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1 Gompertz distribution as a PH and as an AFT model

Although the Gompertz distribution is usually parameterized as a Proportional Hazards (PH) model, it can also

be an Accelerated Failure Time (AFT) model (but, contrary to the Weibull distribution, not at the same time).

However, it requires a different parameterization to see this (Broström [2021]), as will be illustrated below.

A regression model adheres to the proportional hazards assumption if it fulfills the assumption that

h(t) = h0(t)× exp(βTX), (1)

where h0(t) is the baseline hazard. This is the proportional hazards assumption: the ratio of h(t)/h0(t) is the

constant exp(βTX).

A model adheres to the accelerated failure time assumption if it fulfills the assumption that

S(t|X) = S0(t× exp(βTX)), (2)

where S0(t) is the baseline survival. The expression exp(βTX) is also known as the ‘acceleration factor’ in the

context of AFT models.

Gompertz as a PH model

The usual Gompertz parametrization is the rate parametrization, where the hazard is given by

h(t) = a exp(bt). (3)

Here, a is generally called the rate parameter and b the shape parameter. Now we have to choose how to insert

the linear predictor and show that the resulting model adheres to assumption (1). For simplicity, assume X

is binary. Insert the linear predictor by reparameterizing a = exp(βTX). Then the hazard ratio (X = 1 vs.

X = 0) equals

HR =
exp(bt)× exp(βTX)

exp(bt)
= exp(βTX), (4)

such that the proportional hazards assumption of (1) is met.

Gompertz as an AFT model

To see that a Gompertz regression model can also be parameterized as an AFT model, rewrite the hazard as

h(t) =
τ

σ
exp(

t

σ
), (5)

where σ = 1
b and τ = a

b . Then the survival function can also be written in canonical form:

S(t) = exp[−τ(exp(
t

σ
− 1)]. (6)
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The next step is again to insert the linear predictor somewhere and show that the resulting model adheres to

2. For simplicity, assume X is binary. Take 1
σ as the linear predictor exp(βTX). Then

S(t|X = 1) = exp[−τ(exp(t× exp(βTX))− 1)] (7)

and

S(t|X = 0) = exp[−τ(exp(t− 1)] = S0(t). (8)

Now note that

S0(t× exp(βTX)) = exp[−τ(exp(t× exp(βTX))− 1)], (9)

which is equal to expression (7). Hence, assumption (2) is satisfied. If the linear predictor would have been

inserted in a different way, for example taking σ as the linear predictor exp(βTX), then the above equation

would not have been equal to (7).
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2 GrimAge in detail

In both the simulation study as well as the real data application we fitted our own version of GrimAge, because

we do not use DNAm data as predictor variables. Therefore we could not use the weights of the published

GrimAge predictor, but we repeated the approach used to construct the original GrimAge predictor with

different predictor variables. Here we describe our implementation and the differences with the approach to fit

the original GrimAge predictor.

In the original publication [Lu et al. 2019], the GrimAge predictor is constructed following a two-step

approach. In the first stage, DNAm-based surrogate biomarkers of smoking pack-years and a selection of

plasma proteins are defined. In the second stage, together with chronological age and sex these surrogate

biomarkers are included in an elastic net Cox Proportional Hazards model with time to all-cause mortality as

outcome, after which the linear predictors of this model are transformed to an age-scale. The authors justify

this two-step approach because the single-step approach (directly regressing CpG-sites on time to all-cause

mortality) resulted in a less significant p-value. The transformation to an age-scale depends on the mean and

standard deviation of chronological age in the dataset that the GrimAge predictor is fitted on.

Measurements of individual CpG-sites are known to be quite unreliable [Sugden et al. 2020]. A solution

to this was recently suggested by Higgins-Chen et al. [2021], who used principal components as predictors:

the first step of defining surrogate markers is hence replaced by the step of finding the principal components.

This resulted in more reliable DNAm-based clocks and has the added benefit of creating a set of uncorrelated

predictors. When fitting our version of GrimAge, metabo-GrimAge, on the UK Biobank data we hence followed

this approach: we did not construct surrogate markers, but did a principle component analysis on our candidate

markers of aging and included these principle components as the predictor variables in step 2. (In the simulation

study, we only considered two independently generated predictor variables, so no dimension reduction step was

required in the first place.) Our step 2 is exactly similar to step 2 in the original GrimAge model-fitting

approach.

First stage

• Perform principal component analysis on the set of predictor variables.

• Include the first i principal components that collectively explain at least 95% of the variance as predictor

variables in step 2.

Second stage

• On the training data, fit a Cox PH model with follow-up time as the outcome variable (i.e. time-on-study

as timescale t) and C, sex and the principal components from step 1 as the predictor variables.

