Online Resource 4: Definitions of extent of resection and recurrence/progression provided by study authors | | ALFORD
ET AL [13] | DODGSHUN
ET AL [14] | DORWARD
ET AL [15] | KIM
ET AL [16] | UDAKA
ET AL [17] | VASSILYADI
ET AL [18] | KORONES
ET AL [12] | |--------------------------|-----------------------|--|---|--|---|---|---| | GROSS TOTAL
RESECTION | No residual
tumour | Absence of enhancing nodular elements determined on the immediate postoperative MR scan defined by radiologist | Lack of nodular
enhancement on early
postoperative MR
imaging (i.e. within 48
hours of surgery) | Lack of nodular enhancement on imaging performed in the immediate postoperative period (within 3 days of the surgery) by a neuroradiologist &2 neurosurgeons | NR NR | NR | NR | | SUB-TOTAL
RESECTION | Residual
tumour | N/A | N/A | N/A | NR | NR | NR | | RECURRENCE | NR | NR | Development of progressive, nodular enhancement on 2 successive follow-up images | Early nodular
enhancement on imaging
at 3-6 months | NR | NR | Ttumor which had completely responded to treatment and regrew | | PROGRESSION | NR | N/A | N/A | N/A | 25% increase
in the maximal
cross-sectional
area
documented
on MRI | Residual lesion
enlargement in all
three dimensions
compared to the
previous MRI
image | Residual
tumor which
progressed | Key: MRI: Magnetic resonance imaging; N/A: not applicable; NR: not reported The utility of routine surveillance screening with magnetic resonance imaging (MRI) to detect tumour recurrence in children with low grade central nervous system (CNS) tumours: a systematic review ## Journal of Neuro-oncology Simon P. Stevens, ¹ Caroline Main, ¹ Simon Bailey, ² Barry Pizer, ³ Martin English, ⁵ Robert Phillips, ⁶ Andrew Peet, ⁴ Shivaram Avula, ³ Sophie Wilne, ⁷ Keith Wheatley, ¹ Pamela R. Kearns, ^{1,5} Jayne S. Wilson ¹ ## **Correspondence:** Jayne Wilson UK; Tel: +441214149273 Email: j.s.wilson.1@bham.ac.uk ¹ Cancer Research UK Clinical Trials Unit (CRCTU), Institute of Cancer and Genomic Sciences, University of Birmingham, UK ² Sir James Spence Institute of Child Health, Royal Victoria Infirmary, Newcastle-Upon-Tyne ³ Alder Hey Children's NHS Foundation Trust, Liverpool, UK ⁴ Institute of Cancer and Genomic Sciences, University of Birmingham, UK ⁵ Birmingham Women and Children's Hospital NHS Foundation Trust, Birmingham, UK ⁶Centre for Reviews and Dissemination (CRD), University of York, UK ⁷ Queen's Medical Centre, Nottingham University Hospitals' NHS Trust, Nottingham, UK