 

observational studies. 

Scoring: Each question should be answered by Yes/No/Unclear when assessing a study. If any 

questions are answered by ‘Yes’ in both the etiological and prediction column, there may be 

conflation between etiology and prediction.  

 

 

 

 

 

 Etiology Prediction 

1. Research 

question 

1.1 Was the objective to find a causal 

association? 

1.2 Was the objective to develop or 

validate a prediction model?  

  1.3. Was the objective to identify 

predictors or prognostic factors? 

2. Statistical 

approach 

2.1 Were adjustment covariates included 

or excluded in multivariable regression 

based on their role in the causal 

structures (e.g. as confounder or 

mediator)?  

2.3. Were covariates included in the 

model based on their ability to predict 

the outcome (e.g. based on univariate 

association, backward or forward 

selection, machine-learning methods)  

 2.2. Were methods such as matching, 

IPW or propensity scores employed, to 

adjust for differences between exposure 

groups? 

2.4. Were covariates included as 

predictor based on previous studies or 

existing prognostic/diagnostic models? 

  2.5. Were covariates included as 

predictor based on clinical expertise?  

3. Presentation 

of results 

3.1. Were the main results relative or 

absolute risks in which bias was 

minimized (for instance by adjusting for 

confounders or matching)?  

3.2 Were performance measures (e.g. 

AUC, sensitivity, calibration) presented 

for the multivariable model? 

  3.3 Were patients diagnosed or stratified 

according to risk, based on the 

multivariable model? 

4. Discussion 

and 

interpretation 

of results 

4.1 Were any of the variables from the 

multivariable model interpreted in a 

causal manner?  

4.4 Was the multivariable model 

proposed for risk stratification? 

 4.2 Was residual confounding mentioned 

as limitation of the study or was full 

confounder adjustment mentioned as 

strength? 

4.5 Was the multivariable model 

proposed for use in individuals for 

diagnostic or prognostic purposes? 

 4.3 Were interventions that modify risk 

factors recommended based on the study 

results?  
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Table S2: Number of studies screened and included per journal. 

 

 

 

Medical field Journal  N studies 

screened 

N studies 

included 

N studies 

with 

conflation 

Cardiology European Heart Journal 14 8 3 

Cardiology Circulation 8 2 0 

Cardiology Journal of the American College of Cardiology 40 6 2 

Cardiology Circulation Research 1 1 0 

Cardiology European Journal of Heart Failure 11 8 2 

Cardiology JAMA Cardiology 6 5 1 

Clinical Epidemiology 

 

International Journal of Epidemiology 18 11 0 

Clinical Epidemiology European Journal of Epidemiology 10 5 1 

Clinical Epidemiology Cancer Epidemiology, Biomarkers & Prevention 8 4 1 

Clinical Epidemiology Epidemiology 10 7 1 

Clinical Epidemiology Journal of Clinical Epidemiology 6 0 - 

Clinical Epidemiology American Journal of Epidemiology 5 3 1 

Clinical Neurology The Lancet Neurology 4 0 - 

Clinical Neurology ACTA Neuropathologica 6 1 0 

Clinical Neurology Alzheimer’s & Dementia 9 7 2 

Clinical Neurology JAMA Neurology 11 5 1 

Clinical Neurology BRAIN 17 3 1 

Clinical Neurology Neuro-Oncology 4 3 2 

Clinical Neurology Annals of Neurology 15 2 1 

Clinical Neurology Neurology 18 9 4 

General & Internal Medicine New England Journal of Medicine 15 1 0 

General & Internal Medicine Journal of the American Medical Association (JAMA)  14 6 0 

General & Internal Medicine British Medical Journal 11 6 0 

General & Internal Medicine JAMA Internal Medicine 10 6 0 

General & Internal Medicine Annals of Internal Medicine 6 0 - 

General & Internal Medicine PLOS Medicine 14 8 0 

General & Internal Medicine Journal of cachexia, sarcopenia and muscle 12 3 0 

Nephrology Journal of the American Society of Nephrology 12 5 2 

Nephrology Kidney International 9 7 3 

Nephrology American Journal of Kidney Diseases 11 7 1 

Nephrology Clinical Journal of the American Society of Nephrology 12 6 3 

Nephrology Nephrology Dialysis Transplantation 7 5 2 

Surgery JAMA Surgery 10 7 3 

Surgery Annals of Surgery 24 8 1 

Surgery Journal of Heart and Lung Transplantation 11 4 2 

Surgery Journal of Neurology, Neurosurgery and Psychiatry 9 5 3 

Surgery American Journal of Transplantation 10 6 3 

Surgery Endoscopy 4 0 - 
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Table S3: Visual representation of scoring per included article. Each row represents one of the 

included articles. Each article section was scored as fitting for etiology, prediction, unclear, both or 

conflation. To do so, the signaling questions presented in supplemental table S1 were used. The 

overall judgement is labeled as conflated if there are contradictory sections (e.g. the methods are 

fitting for prediction and the discussion for etiology) or if there is conflation within a section. 

 

 Research 
question 

 Statistical 
approach 

Presentation 
of results 

Discussion 
and 
interpretation 
of results Overall 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 4 1 1 1 1 4 1 1 1 1 4 1 1 1 1 4 1 1 1 1 4 1 1 1 1 4 1 1 1 1 4 1 1 1 1 4 1 1 1 1 4 1 1 1 1 4 1 1 1 1 4 1 1 1 1 4 1 1 1 1 4 1 1 1 1 4 1 1 1 1 1 1 1 1 4 1 1 1 1 4 1 4 1 1 4 4 1 1 1 4 4 1 1 1 4 4 1 1 1 4 4 1 1 1 4 4 4 1 4 1 1 1 1 4 1 1 1 1 4 1 1 1 1 4 1 1 1 1 4 1 4 1 1 4 1 4 1 1 4 4 1 1 1 4 4 4 1 1 4 4 4 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 2 2 2 2 4 4 2 2 4 2 2 2 2 4 2 2 2 2 4 2 2 2 2 4 2 2 2 2 4 2 2 2 4 2 2 2 2 4 2 2 4 2 4 2 4 4 2 4 2 4 4 2 4 2 4 4 2 4 4 2 4 2 5 5 1 1 5 5 5 1 5 5 5 5 2 5 5 5 5 5 1 5 5 5 5 5 5 5 5 5 5 5 1 1 2 1 3 1 1 3 1 3 1 2 1 1 3 1 2 2 3 3 1 2 4 1 3 1 2 4 1 3 1 2 4 1 3 1 2 4 1 3 1 2 4 1 3 1 2 4 1 3 1 2 4 1 3 1 2 4 1 3 1 2 4 1 3 1 2 4 1 3 1 3 1 1 3 1 3 1 1 3 1 3 1 1 3 1 3 2 1 3 1 3 3 1 3 1 3 3 1 3 1 3 4 1 3 1 3 4 1 3 1 5 1 1 3 1 5 5 1 3 1 5 5 1 3 2 1 2 2 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 2 4 1 3 2 2 4 1 3 2 2 4 3 3 2 2 4 3 3 2 2 4 3 3 2 3 2 1 3 2 3 4 3 3 2 4 3 2 3 2 4 4 1 3 2 4 4 3 3 4 1 2 1 3 4 2 1 1 3 4 2 2 1 3 4 2 4 1 3 5 2 2 3 3 5 5 4 1 3  

Legend: 

Etiology 

Prediction 

Unclear 

Both 

Conflation 
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