• Obtain the linear predictors: β̂TXtrain.

• Determine coefficients a and b such that the mean and standard deviation of the linearly transformed

linear predictors a + b(βTXtrain) are the same as the mean and standard deviation of C in the training

data.

• Obtain linear predictors for the data set of interest (the test data, or some new data set).

• Linearly transform these linear predictors using the values for a and b as estimated earlier. This results

in the GrimAge prediction:

GrimAge = a+ b(β̂TXtest).

• To get ∆̂: regress GrimAge on C and obtain the residuals.
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3 How to draw survival times

Proportional Hazards

Following Bender et al. [2005], the survival function of a Cox PH model is given by

S(t|X) = exp[−H0(t)× exp(βTX)] (10)

and hence the cumulative distribution function is given by

F (t|X) = 1− S(t|X) = 1− exp[−H0(t)× exp(βTX)]. (11)

Let Y be a random variable with distribution function F . Then U = F (Y ) ∼ U [0, 1]. Let T be the survival

times from the Cox model. It follows that

F (T |X) = 1− exp[−H0(T )× exp(βTX)] = U. (12)

If U ∼ U [0, 1] then (1− U) ∼ U [0, 1]. Hence,

U = exp[−H0(T )× exp(βTX)]. (13)

Finally, solve (13) for T :

ti = H−1
0

ï − log(U)

exp(βTXi)

ò
. (14)

Accelerated Failure Time

The survival function of an AFT model is given by

S(t|X) = H0[t× exp(βTX)], (15)

and hence the cumulative distribution function is given by

F (t|X) = 1− S(t|X) = 1−H0[t× exp(βTX)]. (16)

Let Y be a random variable with distribution function F . Then U = F (Y ) ∼ U [0, 1]. Let T be the survival

times from the AFT model. It follows that

F (T |X) = 1−H0[T × exp(βTX)] = U. (17)

If U ∼ U [0, 1] then (1− U) ∼ U [0, 1]. Hence,

U = H0[T × exp(βTX)]. (18)

Finally, solve (18) for T :

ti =
H−1

0 [− log(U)]

exp(βTXi)
. (19)
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4 Additional details on study populations
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Figure 1: Distribution of chronological ages of the included UKB samples.
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Figure 2: Distribution of chronological ages of the included LLS samples.

Table 1: Prevalence of (chronic) diseases in UK Biobank sample and Leiden Longevity Study sample. Prevalence

is defined as having been diagnosed with the disease at any time prior to inclusion in one of the two studies.

These data were taken from the Electronic Health records of participants, except for the category ‘cancer (any

type)’, which was self-reported.

Chronic disease UK Biobank (%) Leiden Longevity Study (%)

Hypertension 25.4 34.0

Cancer (any type) 7.0 NA

Diabetes 4.8 7.7

Angina pectoris 3.9 2.9

Myocardical infarction 2.2 4.5

Transcient ischemic attack 1.7 1.8
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Figure 3: Comparison of survival curves of all UKB participants, the subset of UKB participants with metabolite

measurements who were included in the analysis, and the UK general population (the period lifetable of 2018-

2020) as provided by the Office for National Statistics. All curves are stratified by sex. The population survival

curves were scaled such that they only start decreasing from age 40 onward, to avoid an unfair comparison due

to the immortal time bias present in the UKB data.

5 Simulation study results semiparametric and flexible parametric

AFT

This section of the supplementary material contains the results of a simulation study that includes two additional

predictors, based on a semiparametric and flexible parametric AccelerAge approach. All other details of the

simulation study are exactly as described in the main manuscript.

Results can be found in Figures 4, 5 and 6 As mentioned, the flexible parametric AFT model is numerically

delicate to fit and often had troubles to converge (in particular for the Gompertz AFT case). We excluded

simulation runs for which this occurred from the results. Table 2 contain the number of simulation runs (out of

nsim = 200 for which this was the case. Results are hence based on fewer simulation runs, but when comparing

the figures in this section with those in the main manuscript, it can be seen that the performance of the three

methods that are included in both is almost identical.

