Electronic supplementary material – Forensic Toxicology

5F-Cumyl-PINACA in 'e-liquids' for electronic cigarettes: comprehensive characterization of a new type of synthetic cannabinoid in a trendy product including investigations on the in vitro and in vivo phase I metabolism of **5F-Cumyl-PINACA** and its non-fluorinated analog Cumyl-PINACA

Verena Angerer^{1,2,†}, Florian Franz^{1,2,3,†}, Bjoern Moosmann⁴, Philippe Bisel⁵, Volker Auwärter^{1,2,*}

- ¹ Institute of Forensic Medicine, Forensic Toxicology, Medical Center University of Freiburg, Albertstr.
 9, 79104 Freiburg, Germany
- ² Faculty of Medicine, University of Freiburg, Breisacher Str. 153, 79110 Freiburg, Germany
- ³ Hermann Staudinger Graduate School, University of Freiburg, Hebelstr. 27, 79104 Freiburg, Germany
- ⁴ Institute of Forensic Medicine, Forensic Toxicology, Kantonsspital St.Gallen, Rorschacher Str. 95, 9007 St.Gallen, Switzerland
- ⁵ Institute for Pharmaceutical Sciences, University of Freiburg, Albertstr. 25, 79104 Freiburg, Germany
- [†] These authors have contributed equally to this manuscript.

* Corresponding author:

Prof. Volker Auwärter Tel.: +49 761 203 6862 Fax: +49 761 203 6826 Email: volker.auwaerter@uniklinik-freiburg.de

Туре	Q1	Q3	Dwell time [msec]	DP [V]	EP [V]	CE [V]	CXP [V]	Metabolite ID
Cumyl-PINACA	350	215	20	40	8	30	25	A00
	350	145	20	40	8	55	17	
Mono-hydroxylation (+O)	366	231	20	40	8	30	25	A08, A09, A10
	366	145	20	40	8	55	17	
Di-hydroxylation (+2O)	382	231	20	40	8	30	25	A01
	382	145	20	40	8	55	17	
Di-hydroxylation (+2O)	382	247	20	40	8	30	25	A02, A03
	382	145	20	40	8	55	17	
Dihydrodiol (+2H, +2O)	384	249	20	40	8	30	25	A06
	384	119	20	40	8	55	17	
(+2O, -2H)	380	229	20	40	8	30	25	A04
	380	145	20	40	8	55	17	
(+2O, -2H)	380	245	20	40	8	30	25	A05, A07
	380	145	20	40	8	55	17	

Table S1 Specific MRM mass transitions of Cumyl-PINACA and its detected metabolites

Q;1 m/z of the precursor ion Q3; m/z of the fragment ion DP; Declustering potential EP; Entrance potential

CE; Collision energy

CXP; Cell exit potential

Туре	Q1	Q3	Dwell time [msec]	DP [V]	EP [V]	CE [V]	CXP [V]	Metabolite ID
5F-Cumyl-PINACA	368	233	10	65	12	30	8	B00
	368	145	10	65	12	55	5	
Monohydroxylation (+O)	384	249	10	65	12	30	8	B03, B05, B06
	384	145	10	65	12	55	5	
Dihydrodiol (+2H, +2O)	402	267	10	65	12	30	8	B01
	402	179	10	65	12	55	5	
Defluorination (+H, +O, -F)	366	231	10	65	12	30	8	B04
	366	145	10	65	12	55	5	
N-Pentanoic acid (+2O, -H, -F)	380	245	10	65	12	30	8	B02
	380	145	10	65	12	55	5	

Table S2 Specific MRM mass transitions of 5F-Cumyl-PINACA and its detected metabolites