To fit the semiparametric AFT, we use the approach of Stute [1993], described in more detail in the next

section of this document. The flexible parametric AFT models were fitted using the function aft() from the

R-package rstpm2 [Liu et al. 2018] with df = 3. Its performance is as expected, but in our implementation

convergence proved to be extremely slow.
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Table 2: Number of simulation runs (out of nsim = 200) for which the flexible parametric AFT model

(AccelerAge-flexpar) did not properly converge and which were subsequently excluded from the results.

nobs Gompertz PH Gompertz AFT Weibull

500 9 15 20

2,500 15 30 47

5,000 27 69 45

7,500 34 97 51

10,000 51 135 49
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Figure 4: Performance of the five different biological age predictors in terms of the root-mean-square error under

the Gompertz-PH data-generating mechanism. Results are reported for data sets of varying sizes (nobs = 500,

2500, 5000, 7500 and 10,000) as the average root-mean-square error over a simulation sample size of nsim = 200.
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Figure 5: Performance of the five different biological age predictors in terms of the root-mean-square error under

the Gompertz-AFT data-generating mechanism. Results are reported for data sets of varying sizes (nobs = 500,

2500, 5000, 7500 and 10,000) as the average root-mean-square error over a simulation sample size of nsim = 200.
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Figure 6: Performance of the five different biological age predictors in terms of the root-mean-square error under

the Weibull data-generating mechanism. Results are reported for data sets of varying sizes (nobs = 500, 2500,

5000, 7500 and 10,000) as the average root-mean-square error over a simulation sample size of nsim = 200.
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6 The semiparametric AFT

The semiparametric AFT model does not assume an underlying parametric baseline hazard so this needs to be

estimated. We use the weighted least squares method, based on Kaplan-Meier weights, as suggested by Stute

[1993]. Estimates for the coefficients are found via:

β̂ = argmin

n∑
i=1

WL
i [log(T(i))− βTX(i)]

2, (20)

where log(T(i)) is the i
th ordered value of the observed response log(T ) andX(i) is the corresponding covariate. If

there is no delayed entry, W contains the Kaplan-Meier weights (the successive increments of the Kaplan-Meier

estimator) of T(i). If there is, W is adjusted to:

WL
i = Wi/

n∑
j=1

I(Lj < Ti < Tj), (21)

where Lj is the left truncation time of individual j. In other words, the risk set is adjusted. Note that since

the Kaplan-Meier estimator does not change when an individual is censored, Wi/W
L
i is zero for each censored

individual.

Once estimates for β are obtained, an estimate for the baseline survival is next. First of all, remember that:

log(T(i))− βTX(i) = ϵ(i) (22)

and that

F̂0(u) = P̂ (ω ≤ u) =

n∑
i=1

WiI(exp(log(T(i))− β̂TX(i)) ≤ u) =

n∑
i=1

WiI(ϵ̂(i) ≤ u). (23)

Now, Ŝ0(u) can be obtained by 1 − F̂0(u). To get this to the timescale of interest, remember that log(T(i)) =

βTX(i) + ϵ(i), so T(i) = exp(βTX(i) + ϵ(i)) = exp(βTX(i)) × exp(ϵ(i)). For the baseline, set all covariates to 0.

The intercept then remains, hence T0,(i) = exp(β0)× exp(ϵ(i)).
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Göran Broström. The Gompertz distribution. https: // cran. r-project. org/ web/ packages/ eha/

vignettes/ gompertz. html , 2021. Accessed 09-03-2022.

Albert T Higgins-Chen, Kyra L Thrush, Yunzhang Wang, Pei-Lun Kuo, Meng Wang, Christopher J Minteer,

Ann Zenobia Moore, Stefania Bandinelli, Christiaan H Vinkers, Eric Vermetten, et al. A computational

solution for bolstering reliability of epigenetic clocks: Implications for clinical trials and longitudinal tracking.

BioRxiv, 2021.

Xing-Rong Liu, Yudi Pawitan, and Mark Clements. Parametric and penalized generalized survival models.

Statistical methods in medical research, 27(5):1531–1546, 2018.

Ake T Lu, Austin Quach, James G Wilson, Alex P Reiner, Abraham Aviv, Kenneth Raj, Lifang Hou, Andrea A

Baccarelli, Yun Li, James D Stewart, et al. DNA methylation GrimAge strongly predicts lifespan and

healthspan. Aging (Albany NY), 11(2):303, 2019.

Winfried Stute. Consistent estimation under random censorship when covariables are present. Journal of

Multivariate Analysis, 45(1):89–103, 1993.

Karen Sugden, Eilis J Hannon, Louise Arseneault, Daniel W Belsky, David L Corcoran, Helen L Fisher, Re-

nate M Houts, Radhika Kandaswamy, Terrie E Moffitt, Richie Poulton, et al. Patterns of reliability: assessing

the reproducibility and integrity of DNA methylation measurement. Patterns, 1(2):100014, 2020.

10

https://cran.r-project.org/web/packages/eha/vignettes/gompertz.html
https://cran.r-project.org/web/packages/eha/vignettes/gompertz.html

	Gompertz distribution as a PH and as an AFT model
	GrimAge in detail
	How to draw survival times
	Additional details on study populations
	Simulation study results semiparametric and flexible parametric AFT
	The semiparametric AFT