Q1; m/z of the precursor ion

Q3; m/z of the fragment ion

DP; Declustering potential

EP; Entrance potential

CE; Collision energy

CXP; Cell exit potential

ID Type	Type R	RT	Formula	[M[,10]+	Urine 00	Urine 01	Urine 02	Urine 03	Urine 04	Urine 05	Urine 06	Urine 07	Urine 08	Urine 09	Urine 10	Urine 11	Urine 12	Urine 13	Urine 14	Urine 15	Urine 16	ъШ M
	Type	[min]	Formula	[M+II]	0 h	0.2 h	3.2 h	6 h	16 h	20.3 h	22.3 h	26.3 h	29.3 h	37.2 h	39 h	88.5 h	110.3 h	134 h	157.5 h	182.5 h	205.5 h	рпсм
A01	Dihydroxylation	3.3	$C_{22}H_{27}N_3O_3$	382.2125	n.d.	n.d.	4.5E+04	6.4E+05	4.3E+05	2.0E+05	2.1E+05	2.0E+05	1.5E+05	1.1E+05	1.1E+05	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	1.9E+06
A02	Dihydroxylation	3.4	$C_{22}H_{27}N_{3}O_{3}$	382.2125	n.d.	n.d.	4.7E+04	1.2E+06	1.1E+06	3.9E+05	2.1E+05	1.8E+05	1.2E+05	6.7E+04	5.5E+04	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	2.8E+07
A03	Dihydroxylation	3.5	$C_{22}H_{27}N_{3}O_{3}$	382.2125	n.d.	n.d.	1.1E+05	3.1E+06	3.9E+06	1.6E+06	1.3E+06	1.4E+06	1.0E+06	6.0E+05	5.8E+05	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	4.2E+07
A04	(+2O, -2H)	3.7	$C_{22}H_{25}N_3O_3$	380.1969	n.d.	n.d.	5.4E+04	1.3E+06	9.8E+05	4.9E+05	6.7E+05	6.2E+05	5.2E+05	3.3E+05	3.6E+05	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	2.6E+06
A05	(+2O-, 2H)	4.2	$C_{22}H_{25}N_3O_3$	380.1969	n.d.	n.d.	1.7E+05	6.6E+06	8.8E+06	1.3E+06	2.3E+06	1.0E+06	1.4E+06	3.4E+05	5.8E+05	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	3.7E+07
A06	Dihydrodiol	4.3	$C_{22}H_{29}N_{3}O_{3} \\$	384.2282	n.d.	n.d.	5.0E+04	9.3E+05	2.2E+05	1.1E+05	1.5E+05	1.2E+05	9.1E+04	4.8E+04	4.1E+04	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	1.5E+06
A07	(+2O, -2H)	4.5	$C_{22}H_{25}N_3O_3$	380.1969	n.d.	n.d.	n.d.	8.4E+04	1.1E+05	5.2E+04	6.0E+04	4.2E+04	2.1E+04	1.7E+04	n.d.	2.9E+06						
A08	Monohydroxylation	4.8	$C_{22}H_{27}N_{3}O_{2} \\$	366.2176	n.d.	n.d.	1.1E+06	1.7E+07	4.1E+06	1.4E+06	1.5E+06	7.7E+05	5.7E+05	4.5E+05	2.9E+05	2.6E+04	6.1E+04	2.7E+04	1.5E+04	1.3E+04	1.1E+04	7.3E+07
A09	Monohydroxylation	5.2	$C_{22}H_{27}N_3O_2$	366.2176	n.d.	n.d.	3.8E+05	7.6E+06	2.5E+06	9.8E+05	9.1E+05	6.1E+05	4.4E+05	3.9E+05	2.9E+05	2.9E+04	4.2E+04	1.6E+04	1.2E+04	n.d.	n.d.	4.6E+07
A10	Monohydroxylation	5.6	$C_{22}H_{27}N_{3}O_{2}$	366.2176	n.d.	n.d.	1.5E+05	2.9E+06	8.7E+05	3.4E+05	5.0E+05	3.6E+05	2.7E+05	2.0E+05	2.0E+05	2.1E+04	2.1E+04	7.0E+03	3.6E+03	n.d.	n.d.	1.1E+07

Table S3 Detected in vivo phase I metabolites of Cumyl-PINACA in each of the urine samples in the order of their retention time (RT)

n.d.; Not detectable

The peak area of each metabolite was normalized to a creatinine value of 100 mg/dL

The time point of sampling is given in hours

Urine 00 was taken directly before oral drug intake

Urine samples 01 - 16 were taken after the self-administration

In vitro data after pHLM incubation of Cumyl-PINACA are given for comparison

Carbon No.	$^{1}\text{H}\Delta$ (ppm)	Multiplicity	J (Hz)	$^{13}C \Delta (ppm)$
1				161.8
3'				137.8
3'a				122.7
4'	8.33 (1 H)	td	8.38; 1.02	123.1
5'	7.20-7.25 (1 H)	m		122.4
6'	7.38-7.40 (1 H)	m		126.6
7'	7.38-7.40 (1 H)	m		108.9
7a'				140.8
1"	4.41 (2 H)	t	7.11	49
2"	2.01 (2 H)	quint.	7.35	29.3
3"	1.44-1.54 (2 H)	m		22.6
4''	1.68-1.83 (2 H)	m		29.9
5"	4.45 (2 H)	dt	5.88; 47.07	83.9 (d)
1'''				55.8
2'''	1.87 (6 H)	S		29.5
1''''				147.3
2""+ 6""	7.50-7.55 (2 H)	m		124.7
3''''+ 5''''	7.32-7.38 (2 H)	m		128.3
4''''	7.20-7.25 (1 H)	m		126.5

Table S4 NMR data of the unknown compound detected in four e-liquids (for numbering see Fig. S3)

CDCl₃ was used as a solvent

Table S5 In vivo phase I metabolites of 5F-Cumyl-PINACA detected in authentic urine samples in the order of their retention time (RT)

ID	Туре	RT [min]	Formula	$[M+H]^+$	pHLM [Peak area]	Urine [Peak area]
B01	Dihydrodiol	3.60	$C_{22}H_{28}FN_3O_3$	402.2187	7.0E+06	5.6E+04
B02	N-Pentanoic acid	4.50	$C_{22}H_{25}N_3O_3$	380.1969	9.3E+06	1.8E+05
B03	Monohydroxylation	4.70	$C_{22}H_{26}FN_3O_2$	384.2082	6.1E+07	3.9E+05
B04	Defluorination	4.80	$C_{22}H_{27}N_3O_2$	366.2176	6.0E+07	2.2E+05
B05	Monohydroxylation	4.80	$C_{22}H_{26}FN_3O_2$	384.2082	5.8E+07	2.7E+05
B06	Monohydroxylation	5.00	$C_{22}H_{26}FN_3O_2$	384.2082	4.4E+07	1.5E+05

In vitro data after pHLM incubation of 5F-Cumyl-PINACA are given for comparison